
Graph Neural PPO for Joint User Association and
Resource Allocation in Open RAN

Kim-Hoan Do∗, Tai-Hung Nguyen∗�, Quang-Trung Luu†, Minh-Thanh Nguyen∗,
Do-Minh Tran∗, and Van-Dinh Nguyen‡

∗School of Electrical and Electronic Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
†Université Paris-Saclay, CNRS, CentraleSupélec, L2S, 91190, Gif-sur-Yvette, France

‡School of Computer Science and Statistics, Trinity College Dublin, Dublin 2 D02PN40, Ireland
�Corresponding author. E-mail: hung.nguyentai@hust.edu.vn

Abstract—The rapid evolution toward beyond-5G and 6G
networks demands intelligent orchestration of heterogeneous
radio and computing resources to support ultra-reliable, high-
throughput, and large-scale services. Open radio access network
(Open RAN) and network slicing technologies enable flexible,
software-driven operation through virtualization of RAN compo-
nents. However, jointly optimizing user association and resource
allocation across distributed radio, distributed, and central units
(RU-DU-CU) under dynamic traffic and channel conditions
remains a challenging mixed-integer problem. To address this, we
propose a framework that integrates proximal policy optimiza-
tion (PPO) with graph sample and aggregation (GraphSAGE)-
based neural encoder. The proposed approach, called PPO-
GraphSAGE, formulates the joint admission control and resource
allocation task as a reinforcement learning model, where the GNN
captures spatial and topological dependencies in the Open RAN,
while PPO learns adaptive control policies in a sample-efficient
and stable manner. Simulation results on a realistic Open RAN
topology demonstrate that the proposed PPO-GraphSAGE agent
significantly outperforms baseline greedy and heuristic schemes
in terms of slice acceptance rate, total throughput, and reward
efficiency, confirming its potential as a scalable and topology-
aware solution for intelligent resource management in next-
generation Open RAN systems.

Index Terms—Deep reinforcement learning, Open RAN, re-
source allocation, graph neural networks, proximal policy opti-
mization.

I. INTRODUCTION

Network slicing is a key enabler of 5G and beyond net-
works, allowing a single physical infrastructure to be par-
titioned into multiple isolated virtual networks (slices) that
can be independently managed and optimized [1], [2]. Each
slice provides a tailored network environment to support
diverse service categories such as enhanced mobile broadband
(eMBB), ultra-reliable low-latency communication (uRLLC),
and massive machine-type communication (mMTC). These
service types impose distinct requirements in terms of band-
width, latency, reliability, and computational resources [3], [4].

A central challenge in realizing network slicing lies in the
embedding problem, which involves mapping virtual network
functions (VNFs) and their interconnecting links onto physical
resources. Unlike traditional hardware-based systems, VNFs
are software-implemented, providing flexibility and scalability
in deploying network functions. However, efficient embedding
must satisfy multiple, often conflicting, constraints, such as

limited computing and bandwidth resources, network topology,
and service-level agreements (SLAs), making it a complex
multi-dimensional optimization problem.

Recent advances in Open Radio Access Network (Open
RAN) architectures further accentuate this complexity. Open
RAN decomposes the conventional RAN into radio units
(RUs), distributed units (DUs), and central units (CUs) con-
nected in a hierarchical topology [5], [6]. Each layer provides
different functionalities and exposes limited resources shared
among coexisting network slices. A typical slice, therefore,
spans multiple domains, deploying one VNF at each RU, DU,
and CU, and requires coordinated radio and computational
resource allocation along with bandwidth provisioning for
RU–DU–CU links [7], [8]. Efficiently managing this multi-
layer, distributed resource environment is crucial for achieving
high utilization and guaranteed QoS.

Research on network slice resource management has
evolved across several paradigms: classical optimization meth-
ods for VNF placement and virtual network embedding [9]–
[11]; deep reinforcement learning (DRL) for adaptive admis-
sion control and resource allocation [12], [13]; and, more
recently, graph-based learning for topology-aware decision-
making [14], [15]. DRL algorithms such as deep Q network
(DQN), deep deterministic policy gradient (DDPG), and prox-
imal policy optimization (PPO) have shown strong potential
for resource orchestration in dynamic wireless systems [16]–
[18], while graph neural networks (GNNs) effectively capture
spatial correlations and interference relationships in large-scale
networks [19]–[21]. Emerging studies that integrate GNNs
with DRL have demonstrated promising results for VNF
placement and service-function-chain optimization [22].

Despite this progress, existing approaches typically address
partial subproblems, focusing on admission control or radio
resource block (RB) allocation in isolation, and often neglect
the joint optimization across the full RU–DU–CU hierarchy.
Moreover, prior reward designs are coarse and fail to cap-
ture the fine-grained trade-offs between admission efficiency,
resource utilization, and QoS satisfaction.

To overcome these limitations, this work introduces a uni-
fied DRL framework that combines PPO with a GraphSAGE-
based GNN encoder for joint user association and resource
allocation in Open RAN. The proposed approach enables

37979-8-3315-7896-1/26/$31.00 ©2026 IEEE ICOIN 2026

adaptive policy learning that explicitly accounts for resource
dynamics, network topology, and service heterogeneity. Our
contributions can be summarized as follows:

• We design a comprehensive Open RAN model integrating
radio, computational, and topological constraints across
RU–DU–CU entities;

• We develop a DRL agent, called PPO–GraphSAGE, that
jointly performs admission control, function placement,
and discrete resource allocation using topology-aware
graph representations;

• Through extensive simulations, we demonstrate that the
proposed method achieves superior slice acceptance rate,
throughput, and resource efficiency compared to baseline
schemes, confirming its effectiveness for intelligent Open
RAN management.

II. SYSTEM MODEL

We consider an Open RAN consisting of three hierarchical
functional entity classes RUs, DUs and CUs. Each RU attaches
to one or more DUs, and each DU attaches to one or more
CUs, forming a two-tier aggregation topology. Nodes expose
finite radio and/or compute resources that are shared across
coexisting network slices; available resources together with
topology feasibility determine admissible VNF embeddings.

A. Physical Infrastructure

Let the physical infrastructure be represented by the triplet
N =

�
R,D, C

�
, where R, D and C are finite sets of RUs,

DUs, and CUs, respectively. Indices r ∈R, d ∈D and c ∈ C
denote individual nodes.

Each RU r is provisioned with a maximum transmit power
Pmax
r and a maximum number of resource blocks (RBs)

MRB,max
r . Each DU d has a computing capacity Cmax

d (e.g.,
CPU cycles per unit time) and each CU c has computing
capacity Umax

c . Physical connectivity is captured by binary
adjacency indicators LRD

r,d ∈ {0, 1} and LDC
d,c ∈ {0, 1}, where

LRD
r,d = 1 (resp. LDC

d,c = 1) if and only if a feasible RU–DU
(resp. DU–CU) physical link exists. The large-scale/channel
gain between RU r and the user(s) associated with slice request
k is denoted by gr,k. The discrete set of admissible total
transmit-power levels is denoted by P . The bandwidth of a
single RB is BRB (Hz) and the noise power per RB is denoted
by σ2 (W).

B. Slice Requests

Slice requests arrive dynamically and are queued for admis-
sion decisions. Here, arrivals are modeled as a Poisson process
with rate λ, though the framework is agnostic to the specific
arrival law. Let K(t) denote the set of pending requests at
decision epoch t and K(t) = |K(t)|. An arrived slice request
k ∈ K(t) is described by the tuple qk =

�
Rreq

k , DDU
k , DCU

k

�
,

where Rreq
k is the requested user-plane throughput (bps), DDU

k

and DCU
k are DU and CU compute demands (CPU cycles per

unit time). A request k is admissible only if there exists at
least one triplet (r, d, c) ∈ R×D×C such that: (i) LRD

r,d = 1

and LDC
d,c = 1 (topology feasibility), (ii) an allocation of RBs

and transmit power yields an achieved throughput ≥ Rreq
k ,

and (iii) DU and CU compute demands can be satisfied by
residual capacities.

C. Link-level Throughput Model

Consider an allocation (nk,r, pk,r) serving request k at RU
r. The per-RB transmit power is defined as

ρk,r =





pk,r
nk,r

, nk,r > 0,

0, nk,r = 0
(1)

where pk,r denotes the total transmit power assigned to request
k at RU r, and nk,r is the number of allocated RBs. The
resulting per-RB signal-to-noise ratio (SNR) is expressed as

SNRr,k =
ρk,r gr,k

σ2
(2)

with gr,k representing the channel gain and σ2 denoting the
noise power. The achievable throughput is then given by

Rach
k,r = nk,r BRB log2

�
1 + SNRr,k

�
(3)

where BRB is the bandwidth per resource block.

III. PROBLEM FORMULATION

We introduce binary assignment variables

xk,r,d,c =

�
1, request k is mapped to (r, d, c),

0, otherwise
(4)

with xk,r,d,c ∈ {0, 1}. For a request k admitted at RU r, we
denote by nk,r ∈ Z≥0 the number of RBs allocated and by
pk,r ∈ P the total transmit power allocated to that request at
RU r. The per-RB transmit power for (k, r) is defined shortly.
Unless ambiguity arises, we omit the explicit dependence of
nk,r and pk,r on the chosen DU/CU.

The orchestrator aims to admit and embed requests so as
to maximize slice admission while using radio and compute
resources efficiently. We formulate a weighted objective that
trades off admitted requests and achieved throughput:

max
�

k∈K(t)

�
r∈R

�
d∈D

�
c∈C

�
αxk,r,d,c + β

Rach
k,r

Rreq
k

xk,r,d,c

�
(5)

where α > 0 and β ≥ 0 are tunable weights (setting β = 0
reduces the objective to pure admission maximization). Below
we list the constraints that must hold for all relevant indices.

Total transmit power at RU r cannot exceed its installed
power budget:

�
k∈K(t)

�
d∈D

�
c∈C

pk,r xk,r,d,c ≤ Pmax
r , ∀r ∈ R. (6)

The number of RBs assigned at RU r is bounded by its RB
capacity:

�
k∈K(t)

�
d∈D

�
c∈C

nk,r xk,r,d,c ≤ MRB,max
r , ∀r ∈ R. (7)

38

The cumulative DU processing demand of slices mapped to
DU d must not exceed Cmax

d :
�

k∈K(t)

�
r∈R

�
c∈C

DDU
k xk,r,d,c ≤ Cmax

d , ∀d ∈ D (8)

and the CU processing demand obeys
�

k∈K(t)

�
r∈R

�
d∈D

DCU
k xk,r,d,c ≤ Umax

c , ∀c ∈ C. (9)

A mapping is valid only if exist underlying physical links:

xk,r,d,c ≤ LRD
r,d ; xk,r,d,c ≤ LDC

d,c , ∀k, r, d, c. (10)

Each request is mapped to at most one RU–DU–CU triplet,
and assignment variables are binary:

�
r∈R

�
d∈D

�
c∈C

xk,r,d,c ≤ 1, ∀k ∈ K(t). (11)

For any admitted mapping the achieved throughput must
satisfy the request’s minimum:

xk,r,d,c R
ach
k,r ≥ xk,r,d,c R

req
k , ∀k, r, d, c. (12)

The optimization problem defined by (5)–(12) is a mixed-
integer, combinatorial program. Its feasible set and objective
scale combinatorially with the number of pending requests and
physical nodes, rendering exact solution methods impractical
for large instances and motivating scalable heuristics and
learning-based policies (see Sec. IV).

IV. REINFORCEMENT LEARNING APPROACH

To obtain scalable and adaptive policies for joint admis-
sion control and resource embedding under stochastic slice
arrivals and time-varying wireless channels, we first derive
a reinforcement learning model. A model-free DRL is then
employed as a scalable algorithm capable of learning effective
policies without explicit knowledge of system dynamics or
traffic statistics.

A. Reinforcement Learning Model

In our RL framework, decisions are made at discrete epochs
indexed by t = 0, 1, 2, . . . At each epoch, the environment is
represented by a state st summarizing the residual resources,
active slice requests, and channel conditions. Based on this
state, the agent selects an action at that specifies whether
to admit a given request and how to allocate radio and
computational resources across RU, DU, and CU nodes. The
environment then returns a scalar reward rt, reflecting both
the quality of service delivered to the admitted slices and the
efficiency of resource utilization, and transitions to a new state
st+1 according to the underlying system dynamics.

The learning task is to determine a stochastic policy πθ(a|s),
with parameter θ, maximizes the expected discounted return

J(πθ) = Eπθ

� ∞�
t=0

γtrt

�
, (13)

where γ ∈ (0, 1] is the discount factor controlling the trade-off
between immediate and future rewards. A larger γ emphasizes

long-term performance, while a smaller value encourages
short-sighted decisions prioritizing short-term gains.
States. At each decision epoch t, the agent observes a
structured state that jointly captures residual resources, traffic
context, and network conditions:

st =
�
Pres(t), CDU,res(t), UCU,res(t), MRB,res(t),

Q
′
(t), LRD

r,d , L
DC
d,c , G(t), P, MRB

max

�
.

(14)

The first group encodes available resources across RUs,
DUs, and CUs, together with the remaining RB budgets. The
second group describes the set of pending service requests,

Q
′
(t) = {q

′

k}
K(t)
k=1 , q

′

k = (Rreq
k , DDU

k , DCU
k , ak), (15)

where ak indicates request activity. The third group reflects
structural and physical information, including topology (RU–
DU and DU–CU adjacencies), instantaneous channel gains,
admissible power levels, and per-request RB limits.

This compact yet expressive representation ensures that
both feasibility constraints and performance trade-offs are
explicitly available to the policy, enabling informed admission
and embedding decisions without redundant features.
Action. The agent issues an action that jointly specifies
admission and resource embedding for a single decision (one
request per epoch, or a batched set of decisions in extended
formulations). We consider the per-epoch action

at =
�
kt, δt, r

⋆, d⋆, c⋆, nkt,r⋆ , pkt,r⋆
�

(16)

where kt ∈ K(t) selects a pending request, δt ∈ {0, 1}
is the admission indicator (0= reject, 1= accept), (r⋆, d⋆, c⋆)
denotes the chosen RU/DU/CU triplet, nkt,r⋆ is the number of
allocated RBs (integer, 0 ≤ nkt,r⋆ ≤ MRB

max), and pkt,r⋆ ∈ P
is the total transmit power. During action sampling infeasible
choices are masked using pre-computed feasibility checks
derived from constraints (6)–(12).
Reward. For a feasible allocation of request k at RU r, the
normalized throughput is defined as

θk,r = Rach
k,r /R

req
k , (17)

which captures the degree to which the demand is satisfied
relative to the target requirement. To reduce wasteful resource
usage, we introduce the following penalty

ϕ(θ) = η (θ − 1)+, (x)+ = max{0, x} (18)

with η > 0 controlling the severity of the penalty.
The instantaneous reward rt associated with the agent’s

decision on request kt is then given by

rt =




rrej, δt = 0,

rinf , δt = 1 ∧ infeasible,

racc + θkt,r⋆ − ϕ(θkt,r⋆), δt = 1 ∧ feasible

(19)

where rrej < 0 is a mild penalty for rejection, rinf ≪ 0 is
a strong penalty for admitting an infeasible allocation, and
racc > 0 is a positive credit for feasible admission. To prevent
instability due to outliers, reward values may be clipped below
a chosen floor.

39

B. Proximal Policy Optimization (PPO)

PPO is a widely used RL algorithm that helps agents learn
how to make better decisions through trial and error [23].
PPO belongs to the family of policy gradient methods, which
directly improve the agent’s strategy for choosing actions. A
key feature of PPO is its clipped objective function, which
stabilizes learning by limiting how much the policy can change
during each update. This function is defined as:

Lclip = E
[
min(rt(θ) ·A, clip(rt(θ), 1±ϵ) ·A)

]
(20)

where rt(θ) =
πθ(at|st)
πθold (at|st) is the probability ratio between the

new and old policies, Ât is the estimated advantage, and ϵ is a
small constant that defines the clipping range. This formulation
helps PPO maintain stable and conservative updates, making
it a robust choice for training reinforcement learning agents.

C. Graph Sample and Aggregation

Graph sample and aggregation (GraphSAGE), proposed in
[24], is a method for learning node representations in graphs.
It supports inductive learning, allowing embeddings for new
nodes not seen during training. This is useful for large and
changing graphs like social networks. GraphSAGE samples
a fixed number of neighbors and aggregates their features to
represent each node.

The main idea of GraphSAGE is to combine a node’s
features with its neighbors’ using an aggregation function
across layers. The embedding of node v at layer k is:

h(k)
v = σ

(
W (k)A(k)({h(k−1)

u : u ∈ N (v)} ∪ {h(k−1)
v })

)
(21)

where h
(k)
v is the node embedding, N (v) is the set of neigh-

bors, W (k) is a learnable weight matrix, σ is a non-linear
function, and A(k) is the aggregation function.

D. Learning Architecture

The proposed PPO–GraphSAGE algorithm uses an actor-
critic framework trained with PPO integrated with Graph-
SAGE, as described in Algorithm 1. Its policy network in-
cludes a structured encoder that captures the spatial layout and
resource status of the Open RAN. A graph neural network
encodes the RU/DU/CU hierarchy and node-level capacities
to create resource-aware embeddings. At the same time, a
lightweight multilayer perceptron encodes slice request fea-
tures such as throughput demand, DU/CU computation needs,
and holding time. These embeddings are combined and used
by multiple output heads to produce logits for four decisions:
request selection, admission, RU/DU/CU assignment, and re-
source allocation (RBs and transmit power).

The algorithm follows these steps. In each episode, the agent
selects a random action a and performs it in the environment
E (Line 6). After that, the agent saves the outcome of the
action in the buffer D (Line 7). If the buffer becomes full
or the environment reaches a terminal state, the agent starts
optimizing the neural network.

To perform optimization, the agent first computes the values
of A and R (Line 9). Then, for each minibatch in the

Algorithm 1 Our Proposed PPO-GraphSAGE Algorithm.
1: Input: Environment E , policy πθ , value Vϕ, discount γ, GAE λ,

clip ϵ, steps T , epochs K;
2: Initialize: Parameters (θ, ϕ), optimizer, entropy coefficient β,

and buffer D←∅;
3: for each episode do
4: Reset environment: s←Reset(E);
5: while not done do
6: Sample a∼πθ(·|s) and execute in E ⇒ (s′, r, done);
7: Store (s, a, r, log πθ(a|s), Vϕ(s)) in D; set s←s′;
8: if |D|≥T or done then
9: Compute: A = GAE(r, Vϕ, γ, λ), R = A+ Vϕ(s);

10: for K epochs over minibatches do
11: Recompute log πθ and Vϕ, then evaluate losses:

Lclip = E
[
min(rt(θ) ·A, clip(rt(θ), 1±ϵ) ·A)

]
,

LV = E
[
(R− Vϕ)

2];
12: Update (θ, ϕ) by maximizing: Lclip + βH[πθ] −

c1 LV ;
13: end for
14: Clear D; anneal β if required;
15: end if
16: end while
17: Store metrics: reward, acceptance, throughput;
18: end for
19: return π∗

θ .

buffer, the agent calculates the loss for the neural network.
To support stable and effective learning, the algorithm uses
several methods, such as normalized advantage estimation,
entropy regularization with annealing, and gradient clipping.
The clipped surrogate loss Lclip helps stabilize policy updates
by preventing large changes in the policy ratio. The value loss
LV reduces errors in predicting the value function (Line 11).
After completing the optimization, the agent updates the neural
network and finishes the episode (Line 12).

V. PERFORMANCE EVALUATION

A. Setup

The proposed reinforcement learning framework is imple-
mented in a custom-built simulator that emulates the Open
RAN system model described in Sec. II. Slice requests arrive
according to a Poisson process with rate λ, and each request
specifies a throughput demand together with DU and CU
compute requirements.

Wireless propagation is modeled by combining large-scale
path loss and small-scale fading. The path loss follows the
3GPP urban macrocell model, with reference attenuation of
128.1 dB at 1 km and a distance-dependent exponent of 37.6.
Each RU is equipped with an array of eight antennas, and
the small-scale fading between RU–UE pairs is represented
by independent Rayleigh fading coefficients. The effective
channel gain is obtained by superimposing fading and path
loss, and the received signal-to-noise ratio (SNR) is calculated
per resource block after incorporating noise power.

A total of 30 UEs are randomly deployed within a circular
service area of 2 km diameter, while RUs are evenly placed
within the same region. Each UE is associated with its nearest

40

RU. The deployment of UEs and RUs, together with nearest-
RU association.

The agent is trained using PPO-GraphSAGE over 5000
decision episodes with discount factor γ = 0.99, clipping
parameter ϵ = 0.2, and learning rate 1 × 10−4. Performance
is benchmarked against three baseline strategies: a random
allocation, a greedy admission policy, and a throughput-to-
resource heuristic.

Table I summarizes the main simulation parameters.

TABLE I: Simulation parameters.

Parameter Value

Nb. of RUs/DUs/CUs (|R|, |D|, |C|) (5, 3, 3)
Nb. of slices/RBs (|K|, |B|) (30, 137)

RB’s bandwidth (BRB) 360 kHz
RU’s power budget (Pmax

r) 43 dBm
CU’s/DU’s capacity (Cmax

d , Umax
c) (100, 100) units

Nb. of training episodes 5000

The training and evaluation are conducted on a PC equipped
with an Intel® Core™ i5-8565U CPU (1.80 GHz, 4 cores/8
threads), 16 GB RAM, and running Ubuntu 20.04 LTS.

B. Results
In this section, we evaluate the performance of the proposed

PPO–GraphSAGE user-to-RU mapping scheme and compare
it with several baseline approaches, including Greedy, Round
Robin, and Random policies. The evaluation metrics include
acceptance rate, throughput, and average reward value.

0 1000 2000 3000 4000 5000
Episode

0

25

50

75

100

125

150

175

R
ew

ar
d

Reward

Average reward (window=10)

Fig. 1: Reward evolution during PPO-GraphSAGE training.

Figure 1 illustrates the training process of the
PPO–GraphSAGE agent. The reward curve exhibits a
consistent upward trend as the number of episodes increases,
and the moving average becomes smoother over time,
indicating that the agent is gradually learning an effective
policy scenarios.

Although the reward has not fully converged within the
reported training horizon, the trajectory suggests that further
improvement is achievable if the training is extended with a
larger number of episodes. This behavior is consistent with
the on-policy nature of PPO–GraphSAGE, where stable con-
vergence typically requires longer training. From a practical
perspective, this implies that the proposed framework has the
potential to achieve even higher efficiency and robustness
when applied to larger-scale deployments or more demanding
traffic.

Greedy PPO-GraphSAGE Random RoundRobin
0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ep
ta
nc
e
ra
te

Greedy

PPO-GraphSAGE

Random

RoundRobin

(a) Acceptance rate.

Greedy PPO-GraphSAGE Random RoundRobin
0

250

500

750

1000

1250

1500

1750

2000

T
ot
al
th
ro
ug
hp
ut

Greedy

PPO-GraphSAGE

Random

RoundRobin

(b) Total throughput.

Fig. 2: Compared performance of PPO–GraphSAGE with
benchmark schemes (Greedy, Random, and RoundRobin), in
terms of (a) acceptance rate and (b) total throughput.

Greedy PPO-GraphSAGE Random RoundRobin
0

20

40

60

80

100

120

140

160

A
ve
ra
ge

re
w
ar
d
va
lu
e

Greedy

PPO-GraphSAGE

Random

RoundRobin

Fig. 3: Average reward value of the compared algorithms.

Figure 2 provides a performance comparison in terms of
acceptance rate and total throughput. As shown in Fig. 2a,
PPO–GraphSAGE achieves the highest acceptance rate among
all schemes, significantly outperforming the baseline methods.
Similarly, Fig. 2b demonstrates that PPO–GraphSAGE attains
the best throughput performance. These results confirm that
PPO–GraphSAGE enables more efficient utilization of radio
resources.

Finally, Fig. 3 illustrates the average reward values of dif-
ferent schemes. The PPO–GraphSAGE approach achieves the
highest reward, whereas the baseline algorithms yield lower
values. This outcome further validates that PPO–GraphSAGE,
when integrated with the GNN-based model, is able to cap-
ture the complex user-to-RU mapping relations and provide
superior decision-making compared with traditional heuristic
approaches.

Overall, the simulation results demonstrate that the proposed
PPO–GraphSAGE method achieves consistent and significant
performance gains in terms of acceptance rate, throughput,
and reward, confirming its effectiveness for intelligent resource
allocation in Open RAN scenarios.

41

VI. CONCLUSION

This paper investigates the problem of slice admission
control and embedding in Open RAN. We first formulate
this problem as a mixed-integer combinatorial optimization
model. To obtain a practical solution, we design a reinforce-
ment learning framework operating on a layered RU/DU/CU
architecture, which explicitly accounts for radio and compute
budgets, RU/DU/CU connectivity, available resource blocks,
and per-UE QoS requirements. Subsequently, we propose
PPO–GraphSAGE, a DRL agent trained using PPO and
equipped with a GraphSAGE-based encoder to capture net-
work topology and residual capacities, complemented by a
lightweight request encoder.

Extensive simulations have demonstrated that the proposed
PPO–GraphSAGE algorithm consistently outperforms Ran-
dom, Greedy, and Round Robin baselines across loads in
acceptance rate, aggregate throughput, and average reward
the gains of jointly learning admission and placement under
dynamic traffic.

For future work, we will extend the framework to multi-slice
scenarios and richer wireless conditions (shadowing, mobility),
integrate an explicit end-to-end latency model, and benchmark
against an ILP upper bound to quantify optimality gaps. We
will also explore distributed/multi-agent training aligned with
practical Open RAN deployments and transfer across network
topologies and traffic regimes.

VII. ACKNOWLEDGMENT

This research is funded by the Australia-Vietnam Strategic
Technologies Centre under the seed grant agreement for the
project entitled “Building a Platform to Enable Future Re-
search on Optimization Methods for Resource Allocation in
Network Slicing for 5G/6G Networks.”

REFERENCES

[1] Q.-T. Luu, S. Kerboeuf, and M. Kieffer, “Foresighted resource provi-
sioning for network slicing,” in Proc. IEEE International Conference on
High Performance Switching and Routing (HPSR), 2021, pp. 1–8.

[2] M. Polese, L. Bonati, S. D’Oro, S. Basagni, and T. Melodia, “Un-
derstanding O-RAN: Architecture, interfaces, algorithms, security, and
research challenges,” IEEE Commun. Surv. Tutor., vol. 25, no. 2, pp.
1376–1411, 2023.

[3] R. Su, D. Zhang, R. Venkatesan, Z. Gong, C. Li, F. Ding, F. Jiang, and
Z. Zhu, “Resource allocation for network slicing in 5G telecommuni-
cation networks: A survey of principles and models,” IEEE Network,
vol. 33, no. 6, pp. 172–179, 2019.

[4] Q.-T. Luu, S. Kerboeuf, and M. Kieffer, “Admission control and resource
reservation for prioritized slice requests with guaranteed SLA under
uncertainties,” IEEE Trans. Netw. Service Manag., vol. 19, no. 3, pp.
3136–3153, 2022.

[5] F. Kavehmadavani, V.-D. Nguyen, T. X. Vu, and S. Chatzinotas, “Intel-
ligent traffic steering in beyond 5G open RAN based on LSTM traffic
prediction,” IEEE Trans. Wire. Commun., vol. 22, no. 11, pp. 7727–7742,
2023.

[6] V.-D. Nguyen, T. X. Vu, N. T. Nguyen, D. C. Nguyen, M. Juntti, N. C.
Luong, D. T. Hoang, D. N. Nguyen, and S. Chatzinotas, “Network-Aided
Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer Optimization
Framework,” IEEE J. Select. Areas Commun., vol. 42, no. 2, pp. 389–
405, 2024.

[7] F. Kavehmadavani, V.-D. Nguyen, T. X. Vu, and S. Chatzinotas, “Em-
powering Traffic Steering in 6G Open RAN With Deep Reinforcement
Learning,” IEEE Trans. Wire. Commun., vol. 23, no. 10, pp. 12 782–
12 798, 2024.

[8] F. Kavehmadavani, T. X. Vu, V.-D. Nguyen, and S. Chatzinotas, “Intel-
ligent User Association and Scheduling in Open RAN: A Hierarchical
Optimization Framework,” IEEE Trans. Commun., pp. 1–1, 2025.

[9] R. Riggio, A. Bradai, D. Harutyunyan, T. Rasheed, and T. Ahmed,
“Scheduling wireless virtual networks functions,” IEEE Trans. Netw.
Service Manag., vol. 13, no. 2, pp. 240–252, 2016.

[10] Q.-T. Luu, M. Kieffer, A. Mouradian, and S. Kerboeuf, “Aggregated
resource provisioning for network slices,” in Proc. IEEE Global Com-
munications Conference (GLOBECOM), 2018, pp. 1–6.

[11] E. Author and F. Author, “Network function placement in virtualized
radio access network with reinforcement learning based on graph neural
network,” Electronics (MDPI), 2024, replace DOI/URL.

[12] R. Li, Z. Zhao, Q. Sun, I. Chih-Lin, C. Yang, X. Chen, M. Zhao, and
H. Zhang, “Deep reinforcement learning for resource management in
network slicing,” IEEE Access, vol. 6, pp. 74 429–74 441, 2018.

[13] K. Suh, S. Kim, Y. Ahn, S. Kim, H. Ju, and B. Shim, “Deep rein-
forcement learning-based network slicing for beyond 5G,” IEEE Access,
vol. 10, pp. 7384–7395, 2022.

[14] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Commun. Mag., vol. 55,
no. 5, pp. 94–100, 2017.

[15] J. A. H. Sánchez, K. Casilimas, and O. M. C. Rendón, “Deep reinforce-
ment learning for resource management on network slicing: A survey,”
Sensors, vol. 22, no. 8, p. 3031, 2022.

[16] S. Jo, U. Kim, J. Kim, C. Jong, and C. Pak, “Deep reinforcement
learning-based joint optimization of computation offloading and resource
allocation in F-RAN,” IET Communications, vol. 17, pp. 549–564, 2023.

[17] T. Mai, H. Yao, N. Zhang, W. He, D. Guo, and M. Guizani, “Transfer
reinforcement learning aided distributed network slicing optimization in
industrial IoT,” IEEE Trans. Ind. Inform., vol. 18, no. 6, pp. 4308–4316,
2021.

[18] M.-T. Nguyen, Q.-T. Luu, T.-H. Nguyen, D.-M. Tran, T.-A. Do, K.-H.
Do, and V.-H. Nguyen, “Accelerating network slice embedding with
reinforcement learning,” in Proc. IEEE International Conference on
Communications and Electronics (ICCE), 2024.

[19] M. Eisen and A. Ribeiro, “Optimal wireless resource allocation with
random edge graph neural networks,” IEEE Trans. Signal Process.,
vol. 68, pp. 2977–2991, 2020.

[20] Z. Wang, M. Eisen, and A. Ribeiro, “Learning decentralized wireless
resource allocations with graph neural networks,” IEEE Trans. Signal
Process., vol. 70, pp. 1850–1863, 2022.

[21] P. Tam, S. Ros, I. Song, S. Kang, and S. Kim, “A survey of intelligent
end-to-end networking solutions: Integrating graph neural networks and
deep reinforcement learning approaches,” Electronics, vol. 13, p. 994,
2024.

[22] S. Ros, P. Tam, I. Song, S. Kang, and S. Kim, “Handling efficient
VNF Placement with Graph-Based reinforcement learning for SFC Fault
Tolerance,” Electronics, vol. 13, no. 13, p. 2552, 2024.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[24] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

42

