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Abstract—With the upcoming farming revolution, this paper

presents the development of an AI-powered agricultural moni-

toring system that integrates IoT devices with machine learning

algorithms for real-time soil data analysis and nutrient predic-

tion. The proposed system integrates a custom-built sensor-based

device was designed to collect environmental data, including

temperature, humidity, and essential soil nutrients (Nitrogen,

Phosphorus, and Potassium).

The methodology involved preprocessing the collected data

to remove noise and inconsistencies, followed by training three

types of models including Neural Networks, Random Forests,

and CatBoost. These models were evaluated using key regression

metrics such as MSE, MAE, and R2
to determine their predic-

tive accuracy. The results demonstrate that AI techniques can

significantly enhance nutrient estimation and decision support in

precision agriculture. By offering insights into soil health and

nutrient availability, the solution can help reduce fertilizer use

and improve crop yields. This study contributes to the growing

field of smart farming by offering a low-cost, sensor-integrated

solution for sustainable agricultural monitoring.

Index Terms—IoT, AI, catboost, random forest, neural net-

work, farming technologies.

I. INTRODUCTION

AI-powered agricultural monitoring systems are revolution-
izing traditional farming practices by enhancing sustainability,
productivity, and data-driven decision-making. These systems
leverage Internet of Things (IoT) technology to enhance
crop management and promote sustainable farming practices
[1]. Given the increasing scarcity of natural resources and
the impact of unpredictable climate conditions, intelligent
monitoring systems are essential to ensuring global food
security. Such systems support real-time monitoring of crop
health, enable efficient resource usage, and improve overall

This project was funded by the Deanship of Scientific Research at Prince
Sattam bin Abdulaziz University award number 2023/SDG/01.

productivity. IoT and machine learning technologies enable
real-time data analysis to assist farmers in making informed
decisions. This paper presents the development of a sensor-
based IoT monitoring system that integrates AI algorithms
to enhance sustainable farming. The IoT device collects real-
time environmental data, including temperature, humidity, soil
moisture, and concentrations of Nitrogen (N), Phosphorus (P),
and Potassium (K).

Agriculture is changing as an outcome of machine learning
(AI), which improves crop output, profitability, and produc-
tion. It makes it possible to monitor supply chains, irrigation,
weather, and pest management in real-time [2]. [3] selected
drones for spraying and sensing, mapping, and harvesting
to improve the water use efficiency and quality of crop
yield. Moreover, they chose Smart Decision Support Systems
(SDSS). While [4] explored IoT with the usage of big data
and its analysis of massive data. [5] proposes a smart farming
system in a limited, enclosed area wherein different sensors
are strategically positioned to measure parameters such as
moisture content, temperature, pressure, light intensity, and
pH of the soil.

[6] has proposed a novel methodology for smart farming
by linking a smart sensing system and a smart irrigator system
through wireless communication technology. Jagannathan’s
system focuses on the measurement of physical parameters
such as soil moisture content, nutrient content, and pH of the
soil while our team focused on WSN other than the smart
irrigator system. Futhermore, [7] developed a smart sensor-
based monitoring system for an agricultural environment using
a field programmable gate array (FPGA), which comprised of a
wireless protocol, different types of sensors, a microcontroller,
a serial protocol and the field programmable gate array with
display element. Different types of sensors, such as tempera-
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ture, soil moisture, and relative humidity, sense the data in an
agricultural environment and provide it to a microcontroller
interfaced with the wireless Bluetooth module. While, [8]
worked on an agricultural environment monitoring system
using wireless sensor networks and IoT with low amount of
data. However this project produced a device that has all-in-
one generated data that will be used with AI algorithms for
several purposes.

The primary contributions of this paper are as follows:
• Introducing the state of modern agriculture technologies.
• Presenting IoTs devices toward the agriculture world.
• Generating new agriculture data.
• Showing the integration of AI and agriculture data.
• Applying new AI algorithms with optimizations.
The remainder of this paper is organized as follows. Section

2 provides an overview of artificial intelligence in agriculture,
with a focus on supervised learning and regression techniques
relevant to our study. Section 3 describes how the agricultural
dataset was generated using custom-built IoT sensors, followed
by a detailed discussion of data preprocessing and cleansing
methods. In Section 4, we present the experimental setup,
model training procedures, and results obtained from Neural
Networks, Random Forests, and CatBoost algorithms. Section
5 discusses the limitations of the current system, while Section
6 highlights its practical applications in real-world farming
environments, including an analysis of cost and expected re-
turn on investment. Finally, Section 7 outlines future research
directions, and Section 8 concludes the paper.

II. ARTIFICIAL INTELLIGENCE IN AGRICULTURE

Artificial Intelligence (AI) is a branch of computer science
focused on developing systems capable of performing tasks
traditionally requiring human intelligence [9]. These tasks in-
clude learning from data, reasoning, problem-solving, percep-
tion, and language understanding. AI systems mimic human
cognitive processes and are widely used to automate tasks,
support decision-making, and generate predictions across mul-
tiple domains. AI research aims to develop machines with
general intelligence that can understand and adapt to complex
environments and tasks, potentially matching or exceeding
human capabilities. AI has broad applications across fields
such as engineering, healthcare, finance, transportation, and
entertainment. As AI technologies continue to advance, they
have the potential to revolutionize how we live, work, and
interact with the world around us [10].

The convergence of AI and agriculture is expected to
bring transformative changes to modern farming. Innovative
solutions are essential to addressing global challenges such as
resource scarcity, population growth, and climate change, all
of which threaten food security. AI enhances traditional farm-
ing practices by improving efficiency and insight throughout
the agricultural process [11] [12]. The following subsection
focuses specifically on supervised learning techniques, while
other AI approaches such as probabilistic modeling are dis-
cussed in detail in external references, including Taeho’s book
[13].

A. Supervised Learning

Supervised learning is a fundamental concept in machine
learning, defined by the use of labeled datasets to train pre-
dictive models. Each training example in supervised learning
contains an input feature vector paired with a corresponding
target output.The goal is for the model to learn a mapping
function that can generalize to accurately predict outputs
for unseen inputs. As discussed in [14], supervised learning
includes a range of algorithms such as linear regression,
logistic regression, decision trees, support vector machines,
and neural networks. Additionally, author of [15] applied su-
pervised machine learning techniques in the context of agricul-
tural applications. Classification is one category of supervised
learning, where data is categorized based on predefined labels.
Regression [16], the second type of supervised learning, is
discussed in detail in the following subsection .

B. Regression

Regression focuses on modeling the relationship between
input features and a continuous output variable. Regression is
used for predicting continuous-valued output based on input
features. The objective of regression analysis is to establish a
quantitative relationship between independent variables (fea-
tures) and a continuous dependent variable (target) [17]. The
goal is to predict the target variable using the input features
provided.

In machine learning, different regression techniques apply
varying mathematical formulations depending on the problem
type. Common supervised regression methods include linear
regression, polynomial regression, and ensemble models each
offering unique strengths and limitations. Linear regression,
one of the most fundamental techniques, assumes a linear
relationship between features and the target. It fits a line that
minimizes the error between predicted and actual values using
a least squares approach.

yi = β0 + β1x+ ✏ (1)

Several metrics are used to measure the error and evaluate
the performance of a model. Each metric highlights a different
aspect of the model’s predictive performance. Following are
the most common matrices:

The Root Mean Square Error (RMSE) is used to evaluate the
average magnitude of prediction errors, and is calculated using
the following equation: 2 is chosen as performance measure:

RMSE =

vuut 1

n

nX
i=1

(yi � ŷi)2 (2)

where RMSEv is Root-mean-square error (RMSE) of link
residual time. y and ŷ are the actual and predicted values
respectively.

MSE =
1

n

nX
i=1

(yi � ŷi)
2 (3)

where:
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• yi: Actual value of the i-th data point.
• ŷi: Predicted value of the i-th data point.
• n: Total number of data points.
The R2 score, or coefficient of determination, measures how

well the predictions approximate the actual data distribution:

R2 = 1�
Pn

i=1(yi � ŷi)
2

Pn
i=1(yi � ȳ)2

(4)

Moreover, Residual Sum of Squares (RSS) is measuring
method in regression which is a metric used to measure
the discrepancy between the observed data and the values
predicted by a regression model. It quantifies the total squared
difference between observed values (yi) and the predicted
values (ŷi from a model.

The goal of RSS minimization is to find the parameters
of a regression model (e.g., coefficients and intercepts) that
minimize the RSS. This ensures that the model best fits the
data by reducing the error in predictions. The Residual Sum
of Squares (RSS) is a key regression metric that measures
the total squared difference between observed and predicted
values:

RSS = min
�0,�1,...,�p

nX
i=1

0
@yi �

0
@β0 +

pX
j=1

βjxij

1
A
1
A

2

(5)

where:
• yi: Observed value for the i-th instance
• ŷi: Predicted value for the i-th instance
• β0: Intercept term
• βj : Coefficient of the j-th independent variable (scalar),

j = 1, . . . , p
• xij : Value of the j-th feature for the i-th observation
• n: Number of observations
• p: Number of features

III. DATA

The integration of Artificial Intelligence (AI) into agri-
culture has significantly improved productivity, resource op-
timization, and data-driven decision-making.AI-driven tech-
nologies such as precision farming, predictive analytics, and
real-time crop monitoring allow farmers to optimize resource
usage including water, fertilizers, and pesticides, while min-
imizing waste and environmental impact. Machine learning
models have been applied to predict nutrient levels (NPK) and
irrigation needs, thereby improving yield forecasting and oper-
ational efficiency. Figure 1 illustrates the process of integrated
block diagram of the AI-based agricultural monitoring system.
From the data that was generate, Figure 2 shows the relation
between phosphorus levels and two environmental factors:
temperature and humidity. Where phosphorus levels peak
around 20°C and then gradually decline as the temperature
increases and phosphorus levels remain stable at low humidity
values. This suggests that phosphorus concentration is higher
at moderate temperatures and decreases significantly at higher
temperatures. After about 90% humidity, phosphorus levels

start increasing, reaching a peak between 120–130%, then
slightly decline.

In Figure 3 shows the relationship between nitrogen levels
and two environmental variables: temperature and humidity.
Nitrogen levels rise sharply with humidity up to 100%
due to enhanced ammonification and reduced volatilization.
The sudden drop at very high humidity levels likely reflects
nutrient leaching and reduced aeration, which hinder nitrogen
retention—consistent with known soil-water interactions.

A sharp increase starts after 60% humidity, reaching a peak
around 100–110%. Then, nitrogen values decline gradually
with further increases in humidity. This suggests that nitrogen
is positively correlated with humidity up to a point, after which
excessive humidity may lead to nutrient leaching or reduced
retention.

Fig. 1. Integrated Block Diagram of the AI Agricultural Monitoring System

Fig. 2. Relationship Between Phosphorus, Temperature and Humidity.
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Fig. 3. Relationship Between Nitrogen, Temperature and Humidity

Fig. 4. Relationship Between Potassium, Temperature and Humidity

Moreover, Figure 4 illustrates relationship between potas-
sium, temperature and humidity. Potassium increases with
temperature until 30°C as root uptake and soil exchange
activity intensify. The decline beyond 30°C is associated with
reduced nutrient fixation and soil dryness. The humidity-based
rise toward 80–90% further supports the role of moisture in
enabling soil–K exchange, with oversaturation causing reduced
mobility.

A. Data Cleansing

Data cleaning is a crucial preprocessing step in any AI-
driven agricultural project, particularly when working with
sensor-generated readings such as temperature, humidity, and
nutrient levels (Nitrogen, Phosphorus, and Potassium). It en-
sures the collected data is accurate, consistent, and free from
noise, errors, or outliers that could impair model performance.
In this section, we’ll cover the importance of data cleaning,
common issues in raw data, and key techniques for cleaning
data in our project.

In agricultural projects, the accuracy of sensor data is
crucial for making informed decisions. For instance, incorrect
NPK levels could lead to poor recommendations for soil
treatment, and inaccurate temperature and humidity readings
might result in incorrect assumptions about climate conditions.
Data cleaning ensures that the dataset is reliable and suitable
for analysis. Without proper data cleaning, even advanced
machine learning models can generate misleading outcomes
due to incomplete or noisy input.

1) Common Data Issues:

• Missing Values: Sensor failures, environmental interfer-
ence, or transmission errors can result in missing values,
creating gaps that compromise analysis integrity.

• Outliers: Outliers, which deviate significantly from the
normal data distribution, may arise due to sensor malfunc-
tions or extreme environmental conditions. Identifying
whether these are legitimate or erroneous is essential for
robust analysis.

• Inconsistent Data: Inconsistent formats may occur when
data is collected from multiple sensors or across different
time intervals. For instance, temperature data might mix
Celsius and Fahrenheit units, necessitating standardiza-
tion.

• Duplicate Entries: Duplicate entries are common in con-
tinuously streaming systems, where identical values may
be recorded multiple times due to network lag or sensor
delay.

Data cleaning is an integral part of any data usage. By
ensuring that your data is free from errors, outliers, and
inconsistencies, you increase the reliability of your analysis
and improve the quality of your insights. Whether you’re
analyzing or optimizing, data cleansing is the foundation upon
which accurate models and predictions are built.

IV. RESULTS

A. Neural Network

An Artificial Neural Network (ANN) is a machine learning
model inspired by the structure and function of the human
brain. ANNs are core components in both AI and ML, capable
of recognizing patterns, processing input data, and making
predictions or decisions. They are particularly effective for
tasks such as image classification, language modeling, and
predictive analytics.

Modern ANN architectures, including deep learning models
and transformers, have significantly expanded the applicability
of neural networks to complex, real-world problems.

The mathematical foundation of an ANN is described by
its forward propagation mechanism.. A common form for a
single-layer neural network is:

ŷ = f (W · x+ b) (6)

For a multi-layer ANN with L layers, the forward pass is
defined as follows:

a[l] = f [l]
⇣
W [l] · a[l−1] + b[l]

⌘
, for l = 1, 2, . . . , L (7)

where W [l] = weight matrix at layer and a[l−1] activations
(or inputs) from the previous layer. While b[l] is bias vector at
layer and f [l] is activation function at layer.

B. Random Forests

Random Forest is an ensemble machine learning algorithm
widely used for both classification and regression tasks. It
constructs multiple decision trees during training and aggre-
gates their outputs to improve accuracy and reduce overfitting.
Random forests are particularly valued for their ability to han-
dle complex datasets with a mix of categorical and numerical
features, as well as for their robustness to overfitting. Each
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decision tree t outputs a prediction yt, calculated as the mean
of all target values in the leaf node where input X is classified.

yt =
1

nt

X
i2Leaft(X)

yi (8)

Where:

yt : Prediction from the t-th tree.
nt : Number of samples in the leaf node of the

t-th tree corresponding to input X.

Leaft(X) : Set of samples in the leaf node of the
t-th tree where the input X falls.

yi : Actual target value of the i-th sample
in the leaf node.

The final regression output is the average of predictions
from all T decision trees. While the final prediction in Random
Forest is made by aggregating predictions from all the trees.

ŷ =
1

T

TX
t=1

yt (9)

Where:

ŷ : Final predicted value of the Random Forest model.
T : Total number of decision trees in the ensemble.
yt : Prediction from the t-th tree.

Random forests are widely used in various industries be-
cause of their reliability, simplicity, and versatility, making
them an essential tool in the machine learning toolbox.[20]

C. CatBoost

CatBoost (Categorical Boosting) is a gradient boosting
algorithm specifically designed to handle categorical features,
developed by Yandex. It natively supports categorical vari-
ables, eliminating the need for preprocessing methods such as
one-hot or label encoding. CatBoost is highly efficient, works
well on structured/tabular data, and achieves state-of-the-art
performance on classification and regression tasks. CatBoost is
designed to handle both classification and regression problems
by minimizing appropriate loss functions and leveraging its
unique features like categorical data handling and gradient
boosting.

CatBoost is part of the ensemble learning family, like other
gradient boosting frameworks like XGBoost and LightGBM.
However, it stands out because of its simplicity, ease of use,
and automatic handling of categorical variables.

CatBoost minimizes a loss function that quantifies the
difference between the predicted and actual values. The most
common loss function used for regression is the Mean Squared
Error (MSE):

MSE =
1

N

NX
i=1

(yi � ŷi)
2 (10)

Where:

MSE : MSE function minimized by CatBoost.
N : Total number of samples in the dataset.
yi : Actual target value of the i-thsample.
ŷi : Predicted value of the i-thsample by the model.

Fig. 5. Correlation Between the Agriculture Data

Fig. 6. CatBoost Modle

Fig. 7. Random Forests Model
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Fig. 8. Neural Network Model

Metric NN Score Random Forests Score CatBoost Score

MSE 328 124 63
MAE 15 9 6
R̂2 0.76 0.91 0.95

TABLE I
COMPARISON OF PERFORMANCE METRICS FOR NEURAL NETWORK (NN),

RANDOM FORESTS, AND CATBOOST ALGORITHMS.

V. FUTURE WORKS

Future iterations of the system will investigate the use of ad-
vanced communication technologies such as LPWAN, LoRa,
and 5G to support high-speed, low-latency data exchange,
particularly in remote agricultural environments. Future work
will also involve expanding the dataset with samples from
diverse climates, soil types, and crop varieties to improve
model generalization and robustness. The incorporation of
edge computing techniques will enable on-device processing,
reducing latency and minimizing the need for continuous cloud
connectivity. Designing lightweight AI models optimized for
deployment on embedded systems will be prioritized to en-
sure efficiency and portability. Long-term deployments across
varying seasonal and climatic conditions will be conducted
to evaluate system resilience, reliability, and field usability.
Energy sustainability will also be explored through the in-
tegration of solar panels and low-power design strategies to
support autonomous operation in remote areas.

VI. CONCLUSIONS

The integration of Artificial Intelligence (AI) into agri-
cultural monitoring systems marks a significant advancement
in modern farming practices. By leveraging AI technologies
such as machine learning, these systems enable farmers to
monitor crop health, detect anomalies early, and optimize
resource usage. AI facilitates real-time, data-driven decision-
making, allowing farmers to reduce risk, respond proactively
to field conditions, and enhance productivity. EThis proactive
approach supports early detection of issues such as pest
infestations, enabling timely interventions and minimizing

crop damage. This paper presents a step toward revolution-
izing agriculture through the application of AI and smart
sensing technologies.By integrating machine learning and IoT
technologies, the proposed system enhances monitoring of
crop health, irrigation efficiency, and nutrient prediction. The
system involved the generation and cleaning of real-world
sensor data, followed by the implementation and optimization
of various AI models for prediction tasks.
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