
Collaborative Packet-Level Intrusion Detection
System for IoT Environment

Chenqi Tao
Sophia University

Tokyo, Japan
c-tao-4d5@eagle.sophia.ac.jp

Masaki Bandai
Sophia University

Tokyo, Japan
bandai@sophia.ac.jp

Abstract—In this paper, a packet-level intrusion detection
system for IoT environments is proposed, utilizing a two-node
collaborative architecture. In the proposed system, signature-
based prescreening at the gateway operates with a random forest
model deployed on a high-performance node. This approach aims
to reduce computational load on the gateway while maintaining
packet-level detection accuracy and processing throughput. In a
real-world network deployment, we confirm that the proposed
system can reduce the gateway’s computational load by 20%
and increased processing throughput by 30% compared with a
gateway-only baseline system.

Index Terms—IoT security, intrusion detection system (IDS),
packet-level analysis, random forest (RF), Zeek

I. INTRODUCTION

The rapid growth of the Internet of Things (IoT) has
expanded the potential attack surface beyond traditional en-
terprise boundaries. IoT devices are heterogeneous, resource-
constrained, and difficult to manage or update regularly, mak-
ing them vulnerable to attacks and large-scale exploitation. As
IoT systems increasingly handle safety- and mission-critical
tasks, securing the network layer has become a major concern.

Intrusion Detection Systems (IDS) play a key role in this
effort by monitoring network traffic and identifying malicious
behaviors that other security controls might miss. There are
two main types of IDS: signature-based and anomaly-based
[1].

Signature-based IDS use predefined patterns to detect
known threats with high accuracy and low false positives.
However, they are less effective against new attacks and re-
quire frequent signature updates, which is especially challeng-
ing in IoT environments with diverse protocols and encryption.

Anomaly-based IDS rely on machine learning (ML) mod-
els—either supervised or unsupervised—to analyze packet-
level or flow-level features. This approach is more effective at
identifying unknown or zero-day attacks. However, it requires
more computing power and depends heavily on data quality
and consistent deployment conditions.

Detection granularity significantly affects latency. Flow-
level analytics aggregate packets to capture temporal and
relational context, enhancing semantic understanding. How-
ever, it introduces latency during flow construction [2]. In
contrast, packet-level analytics extract features from indi-
vidual packets and can operate before complete flows are

formed, enabling earlier detection. However, running packet-
level learning continuously in all conditions tends to be fragile
and resource-intensive in practice. A more practical strategy
is event-triggered packet analysis: when suspicious behavior
is detected, a compact set of features is rapidly extracted
from a small number of packets to support timely and reliable
decisions—balancing between latency and robustness.

In this paper, a two-node collaborative IDS architecture
for IoT gateways is proposed. The gateway node performs
lightweight, signature-based prescreening and, upon detecting
suspicious events, enters an elevated-scrutiny window, dur-
ing which packet-level feature extraction is applied to all
traversing traffic. These features are then streamed to a high-
performance node for classification. This architecture realizes
low latency without requiring full flow reconstruction, effi-
ciently offloads computation from the gateway, and enables a
closed-loop workflow—allowing benign traffic to pass through
while promptly blocking malicious traffic.

II. RELATED WORK

This section introduces the related work on IDS for IoT
environment.

A. Signature-Based IDS

Waleed et al. [3] perform a unified benchmark comparing
Snort, Suricata, and Zeek, highlighting how engine design
and packet I/O decisions affect loss-free throughput. The
analysis emphasizes Zeek’s role as a high-fidelity network
monitor suitable for IDS, making it ideal for policy scripting
and alerting at observation points. This characteristic supports
deploying Zeek at the gateway as a lightweight trigger, raising
meaningful events from live traffic with minimal overhead to
initiate downstream actions without relying on a heavyweight
inline engine.

B. IPF-Based IDS

Kostas et al. [2] provide the first systematic evidence that
models trained solely on individual-packet features (IPF) often
rely on dataset-specific artifacts, leading to inflated perfor-
mance within the same dataset but poor generalization across
sessions or datasets. Despite these limitations, IPF are retained
at the gateway for practical reasons. The system consists

398979-8-3315-7896-1/26/$31.00 ©2026 IEEE ICOIN 2026

of two coordinated components: a Zeek-based, signature-
driven module for continuous monitoring and event trigger-
ing, and an anomaly-based module that performs line-rate,
low-overhead IPF extraction when triggered. By combining
interpretable event triggers with ultra-low-latency processing,
extracted features are sent to a high-performance node for
classification, meeting real-time requirements while mitigating
some limitation of IPF-only methods.

C. Machine-Learning-Based IDS

Altulaihan et al. [4] show that supervised learning with
feature selection achieves strong in-dataset performance for
IoT DoS detection, while lightweight models offer efficient
training and inference. Based on these results, the ML classi-
fier is deployed on the high-performance node, which returns
classification decisions for features uploaded by the gateway.
Model details and training procedures are described in Section
III.

D. Lightweight and Distributed IDS

Thakkar et al. [5] survey intrusion detection placements
across device, edge/gateway, fog, and cloud, highlighting
trade-offs in energy, computation, and bandwidth. Based on
this, a distributed design is adopted: lightweight screening and
event extraction should be near the data source to minimize
latency and uplink traffic, while intensive analysis is offloaded
to a high-performance node where ML models are centrally
managed. This setup ensures fast edge response, reduces
signature maintenance on constrained devices, and improves
detection accuracy.

III. PROPOSED SYSTEM

We propose a two-node collaborative IDS architecture for
IoT gateways. As shown in Fig. 1, the proposed system
consists of a gateway and a high-performance node. The gate-
way performs lightweight, signature-based prescreening using
Zeek, while the high-performance node classifies suspicious
traffic as either malicious or non-malicious using an random
forest (RF) classifier.

A. Operation

The operation of the proposed system proceeds as follows:
1) Pre-screening at the Gateway:

All traffic first passes through the gateway, which contin-
uously runs Zeek with signature-based prescreening rules,
such as detecting surges of incomplete connections, port
scanning, and ARP inconsistencies. Zeek acts as a rule-
level trigger to determine whether further inspection is
necessary. If Zeek detects a suspicious event, the system
enters an elevated scrutiny window for m seconds. During
this window, packet-level features are extracted from all
incoming traffic. Table I lists the 60 features extracted
per packet. These features are streamed in real time as
a JSON file to the high-performance node for malicious
traffic classification.

2) Classification by the High-Performance Node:

High-performance Node
(Configured With Random Forest Model)

Gateway
(Configured With Zeek)

Internet

IoT Device

Feature JSON

Classification
Decision

Network Traffic

Fig. 1. The proposed two-node collaborative architecture

Upon receiving the JSON file, the high-performance
node classifies the traffic as either malicious or non-
malicious using a RF classifier. If the traffic is classified
as malicious, a decision value of 1 is sent to the gateway.
Otherwise, a decision value of 0 is transmitted.

3) Gateway Response to Classification:
Upon receiving the classification decision, the gateway
updates its local filtering state accordingly.

• If the traffic is malicious, it is either quarantined or
rate-limited.

• If the traffic is non-malicious, it is forwarded to IoT
devices without further intervention.

4) Window Closure:
At the gateway, if no additional prescreening triggers
or malicious classification decisions occur during the
remainder of the scrutiny window, the window closes
automatically. The system then returns to its normal
prescreening state.

B. Signature-Based Prescreening at Gateway

We deploy Zeek at the gateway as a signature-based pre-
screener and lightweight trigger. As discussed in Section II,
Zeek is better suited for policy scripting and alerting rather
than inline traffic blocking. Therefore, in this paper, we do
not use Zeek to classify traffic as malicious or non-malicious.
Instead, we leverage Zeek’s policy scripts and signature-style
event rules to generate triggers. When any of these rules
is activated, Zeek opens the elevated scrutiny window. The
following rules are applied by Zeek:

• DoS: Trigger on a five-second window where the TCP
SYN count spikes and the three-way handshake comple-
tion ratio is low.

• Port scanning: Trigger on a five-second window where
one source probes many distinct destination ports on the
same host and most attempts fail.

• Mirai: Trigger on a five-second window where one source
contacts many distinct destination IPs using a small
fixed set of service ports, with attempts brief or mostly

399

TABLE I
PACKET-LEVEL FEATURES

Category Features
Header src_port, dst_port, proto,

header_length, length, ttl, tcp_flags
Size payload_len, payload_0-31
TCP Flags syn_flag, ack_flag, fin_flag, rst_flag,

psh_flag, urg_flag, ece_flag, cwr_flag
Protocol Indicators is_tcp, is_udp, is_icmp, is_arp, is_dns,

is_dhcp, is_http, is_https, is_ssh,
is_smtp, is_irc, is_telnet

unsuccessful; complementary cues include ICMP echo
sweeps and rapid ARP who-has bursts on the local subnet.

• ARP spoofing: Trigger on a five-second window where
ARP replies conflict with learned IP↔MAC bindings,
unsolicited ARP bursts appear, or the observed MAC for
a given IP changes rapidly.

C. Classification of Malicious Traffic at the High-Performance
Node Using an RF Classifier

As discussed in Section II-C, RF classifiers are commonly
used in IDS. In this study, we employ an RF classifier at the
high-performance node to classify traffic as either malicious
or non-malicious.

1) Dataset:
We use the CICIoT2023 dataset [6] to train the RF
model. This dataset includes traffic from 105 IoT devices
and 33 attack types spanning seven categories: DDoS,
DoS, Reconnaissance, Web-based, Brute Force, Spoofing,
and Mirai. The attacks are launched by compromised
IoT devices targeting other devices in the network. The
dataset is provided as raw packet capture (PCAP) files,
along with aggregated features computed over fixed-size
packet windows.
Due to the dataset’s large size, we created a subset
for training that includes PCAP traces from four attack
families—DoS, Spoofing, Mirai, and Reconnaissance—as
well as benign (non-malicious) traffic. Packet-level fea-
tures were extracted from the traces, then standardized
and normalized. The final labeled dataset contains a total
of 976,461 packets, comprising 417,389 benign instances
and 559,072 attack instances.

2) Feature extraction and selection:
We employ the 60 packet-level features listed in Ta-
ble I.—spanning header and size fields, TCP flags, pro-
tocol indicators, and a small payload slice to characterize
service targeting, traffic footprint, and handshake dynam-
ics. Of these, 27 are non-payload features and considering
that most malicious attacks avoid encrypting payloads to
sustain high send rates,, we include the payload length
and the first 32 payload bytes as byte-level features.

3) Model training:
We conduct two training scenarios for the RF model:

• Full features model: The RF is trained using the
complete set of 60 features, as listed in Table I.

TABLE II
PERFORMANCE OF RF MODEL

RF RF (Top-20)
Accuracy 0.993 0.992
Precision 0.993 0.992
Recall 0.993 0.992
F1 0.992 0.991

Feature JSON
Live Traffic

Classification
Decision

High-performance Node Traffic Generator
192.168.99.2 192.168.99.1/192.168.88.1 192.168.88.2

Gateway

Fig. 2. Evaluation environment for live-traffic experiments.

• Reduced features model: Within each training fold,
the top 20 features are selected based on their ranking
from the full 60-feature set, and the RF is retrained
using this subset.

IV. PERFORMANCE EVALUATION

We evaluate the proposed system in two settings: a dataset
study to measure detection accuracy and a deployment in a
real network to measure resource utilization.

A. Evaluation using a dataset

For the dataset study, packet-level feature vectors are de-
rived from CICIoT2023 PCAP files. Two RF variants are
trained: one using the full feature set and one retrained on
the top-20 features ranked by full features model importance.

Table II shows the performance of the RF models. From
the table, the RF trained on the full feature set and top-
20 features set achieve almost same performance in terms
of accuracy, precision, recall, and F1 score. Therefore, to
minimize gateway-side feature extraction and serialization
time, the top-20 features set is used for all subsequent online
experiments in the two-node collaborative architecture.

B. Evaluation in a real network

We implemented the proposed system and conducted live-
traffic experiments in a real network. Fig. 2 illustrates the
system architecture, which comprises three computers: a traf-
fic generator, a gateway, and a high-performance node. The
system components are detailed as follows:

• Traffic generator, running on a Kali Linux host, generates
live traffic directed at the gateway. It produces TCP SYN
segments using hping3 for 60 seconds at a controlled
offered rate, denoted as R.

• Gateway, implemented on a Raspberry Pi 5 running
Ubuntu 22.04, runs Zeek to screen for suspicious traffic.

• High-performance node is a desktop PC equipped with an
Intel Core i7-11700K CPU and 64 GB of RAM. A RF

400

TABLE III
RESOURCE USAGE ON GATEWAY

R = 15 kpps R = 19.5 kpps
CPU Gateway-only 98 % 100 %

Proposed method 78 % 97 %
Memory Gateway-only 26 % 26 %

Proposed method 20 % 20 %

classifier is used on this node to distinguish malicious
traffic from non-malicious traffic.

For comparison, we also consider a baseline system in
which the gateway itself classifies traffic using the RF model
without offloading to the high-performance node. In this
configuration, Zeek is not utilized. We refer to this system
as Gateway-only.

First, we conducted experiments to determine the maximum
traffic rate R that each system can handle without packet
loss. The Gateway-only system supports a maximum rate
of R = 15 kilo packets per second (kpps), beyond which
packet losses occur. In contrast, the proposed system supports
a higher rate of R = 19.5 kpps. These results confirm that the
proposed system can handle approximately 30% more traffic
than the Gateway-only system, thanks to offloading the RF
classification to the high-performance node.

Next, we evaluated the gateway’s resource utiliza-
tion—specifically, the average CPU and memory us-
age—under two traffic conditions: R = 15 kpps and R = 19.5
kpps. Table III presents the results. At R = 15 kpps, the
proposed system reduced CPU and memory usage by approx-
imately 20% and 6%, respectively, compared to the Gateway-
only system. Moreover, at R = 19.5 kpps, the CPU and
memory usage in both systems are nearly identical, although
packet loss occurs in the Gateway-only system under this
condition. These findings confirm the effectiveness of the
proposed system in both performance and resource efficiency.

V. CONCLUSION

This paper proposed a two-node collaborative IDS for IoT
networks, consisting of a Zeek-based prescreener and a RF
classifier deployed on a high-performance node to detect
malicious traffic. Based on results from a real-world network
deployment, we confirmed that the proposed system reduces
the gateway’s computational load by 20% and increases
processing throughput by 30% compared to a gateway-only
baseline system. As future work, we plan to extend our
evaluation to include additional datasets and attack families,
as well as explore multi-gateway deployment scenarios.

REFERENCES

[1] O. H. Abdulganiyu, T. Ait Tchakoucht, and Y. K. Saheed, “A
systematic literature review for network intrusion detection system
(ids),” International Journal of Information Security, vol. 22, no. 5,
pp. 1125–1162, 2023. [Online]. Available: https://doi.org/10.1007/
s10207-023-00682-2

[2] K. Kostas, M. Just, and M. A. Lones, “Individual packet features are
a risk to model generalization in ml-based intrusion detection,” IEEE
Networking Letters, vol. 7, no. 1, pp. 66–70, 2025.

[3] A. Waleed, A. F. Jamali, and A. Masood, “Which open-source ids?
snort, suricata or zeek,” Computer Networks, vol. 213, p. 109116,
2022. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S1389128622002420

[4] E. Altulaihan, M. A. Almaiah, and A. Aljughaiman, “Anomaly detection
ids for detecting dos attacks in iot networks based on machine
learning algorithms,” Sensors, vol. 24, no. 2, 2024. [Online]. Available:
https://www.mdpi.com/1424-8220/24/2/713

[5] A. Thakkar and R. Lohiya, “A review on machine learning and deep
learning perspectives of IDS for IoT: Recent updates, security issues, and
challenges,” Archives of Computational Methods in Engineering, vol. 28,
pp. 3211–3243, 2021.

[6] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and
A. A. Ghorbani, “Ciciot2023: A real-time dataset and benchmark for
large-scale attacks in iot environment,” Sensors, vol. 23, no. 13, 2023.
[Online]. Available: https://www.mdpi.com/1424-8220/23/13/5941

401

