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Abstract—Public transportation, utilizing buses, plays a crucial
role in urban mobility. However, in recent years, the challenge
of maintaining routes has become severe, particularly in low-
population areas where many bus lines struggle to maintain prof-
itability. In this situation, the Origin-Destination (OD) estimation
that tracks the bus stop where each passenger boarded and
alighted is essential not only for optimizing routes and enhancing
service quality but also for justifying the continued operation of
these vital services. However, existing OD estimation methods
primarily rely on RGB cameras, which pose significant privacy
concerns due to the direct recording of the faces and actions
of passengers. On the other hand, while the use of LiDAR for
observing the passengers inside the bus vehicle offers superior
privacy protection, its high power consumption and prohibitive
installation costs present substantial barriers to widespread
deployment in power-limited environments. To address these
challenges, this study proposes a novel system for monitoring
passenger movements inside bus vehicles. This system utilizes
low-power thermosensors placed at multiple locations throughout
the vehicle and analyzes the acquired thermal images for tracking
movement of each passenger insidel the vehicle by checking
the time periods when the same passenger passed in front of
different thermosensors. Furthermore, the system employs an
autoencoder, which is a machine learning method, to evaluate the
similarity of thermal images captured by different thermosensor.
An autoencoder model is constructed for each passenger based
on thermal images acquired by a thermosensor installed at the
boarding entrance. By inputting thermal images collected by
thermosensors placed at other locations into each model and
deriving similarity metrics, the system identifies which passenger
corresponds to the collected image. A demonstration experiment
is conducted in an assumed area inside the bus vehicle to confirm
the efficary of the proposed system. By analyzing thermal images
using an autoencoder, we demonstrate a capability to identify the
same passenger during boarding and alighting, with a precision
of 0.62 and a recall of 0.56.

Index Terms—Thermal Images, Passenger Re-identification,
Autoencoder, OD Estimation, Privacy Protection.

I. INTRODUCTION

The Origin—Destination (OD) estimation method quantifies
the actual flow of passengers, things, and information from an
origin to a destination. The method serves as a crucial tool
for assessing the utilization of public transportation systems,
including buses. The OD data which records the boarding
and alighting stops for each passenger is an indispensable
information for understanding the operational status of public
transportation, optimizing routes, and improving services.
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Existing technologies for the OD estimation often involve
installing RGB cameras inside bus vehicles to analyze col-
lected videos, thereby estimating passenger density and move-
ment. However, this approach raises serious privacy concerns
because the faces and actions of users are directly recorded.
Instances of legal action seeking damages against camera
installers have indeed been reported [1].

Furthermore, existing studies address the improvement of
real-time property of the analysis or the reduction of power
comsumption for RGB cameras within bus vehicles [2][3].
On the other hand, the observation systems utilizing LiDAR
(Light Detection and Ranging) for observing condisions inside
the bus vehicles are proposed [4]. The LiDAR measures the
three-dimensional state of individuals and objects within the
observation range by projecting infrared lasers in multiple
directions. This approach helps to protect privacy by avoiding
the direct identification of individuals. However, the LiDAR-
based system suffers from high power consumption and dif-
ficulties in maintaining a long-term power supply within bus
vehicles.

Therefore, this study proposes of a novel system designed
to estimate the OD data for each passenger within buses. In
the proposed system, thermosensors capable of obtaining two-
dimensional thermal images are installed at multiple locations
inside the bus. By analyzing and comparing the temperature
images obtained from these sensors, the system aims to
precisely determine when the same individual passes through
various points. Furthermore, to efficiently process temperature
images from an unspecified number of users, the system
leverages a trained autoencoder model. This model is trained
only on the thermal images for each passenger so as to
correctly reconstruct the input thermal images. Consequently,
when a thermal image is input, the model belonging to the
corresponding passenger yields a low reconstruction error,
whereas models belonging to others yield a significantly higher
error, allowing the system to uniquely identify the individual.

II. RELATED WORK

A. Research on OD Estimation of Bus Passengers Using RGB
Cameras

Yamashita et al. propose an OD estimation method based
on passenger tracking using RGB cameras inside bus vehicles
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[5]. This method involves applying a YOLOR object detection
model to images captured by multiple cameras installed at
boarding and alighting entrances of the bus vehicle to detect
location of each passenger. Subsequently, an MPNTrack track-
ing model is utilized to estimate trajectories of passengers,
which are then used to match boarding and alighting passen-
gers for the OD estimation.

Additionally, Hadisurya et al. propose an estimation method
of passenger trajectories by analyzing video captured by
cameras installed inside bus vehicles [6]. Their method applies
a YOLOV3 object detection model to detect multiple individ-
uals within the vehicle and estimate moving trajectories of
passengers, which is utilized for congestion problems in public
transportation in large cities.

However, a significant drawback of these camera-based
methods is the potential for privacy issues of bus passengers,
because the cameras clearly record appearences of passengers.

B. Research on Passenger Tracking Using LiDAR

Ukyo et al. propose a method for detecting individuals
walking on roads and estimating their trajectories by analyzing
point-cloud data obtained by multiple 3D LiDARs [7]. This
method achieves robust passenger tracking by applying a
Kalman filter to on wide-ranging 3D point-cloud data ob-
tained from multiple LiDAR. The Kalman filter continuously
estimates and updates state variables such as the detected
postion and height of each passenger across successive frames.
This approach is anticipated to be an effective method for
measuring passenger flow in high-traffic areas such as public
and commercial facilities. This process plays an indispensable
role in robustly tracking the same individual despite irregular
motion, noise, and occlusions. However, a limitation of this
method is the lack of consideration for maintaining long-term
power supply for LiDAR devices, in environments without
external power sources.

C. Research on Autoencoder-based machine learning model

Autoencoder is a type of unsupervised machine learning
method based on neural networks [8][9]. The machine learning
model of the autoencoder is trained so that the output data is
as close as possible to the input data. Here, the architecture
of the autoencoder is designed that the dimensionality of the
input data is first reduced to the latent vector and then restored
to reconstruct the output data with the same dimensionality
as the input data. During training, the weights of the neural
network are adjusted to minimize the discrepancy between the
input and the reconstructed output data. Through this process,
the model is trained to extract the feature vector which is
the most essential information required for reconstruction of
the input data. The reconstruction error between the input and
output data can be used to specify a category of the input data.
A low reconstruction error indicates that the new input data
belongs to the same category as the training data.

By utilizing the autoencoder-based machine learning model,
Tobari et al. propose a novel network anomaly detection
method to address security challenges in cloud networks [10].

In this system, the autoencoder learns normal network traffic
data for training. Furthermore, this method primarily utilizes
the reconstruction error as a criterion for anomaly detection.
The reconstruction error is defined as the quantitative metric
representing the discrepancy between the input data and the
reconstructed output data of the autoencoder. As the recon-
struction error, the Mean Squared Error (MSE), the Structural
Similarity Index Measure (SSIM), or a composite score de-
rived from them are utilized. Specifically, if the reconstruction
error of the input data exceeds a predefined threshold, the data
is classified as anomalous.

D. Purpose of Our Proposed System

Existing for estimating passengers’ trajectories and OD
data in public transportation mainly rely on RGB cameras
or LiDAR sensors. However, both approaches present signif-
icant challenges for practical and long-term deployment in
real-world environments. Specifically, camera-based methods
inherently have privacy risks of passengers. Conversely, while
LiDAR-based methods offer reduced privacy concerns, the
high power consumption makes them unsuitable for long-term
operation in bus vehicles where a stable and external power
source is difficult to ensure. Therefore, there is a critical need
for a system that can accurately observe the passengers while
ensuring privacy and supporting energy efficient, long-term
operation.

To address these limitations, we propose a new observation
system that estimates the passage of the same passengers
through various points within a bus vehicle, including board-
ing and alighting entrances. This is achieved by utilizing
thermosensors that consume less power than LiDAR, and
by analyzing the thermal images measured by these sensors.
In the proposed system, thermal images are analyzed using
an autoencoder to identify the images corresponding with
the same passenger. Specifically, an autoencoder model is
individually constructed for each passenger based on thermal
images acquired by a thermosensor installed at the boarding
entrance. Subsequently, thermal images collected by ther-
mosensors placed at other locations are input into each of
these models. Based on the derived similarity metrics, the
system identifies the model corresponding to the passenger
on the collected image. To ensure long-term operation of the
system in bus vehicles where providing a stable power supply
is difficult, the thermosensors are activated only when the
passengers are likely to move. For instance, the activation
occurs when the bus stops at a bus stop.

III. PROPOSED THERMAL SIGNATURE-BASED IN-VEHICLE
PASSENGER OBSERVATION SYSTEM

A. System Overview

The overall architecture of the proposed system is illustrated
in Fig. 1. As shown in this figure, the system comprises sensor
nodes installed inside the bus vehicle for passenger detection
and a server responsible for data collection, analysis, and
visualization.
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Fig. 1. Overall of Proposed Observation System.

Administrator

To reduce the power consumption, the sensor nodes activate
their thermosensors only under limited conditions such as
when the bus vehicle stops at the bus stop, to obtain the
temperature images of the target objects at various points
within the vehicle. Specifically, a machine learning model
corresponding to each passenger is created based on images
acquired at the boarding entrance. The system utilizes sim-
ilarity metrics, which are quantitative measures representing
the degree of difference between the input image and the
reconstructed output image, for passenger identification. Sub-
sequently, images captured at other locations are input into
each model, and the corresponding passenger is identified by
comparing multiple similarity metrics. Finally, these estima-
tion results are transmitted to administrator terminals or other
devices to estimate OD data for each passenger.

B. Configuration of sensor node.

Fig. 2 illustrates the hardware configuration of the sensor
nodes within the proposed system. Each sensor node observes
thermal images inside the bus vehicle and performs prepro-
cessing on these observed thermal images. The preprocessing
involves background removal through binarization to reduce
the load of machine learning processing. To perform the
preprocessing, the sensor node consists of a microcontroller
board (Feather nRF52840 Sense) equipped with a built-in
motion sensor and supporting BLE communication. This board
is connected to a thermosensor (Mitsubishi Electric EVB-
8060B1-MNO101), and multiple sensor nodes are strategically
placed at various points throughout the bus vehicle.

Furthermore, to reduce the overall power consumption, the
sensor nodes activate their thermosensors only when detecting
the stop of the vehicle by using the motion sensor embedded
with the board. The main specifications of the thermosensors
used in this study are listed in Tab. I. In the proposed system,
preprocessing is applied to the thermal image captured by
the sensor node during boarding of each passenger on the
bus vehicle. As a result of the preprocessing, the pixels
corresponding to the foreground (passenger) are extracted
and transmitted via BLE communication to a small computer

Microcontroller Boar
| (Feather nRF52840)

Fig. 2. Device Configuration of Sensor Node.

TABLE I
MAIN SPECIFICATIONS OF THERMOSENSOR (MITSUBISHI ELECTRIC
EVB-8060B1-MNO101).

Number of pixels 80 x 60 pixels®

Frame rate 4fps / 8fps
Supply voltage 3.3V
SPI communication frequency 2.1MHz

Measurement range of temperature  from —5°C to 60°C

(Raspberry Pi 4) for analysis by the autoencoder-based ma-
chine learning model.

C. Thermal Image Acquisition and Preprocessing

In the proposed system, the sensor node judges the vehicle
to be stationary when both the measured acceleration in the
direction of travel and that in the vertical direction fall below a
predetermined threshold, and then activates the thermosensor
to measure the thermal images. The thermosensor captures
high-resolution thermal images, with each frame containing
4,800 pixels.

To achieve real-time and highly accurate analysis, the sys-
tem applies Otsu’s binarization as a preprocessing step. The
binarization is a process that sets a threshold for pixel values
of the thermal image and pixels values above the threshold are
set to 1 and all other pixels are set to 0. The Otsu’s binarization
automatically determines an optimal threshold for dividing the
pixel values in an image into two groups (classes) so that the
intra-class variance is minimized and the inter-class variance
is maximized. The overview of the binarization is shown in
Fig. 3.

Consequently, this approach which applies the binarized
image as a mask for the thermal image enables robust fore-
ground extraction that is resilient to noise. An overview of
the process for extracting pixels corresponding to a passenger
from the thermal image is shown in Fig. 4. To further improve
estimation accuracy, after the foreground extraction of the
thermal images, the passenger region is cropped to tightly
enclose the foreground object. This cropped region is then
resized to the required input dimension while preserving its
aspect ratio.
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D. Alignment of Dimensions for Data Augmentation

The thermosensor utilized in this system generates thermal
images with a resolution of 80x60 pixels. Conversely, the
convolutional neural network (CNN) architecture of the en-
coder is designed with the requirement that the width and
height of the input images are divisible by a power of 2.
Specifically, since four consecutive 2x2 pooling layers are
applied in the proposed system, the size of the input image
should be a multiple of 16. However, since the resolution
of the thermosensor is 80x60 pixels, a preprocessing step is
introduced to extend the input images to 80x64 pixels. This
is achieved by appending four columns of pixels to the right
edge of the original thermal image with 80x60 pixel and
filling all of these new pixels with zero, thereby satisfying
the requirement of being a multiple of 16 for the input layer
of encoder. The basic concept of the adjustment of the input
image is shown in Fig. 5.

E. Construction of Autoencoder-based Model Corresponding
with Each Passengerr

The system utilizes an autoencoder for constructing a
machine-learning model corresponding with each passenger.
The model is trained using thermal images of individual
passengers as training data and then determines whether the
passenger appearing in an input image corresponds to the
passenger represented in the training data. In this study, the
autoencoder is a convolutional autoencoder (CAE) designed
with multiple convolutional layers, pooling layers, batch nor-
malization layers, and Leaky ReLU activation functions.

The encoder section compresses the input thermal image
of 80x64 pixels into a latent space of 5x4 pixels through
a sequence of four convolutional and pooling layers. The
number of filters in these convolutional layers is progressively

/Adjustment of the size
divisible by 16

Fill with the exact
background value

Fig. 5. Overview of Resolution Adjustment for Input Image.

reduced from 256 to 128, 64, and 32. Leaky ReLU serves
as the activation function, with the exception of the output
layer, which uses a Sigmoid function. The decoder section
is composed of four deconvolutional layers and upsampling
layers to reconstruct the image from the latent space. The
output is then cropped to 80 x 60 pixels to match the dimension
of the original image with the reconstructed image. The
detailed architecture of the autoencoder is presented in Tab.
II, and the overall processing workflow is shown in Fig. 6.

The model is trained using a composite loss function that
combines Mean Squared Error (MSE) and the Structural Sim-
ilarity Index (SSIM). MSE is a simple metric that squares and
averages the pixel-wise difference, making it highly sensitive
to image intensity differences. In contrast, SSIM captures
perceptual quality differences by evaluating the similarity of
image luminance, contrast, and structure based on the human
visual system. This loss function is specifically designed to
prioritize the reconstruction of a shape of passengers by
assigning a higher weight to foreground pixels and a lower
weight to background pixels. The cost function for this model
is defined as

Lcombined = @ - LweightedMsE + 3+ Lssiv (1)
with
LweightedMSE = Z (Wi - (i = 9i5)°) )
%7
Lssiv = 1.0 — SSIM(y, 9) 3)

where Lcombined i the composite loss function, LweighicamsE 15
the weighted Mean Squared Error, and Lgspy is the Structural
Similarity Index loss. Furthermore, y and y are the true and
reconstructed pixel values, respectively, and W is the weight
matrix assigned to the pixels, defined as

1.0
WZ‘ j =
’ 0.07

and « and f are the weights controlling the balance between
the two loss components.

if y; ; #0 (foreground pixel) @
if y;; =0 (background pixel)

F. Passenger Identification Based on Reconstruction Error
First, time-series data of thermal images collected when a

specific passenger passes through the boarding entrance are

used as training data to train a model corresponding to that
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TABLE II
ARCHITECTURE OF PROPOSED AUTOENCODER-BASED MODEL..

Layer Type Layer Name | Output Shape
Input Layer - 80x64x1
Encoder
Conv2D + BN + LeakyReLU enc_convl 80x 64 %256
MaxPooling2D enc_pooll 40x32x256
Conv2D + BN + LeakyReLU enc_conv2 40x32x128
MaxPooling2D enc_pool2 20x16x128
Conv2D + BN + LeakyReLU enc_conv3 20x16x64
MaxPooling2D enc_pool3 10x8x 64
Conv2D + BN + LeakyReLU enc_conv4 10x8x32
MaxPooling2D enc_pool4 S5x4x32
Bottleneck (Latent Space)
Conv2D + BN + LeakyReLU [ encoded_layer | 5x4x8
Decoder
Conv2D + BN + LeakyReLU | dec_deconv4 10x8x32
Conv2D + BN + LeakyReLLU dec_deconv3 20x16x64
Conv2D + BN + LeakyReLLU | dec_deconv2 40x32x128
Conv2D + BN + LeakyReLU dec_deconv1 80x64x256
Conv2D output_final 80x64x1
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Fig. 6. Passenger Identification Utilizing Autoencoder-based Model.

passenger. Subsequently, thermosensors installed at various
locations, such as the alighting exit, acquire thermal images.
These images are then input into the models corresponding
to each passenger, and the reconstruction error is calculated
for each model. To calculate the reconstruction error between
the input image and the output reconstructed image, we
adopt a composite evaluation method rather than relying on
a single metric. This method combines two representative
metrics, MSE and SSIM, as the same as the loss function.
The MSE focuses on quantifying the magnitude of the physical
error by assessing the strict disparity between corresponding
pixel values. In contrast, the SSIM provides a more visually
relevant assessment by considering the structural, luminance,
and contrast components of the images.

After deriving the metirics, the system decides a “successful
identification” as a case where a model achieved the highest
average rank of in these two metrics. The passenger corre-
sponding to this model is then identified as the same passenger

Fig. 7. Positional Relation of Thermosensor and Passenger.

as the one in the input thermal image.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

To clarify the accuracy of estimating the same passenger by
the proposed system, we conduct the experimental evaluation.
In this evaluation, we focus on the identification accuracy of
the system. The performance assessment is conducted based
on a suite of metrics derived from a confusion matrix, namely
Precision and Recall for each passenger.

The experimental environment is established in an indoor
environment at the Ritsumeikan University, Osaka Ibaraki
Campus, simulating the interior of a bus vehicle. For six
participants of the experiment, thermal images are captured
from a distance of 100 cm. The positional relations of the
thermosensor and the participant is illustrated in Fig. 7.

First, a machine learning model is trained for each partici-
pant using 30 thermal images, assuming the “boarding” phase.
Subsequently, 30 new thermal images for each participant
are captured and input into their respective trained models.
To evaluate the effectiveness of our proposed method, the
reconstruction error between the input images and the output
of each model is measured using not only the combined
evaluation metric defined in Section III-F but also each metric
(i.e., MSE, SSIM).

B. Experimental Result

For the newly obtained dataset including 30 thermal images
for each participants, the performance of the proposed system
is evaluated. Tables III, IV, and V show the confusion matrices
for the three metrics (i.e., MSE, SSIM, and the Composite
Metric), detailing the identification results. Table VI and VII
show the Precision and Recall by the single metrics and the
Composite Metric.

As shown in Tables III and VI, when using the MSE,
the system completely makes false identification for both
Participants 2 and 6. On the other hand, the use of SSIM
successfully mitigates the failure of Participant 2 as shown in
Tab. IV because the SSIM can capture structural similarity that
the MSE fails.

Nevertheless, the use of SSIM alone exhibits limitations that
the precision for Participant 4 decreases to 0.50 as shown
in Tab. VI. This suggests that the SSIM can make a false
misrecognition when structural features are highly similar. As
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TABLE III
CONFUSION MATRIX (MSE).

TABLE V
CONFUSION MATRIX (COMPOSITE METRIC).

Evaluation Training Data Evaluation Training Data
Data Participant Participant Participant Participant Participant Participant Data Participant Participant Participant Participant Participant Participant
1 2 3 4 5 6 1 2 3 4 5 6
Participant 1 4 0 0 0 26 0 Participant 1 4 0 0 0 26 0
Participant 2 0 0 0 0 30 0 Participant 2 0 28 0 0 2 0
Participant 3 0 0 5 0 25 0 Participant 3 0 0 24 0 6 0
Participant 4 0 0 0 30 0 0 Participant 4 0 0 0 30 0 0
Participant 5 0 0 0 0 30 0 Participant 5 1 0 0 0 29 0
Participant 6 0 30 0 0 0 0 Participant 6 0 30 0 0 0 0
TABLE IV TABLE VI
CONFUSION MATRIX (SSIM). PRECISION AND RECALL (SINGLE METRIC).
Evaluation — — ___Training Data__ —__ S .- MSE SSIM
Data pdmc].pdm pdmcz.pdm mm;.pdm Pamilpanl mm;.pam Idm;l])ant Participant ID Precision  Recall | Precision  Recall
Participant 1 4 0 0 0 26 0 1 0.80 0.13 0.80 0.13
Participant 2 0 28 0 0 2 0
Participant 3 0 5 » 0 i 0 2 0.00 0.00 0.96 0.93
Participant 4 0 0 0 30 0 0 3 1.00 0.16 0.90 0.96
Participant 5 1 0 3 0 26 0
Pamciiant - 5 ; 5 5 5 3 4 1.00 1.00 0.50 1.00
5 0.27 1.00 0.47 0.86
6 N/A 0.00 N/A 0.00
a result, the use of single metric lacks the robustness for
eneralized identification because each metric is optimized for TABLE VII
g ; u p PRECISION AND RECALL (COMPOSITE METRIC).
specific factors.
In contrast, the Composite Metric achieves a more robust Participant ID | Precision | Recall
result by integrating MSE and SSIM to mutually consider both ; g‘gg g‘;g
of intensity and structure features as shown in Tabs. V and VII. 3 1.00 0.80
Especially, the use of the composite metric markedly increases 4 1.00 1.00
the recall for Participant 2 to 0.93 while achieving a high 2 (1117: ggg

precision of 1.00 for Participant 4.

V. CONCLUSION

In this study, we proposed a system for tracking the lo-
cations of each passenger inside a bus vehicle. This system
involves constructing a sensor network that collects thermal
images on various locations inside the vehicle using low-
power microcontrollers and thermosensors, and subsequently
analyzing the obtained thermal images using machine learning
for identifying the images corresponding with the same pas-
senger. Through demonstration experiments, we confirmed that
an autoencoder can be effectively utilized to identify thermal
images of identify during boarding and alighting, enabling the
tracking the same passenger inside the vehicle.

To address challenges such as model overfitting and insuffi-
cient generalization performance, we will consider reviewing
the internal architecture of the autoencoder. Furthermore, the
future work will involve comprehensive verification using real-
world data from operating buses under a wide variety of
conditions to rigorously evaluate the robustness of model in
practical environments.
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