979-8-3315-7896-1/26/$31.00 ©2026 IEEE

A Protocol-Aware P4 Pipeline for MQTT Security
and Anomaly Mitigation in Edge [IoT Systems

Bui Ngoc Thanh Binh*, Pham Hoai Luan*, Le Vu Trung Duong®*, Vu Tuan Hai'*, Yasuhiko Nakashima*
*Nara Institute of Science and Technology (NAIST), 8916-5 Takayama Science Town, Ikoma, Nara, Japan
TUniversity of Information Technology, Ho Chi Minh City, Vietnam
Vietnam National University, Ho Chi Minh City, Vietnam
Email: bui.ngoc_thanh_binh.bp6 @naist.ac.jp

Abstract—MQTT is the dominant lightweight publish—
subscribe protocol for IoT deployments, yet edge security re-
mains inadequate. Cloud-based intrusion detection systems add
latency that is unsuitable for real-time control, while CPU-bound
firewalls and generic SDN controllers lack MQTT awareness
to enforce session validation, topic-based authorization, and
behavioral anomaly detection. We propose a P4-based data-
plane enforcement scheme for protocol-aware MQTT security
and anomaly detection at the network edge. The design com-
bines parser-safe MQTT header extraction with session-order
validation, byte-level topic-prefix authorization with per-client
rate limiting and soft-cap enforcement, and lightweight anomaly
detection based on KeepAlive and Remaining Length screening
with clone-to-CPU diagnostics. The scheme leverages stateful
primitives in BMv2 (registers, meters, direct counters) to enable
runtime policy adaptation with minimal per-packet latency.
Experiments on a Mininet/BMv2 testbed demonstrate high policy
enforcement accuracy (99.8%, within 95% CI), strong anomaly
detection sensitivity (98% true-positive rate), and high delivery
(>99.9% for 100-5 kpps; 99.8% at 10 kpps; 99.6% at 16 kpps)
with sub-millisecond per-packet latency. These results show that
protocol-aware MQTT filtering can be efficiently realized in
the programmable data plane, providing a practical foundation
for edge IoT security. Future work will validate the design on
production P4 hardware and integrate machine learning-based
threshold adaptation.

Index Terms—P4, MQTT security, programmable data plane,
edge IoT, anomaly detection

I. INTRODUCTION

The Internet of Things (IoT) ecosystem continues to expand
rapidly. IDC forecasts that by 2025 more than 55.9 billion
connected devices will generate approximately 79.4 zettabytes
of data [1]. At the core of this growth is the Message Queuing
Telemetry Transport (MQTT) protocol, now the de facto
standard for lightweight publish—subscribe communication in
resource-constrained environments. However, the rapid adop-
tion of MQTT has exposed security weaknesses that threaten
system integrity, confidentiality, and availability.

Recent assessments underscore the scope of the problem:
over 47,000 MQTT brokers remain publicly accessible without
authentication, while 98% of IoT traffic is unencrypted and
57% of devices exhibit medium- or high-severity vulnera-
bilities [2], [3]. In 2024 the risk sharpened with critical
MQTT issues such as CVE-2024-6786 (path traversal) [4],
CVE-2024-31409 (wildcard exposure) [5], and CVE-2024-
31041 (DoS via null dereference) [6], highlighting the need

386

for protocol-aware edge enforcement. These application-layer
vulnerabilities cannot be mitigated by traditional network
defenses. Cloud-based intrusion detection adds latency incom-
patible with real-time IoT control (hundreds of milliseconds).
CPU-bound firewalls cannot sustain deep packet inspection
at line rate. L3/LL4 SDN controls lack MQTT semantics, so
they cannot enforce session validation, topic authorization,
or behavioral screening. This gap motivates a programmable
data-plane approach that couples protocol awareness with
hardware-accelerated processing at the edge.

P4 enables custom parsing and stateful processing in net-
work hardware while preserving wire-speed operation; regis-
ters, counters, meters, and clone-to-CPU provide fine-grained
control without sacrificing throughput. Prior work has not fully
leveraged P4 for MQTT security, often targeting generic fire-
walls or MQTT-SN and omitting session-order checks, byte-
level topic authorization, and integrated anomaly screening.

We introduce a P4-based MQTT security pipeline that
delivers protocol-aware enforcement and anomaly screening at
the edge. The design includes a parser-safe path for variable-
length fields (IPv4/TCP options, Remaining Length, topic
strings) that drops malformed or evasive fragments; stateful
ingress enforcement with explicit session-order validation,
byte-level ternary topic-prefix ACLs with direct counters, and
per-client soft limits with three-color metering; and lightweight
anomaly screening via KeepAlive-gap and Remaining-Length
heuristics, with suspicious traffic cloned to the control plane
using preserved metadata.

On the BMv2/vl model, the pipeline maintains a through-
put exceeding 99.8% delivery, with sub-millisecond latency
per packet and achieves high enforcement precision. The
results indicate that awareness of the MQTT protocol can
be effectively implemented in the programmable data plane;
validation on production P4 hardware targets is reserved for
future research.

II. RELATED WORK
A. MQTT Security and Intrusion Detection System at the Edge

A significant amount of MQTT security research has con-
centrated on anomaly detection and attack mitigation through
machine learning methodologies, generally implemented on
backend servers or edge cloud clusters. Recent studies present
one-class models and sophisticated traffic feature engineering,

ICOIN 2026

TABLE I: Comparative Analysis of MQTT Security Ap-
proaches

Approach Prot. Sess. Topic Per- Line- Anom. Deploy.
Aware Order ACL Client Rate Det. Loc.
ML-based IDS v X v X X v Cloud
P4DDPI v(DNS) N/A N/A v v v Edge
MQTT-SN P4 v X X v v X Edge
SDN-based Firewall v X v X X X Ctrl.
Our v v v v v v Edge

Edge = Edge Switch, Ctrl. = Controller, Cloud = Backend/Cloud. “Sess. Order” =
Session Order Enforcement, “Topic ACL” = Topic-Prefix Access Control, “Per-Client”
= Per-Client Metering, “Line-Rate” = Line-Rate Processing, “Anom. Det.” = Anomaly
Detection, “Deploy. Loc.” = Deployment Location.

attaining elevated detection rates on public MQTT datasets.
These approaches excel at identifying deviations from normal
behavior with accuracy exceeding 95%, yet they impose sig-
nificant computational overhead and incur prohibitive latency
measured in hundreds of milliseconds to seconds. This la-
tency overhead renders ML-based systems unsuitable for real-
time protection at resource-limited IoT edge gateways, where
security decisions must occur at microsecond timescales.
Innovative methodologies attempt to amalgamate real-time
machine learning inference with edge infrastructure, however,
they primarily depend on software processes and inadequately
enforce measures within the network data plane, creating both
a single point of failure and a scalability bottleneck as IoT
deployments expand [7].

B. Programmable Data Plane P4 for Network Security

Programmable data planes using P4 have emerged as a
promising platform for implementing network security func-
tions at line rate. P4 switches leverage lookup tables, direct
counters, registers, and meters embedded in the pipeline to de-
tect and mitigate attacks with low latency and high throughput.
Recent comprehensive surveys systematize the capabilities,
constraints, and design strategies of P4-enabled programmable
switches, highlighting the critical role of stateful elements such
as counters, registers, and meters in supporting real-time attack
detection and rate limiting at high speeds. PADDPI exemplified
this potential by implementing deep packet inspection for
DNS at line rate using stateful processing and recirculation
techniques to achieve wire-speed throughput. However, these
hardware capabilities introduce challenges related to limited
memory and conditional branching, which must be carefully
managed for efficient deployment [8].

C. Programmable Data Plane for IoT/MQTT Security and
Anomaly Monitoring

Recent advancements in programmable data planes utilizing
P4 have facilitated the offloading of packet processing tasks,
traditionally managed by software, to network hardware, thus
ensuring line-rate security enforcement and traffic manage-
ment. A significant area of research emphasizes the integration
of IoT protocol awareness, specifically MQTT and MQTT-
SN, within the switch dataplane. Enhancements in MQTT-
SN protocol processing utilizing P4 illustrate that certain
broker functionalities, including topic matching and QoS 0

forwarding, can be transferred to the data plane, thereby dimin-
ishing latency and alleviating the burden on brokers. P4-based
telemetry and direct counters have been used to fingerprint
application-layer behavior and pipeline states for behavioral
monitoring, enabling context-aware anomaly detection directly
at the switch and enhancing traditional intrusion detection by
reducing detection latency and response time [9]. Despite these
advances, combining protocol-aware enforcement, behavioral
telemetry, and lightweight anomaly filters for complex IoT
protocols such as MQTT remains largely unresolved. This
study addresses that gap by integrating parser-safe MQTT
header extraction, client-specific stateful tracking, topic-prefix
ACL enforcement, and heuristic anomaly detection within a
P4-enabled edge switch pipeline.

D. Comparison and Gaps

MQTT security research has made progress, but few works
enforce protocol-specifically for full MQTT traffic at the edge
with true line-rate processing. ML-based anomaly detection
is accurate but slow due to backend processing, limiting
real-time IoT response. Although P4DDPI achieved line-rate
deep packet inspection for DNS traffic, its architecture does
not easily adapt to MQTT’s stateful requirements: session
lifecycle tracking (CONNECT/DISCONNECT), QoS enforce-
ment, and hierarchical topic-based subscriptions. MQTT-SN
P4 implementations offload topic matching to the data plane
to reduce broker load, but they only support binary MQTT-
SN, lack session-order validation, and offer limited topic-
based access control. Traditional L3/L4 SDN firewalls cannot
enforce application-layer policies like MQTT session state
validation or topic authorization.

We natively integrate protocol-aware enforcement, stateful
session tracking, and heuristic anomaly detection in the P4
data plane without sacrificing line-rate throughput. Parser-safe
MQTT header extraction for variable-length fields and mal-
formed packets, byte-level ternary topic-prefix ACLs for fine-
grained hierarchical policies, explicit session-order enforce-
ment for PUBLISH operations, and lightweight KeepAlive
baseline tracking and per-client rate limiting are our contri-
butions. In Table I, we compare our approach to previous
research. We create a practical edge security architecture that
aligns with emerging paradigms in edge-centric, semantically
aware security by combining full MQTT protocol awareness,
stateful session validation, and real-time behavioral tracking
in a single P4 vimodel/BMv2 pipeline.

III. SYSTEM DESIGN
A. Overall Architecture

The P4 vlimodel pipeline runs on an edge switch between
IoT publishers and the MQTT broker, enabling protocol-aware
enforcement at line rate. It executes in a single forward pass
across five stages: the parser extracts headers; ingress control
enforces policies; the traffic manager performs cloning; egress
applies any post-processing; and the deparser reconstructs the
packet. Fig. 1 also shows the end-to-end packet flow. Parser.
The parser extracts Ethernet, IPv4, TCP, and MQTT. It skips

387

P4 Edge Switch

(- ———
o |
__ . Ingress | |Egress
T TT1]
IoT Devices Server IoT
Publisher) /) k> Broker
\Parser DeParser,

Fig. 1: Edge MQTT security with protocol-aware P4 enforce-
ment and Anomaly cloning to control-plane

IPv4/TCP options when IHL or dataOffset > 5 and processes
only first fragments (fragOffset= 0). On destination port 1883
it branches by MQTT type: for Connect it captures the variable
header including KeepAlive; for Publish it slices a 16-byte
topic prefix for ACL matching. Ingress control. Parsed meta-
data drives classification, a per-client index from the source
address, counter updates, Connect before Publish validation,
per-client soft-limit checks, lightweight anomaly heuristics
(KeepAlive gap, Remaining Length), per-client metering, and
ternary topic-prefix ACLs. Packets are tagged to Forward,
Drop, or Clone, and metadata records the reason code, rule
ID, and salient fields for diagnosis. Traffic manager / egress
/ deparser. The traffic manager replicates packets marked for
cloning to a CPU-facing port while originals continue down-
stream. Egress performs minimal post-processing as required,
and the deparser emits valid headers in order. Forwarded and
dropped packets stay on the fast path and do not interact
with the control plane. Control plane (orthogonal). Policies
and parameters (such as soft limit, KeepAlive multiplier) are
updated at runtime via table APIs without recompilation. The
control plane reads direct counters and per-client registers
and consumes cloned packets for telemetry, enabling real-time
monitoring and threshold tuning without impacting data-plane
performance.

B. Protocol-Aware Parser and Header Extraction

Our parser enforces two safeguards against malformed
packets: it intelligently skips options by computing IPv4/TCP
option lengths and advancing the packet pointer to avoid parser
exceptions, and it filters fragments by processing only first
fragments (fragOffset = 0) to prevent evasion.

Ethernet/IPv4/TCP parsing. The parser begins by extracting
the Ethernet header to identify IPv4 packets. Upon detecting
IPv4 (etherType = 0x0800), it extracts the IPv4 header,
including the Internet Header Length (/HL) field. If IHL > 5,
the total option length is computed as

opt_len;p,, = (IHL — 5) x 4 bytes. (1)

Similarly, after extracting the TCP header, if the Data Offset
(doff) exceeds 5, the parser advances by

opt_lenpep = (doff — 5) x 4 bytes. (2)

This strategy avoids allocating large fixed-size option struc-
tures and prevents parser state machines from stalling on
variable-length fields. Fragment filtering occurs at the IPv4

Runtime Con fig

-_——-

PR SR ‘

1

: Thl_ipvd_ACL 1 L3/L4 Filtering

| S —— e ————— !

1

S AU ‘

' MQTT Classification \ Sets Type_idz Client_idx
1

CONECT beforce
PUBLISH check

Topic Prefiz Routing/ACI

1
'\ Tbl_MQTT_Anomaly |
1

Anomaly then clone_to_CP

Fig. 2: Simplified ingress-data flow illustrating table order and
pipeline logic.

stage: the parser proceeds to TCP only if fragOffset = 0,
preventing evasion via fragmented MQTT headers. Table II
summarizes all variables, metadata fields, and register names
referenced in our algorithm and throughout the pipeline de-
scription.

MOQTT fixed header. When the destination port is 1883, the
parser extracts type (4 bits), flags (4 bits), and the first two
bytes of Remaining Length (r1_b0, r1_bl). If r1_bl =1
(indicating a 3-byte Remaining Length and a potential DoS
vector), the packet is flagged as suspicious.

Connect. The parser reads the protocol-name length prefix,
advances by that length, and then extracts the fixed fields:
protocol level, flags, and KeepAlive (2 bytes), which are stored
for anomaly detection.

Publish topic slicing. The parser extracts the topic length,
slices the first 16 bytes into per-byte fields (tg—t15) for ternary
ACL matching, and skips any remaining bytes when the topic
exceeds 16 bytes. This preserves the security-critical topic
prefix while keeping memory usage bounded.

C. Policy Enforcement Blocks

The ingress pipeline enforces stateful policies at line rate in
a single forward pass Fig. 2, using runtime parameters fetched
once from tbl_global_limits and a per-client index
(Eq. 3) to ensure consistent register and meter addressing. A
coarse IPv4/TCP ACL (tbl_ipv4_acl) drops traffic that
fails L3/L4 policy before any MQTT parsing.

Each packet’s source address is hashed to a compact per-
client index via modulo:

388

TABLE II: Variables and Field Definitions

TABLE III: Reason Codes for Packet Clone and Drop Actions

Variable Definition / Usage

rl_b0, rl_bl First two bytes of MQTT
Remaining-Length for DoS

detection

to,...,t15 First 16 bytes of topic string
for per-byte ternary ACL
matching

KeepAlive MQTT Connect timer

interval (seconds) used for
anomaly detection

Session state flag (1 bit per
client; 1 = connected)
Stored KeepAlive value
(16 bit)

Total packet counter (32 bit
per client)

Per-type packet counter (4 X
32 bit per client)

Baseline counter for
KeepAlive gap

Current aggregated packet
count

Client index computed as
srcAddr mod 512

Scaling constant for
KeepAlive threshold (default
2)

Max publish messages per
client (default 20,000)

reg_session_open[idx]
reg_keepalive_s[idx]
reg_pkt_total[idx]
reg_pkt_per_type[idx] [type_idx]
reg_last_total[idx]
reg_total[idx]

idx

pps_factor

pub_soft_limit

idr = srcAddr mod 512, 3)

This 512-entry address space balances collision probability
against available per-client register footprint in BMv2. All
per-client state (registers and meters indexed by idx) use this
unified addressing scheme.

For permitted flows, MQTT messages are classified and
bound to per-client state. A valid Connect with a negotiated
KeepAlive opens the session and records the interval; any
Publish observed without an open session is dropped (rea-
son 180). Authorization is then enforced by a topic-prefix ACL
(tbl_mgtt_rule_acl) that requires Publish with QoS in
{0,1,2}, an authorized source subnet, and a match between
the first 16 bytes of the topic and an approved prefix such
as device/sensor/«. Rules maintain direct counters for
visibility; non-matching traffic is dropped.

Work-conserving protections run alongside authorization.
Per-type counters (tracking Publish, Subscribe, etc.) are aggre-
gated per client; a soft cap is imposed on the Publish counter
specifically. Exceeding pub_soft_limit (default 20,000 Pub-
lish messages per client) triggers drops (reason 181) to curb
floods. A three-color meter provides hardware rate enforce-
ment; packets marked RED are dropped (reason 150).

We track the most recent keep-alive event per client (CON-
NECT or PINGREQ) using a per-client timestamp regis-
ter reg_last_ka_ts[idx] initialized on the first CON-
NECT. On each ingress packet, we compute the elapsed time
since the last keep-alive At as in Eq. 4:

ingress_ts — reg_last_ka_ts[idz]

= 5

At = 4

Code Trigger condition Pipeline stage

150 Rate limit exceeded (RED meter) Per-client metering
180 Publish without session Session validation
181 Publish soft limit surpassed Per-client soft limits
182 KeepAlive violation Anomaly detection
183 Remaining Length >3 bytes Anomaly detection

where ingress_ts is the per-packet ingress timestamp
(ns) from standard metadata. A violation is raised when the
condition in Eq. 5 holds:

At > v -KeepAlive, (5)

where ~ is a tolerance multiplier (default 1.5) set
via tbl_global_ limits. Violations trigger reason 182
cloning to the control plane but do not reset the base-
line, allowing offline analysis of sustained stalls. The check
is skipped when KeepAlive=0 (per MQTT semantics),
and only valid CONNECT or PINGREQ messages update
reg_last_ka_ts[idx].

For Remaining-Length anomaly detection, let RL denote the
decoded Remaining Length; we flag and clone (reason 183)
when the threshold is met RL > 6y, where gy, is an ad-
justable threshold (default 16,384 bytes; for our experiments,
131,072 to prevent false positives with extensive sensor data).
Deployments may optionally require that the RL encoding use
more than three bytes to trigger flagging, further reducing false
positives for legitimate but sizable packets.

To support diagnosis without disrupting the fast path,
the pipeline preserves explanatory metadata with each
decisive action. Specifically, it stamps the reason code,
Table III, the matched table and rule identifier (such as
the tbl_mgtt_rule_acl entry index), and salient
parsing context (client index, MQTT type/QoS, first
16 topic bytes) into a dedicated metadata struct that
travels with the packet. When cloning is invoked,
clone_preserving_field_list reproduces these
fields verbatim for the control plane, enabling counter
correlation and policy refinement while the original packet
continues through egress at line rate.

IV. IMPLEMENTATION AND EVALUATION

A. Testbed Setup and Configuration

The experimental testbed is a five-node star centered
on a P4 BMv2 switch Fig. 3. A Mosquitto v2.0 bro-
ker runs at 10.0.0.1/8; two publishers (h_publ 10.0.0.4/8,
h_pub2 10.0.0.5/8) generate traffic; a telemetry host (h_cpu
10.0.0.2/8) captures traces; and a control-plane machine
(h_ctrl 10.0.0.3/8) installs rules. All nodes attach to s1 on
ports 1-5 via virtual Ethernet links. Application load is pro-
duced with mosquitto_pub, issuing CONNECT/PUBLISH
at 100-16,000 pps, QoS 0-2, with topics uniformly sampled
from environmental, device, operational, and system hierar-
chies plus an unauthorized namespace for ACL tests.

389

Switch 1 (5 ports)

’ - b ~
[/ Ubuntu 22.04 (WSL 2,17 — 12700, 16GB) "
i P4 BMv2 Switch (simple_switch)

I Thrift Port : 9090

' INGRESS PIPELINE

! Parser (MQTT-safe)

i Policy Enforcement

i Registers (512 per-client)
' Direct Counters

9 Meters (per-client)

- 4

Publisher Client 2
Mosquitto_pub

10.0.0.1/8

h_cpu
Telemetry
Tepdump
10.0.0.2/8

h_controller
Controll Plane
Clone Recv

10.0.0.3/8

Fig. 3: Five-node P4 BMv2 testbed: broker (Port 1), telemetry
(Port 2), control (Port 3), publishers (Ports 4 to 5).

We deploy the P4 program on BMv2 within Mininet (Intel
Core i7-12700, 16 GB RAM, Ubuntu 22.04 LTS, WSL 2). The
data plane is compiled with p4c-bm2-ss v1.2.0 and loaded
into simple_switch (Thrift port 9090). The control plane
(Python 3.10) provisions table entries and reads direct counters
via the Thrift CLI (auto-loaded by p4utils). Runtime param-
eters via tbl_global_limits: pub_soft_limit = 15,000
(default 20,000) and pps_factor = 1 (aggressive KeepAlive).
tbl_mgtt_rule_acl has 100 rules (50 permit authorized
source/topic-prefix pairs; 50 deny unauthorized). Per-client
registers (512 slots) track session state, KeepAlive, totals, and
per-type counts (=256 KB total). Each client also has a three-
color packet-rate meter; rates are configured in pps (optionally
chosen to approximate 1-2 Mb/s for 64 B payloads).

B. Experimental Methodology

We evaluate three aspects: throughput under benign load to
establish baseline performance; policy enforcement accuracy
to validate deterministic correctness; and anomaly detection
sensitivity to measure effectiveness without false positives.
Each trial lasts 60 s to reach steady state. Results are reported
over N=5 runs (mean £+ 95% CI).

Scenario A (Benign). Establish baseline performance with-
out triggering enforcement or anomaly detection, ensuring
high delivery ratios at realistic IoT traffic loads in the P4
pipeline. Traffic is generated with mosquitto_pub at
100-16,000 pps (QoS 0-2), with topics sampled uniformly

from five hierarchies. Payloads are fixed at 64 bytes. We
use —1 (line mode) to reuse a single MQTT session per
trial. The delivery ratio and loss from P4 direct counters
(egress/ingress), and per-packet latency from synchronized
TCPDump are used as metrics.

Scenario B (Enforcement). To prove the accuracy of
the three policy enforcement mechanisms, including per-
client soft-limits, session validation, and ACL enforce-
ment, without any false positives or negatives.First, Publish
without Connect results in drops (reason 180), validating
session-order enforcement. Second, unauthorized topics
are blocked by the topic-prefix ACL (no clone), demon-
strating byte-level authorization. Third, rapid Publish that
exceeds pub_soft_limit = 15,000 results in drops (rea-
son 181), confirming per-client rate-cap logic. Accuracy is
computed as observed divided by expected.

Scenario C (Anomaly). Test lightweight anomaly heuris-
tics” sensitivity and false-positive rates to ensure the sys-
tem can detect protocol deviations while accounting for
normal traffic variations. To conduct the KeepAlive test,
set —k 2 and send a 10,000 pps burst, resulting in clones
with reason 182. To test Remaining-Length, we create
packets in which RL requires at least three bytes, resulting
in clones with reason 183. The sensitivity is /(T P+ FN).
False positives are measured over 6,000 benign packets to
assess specificity.

C. Performance Results

All figures report N=>5 runs with 95% confidence intervals;
raw CSVs are provided for reproducibility.

Scenario A (Benign throughput). The top panel of Fig. 4
shows delivery at 100 pps—16,000 pps. Loads up to 5 kpps
achieve > 99.9% (£0.01%-20.04%); at 10 kpps the delivery
ratio is 99.78% (£0.02%); at 16 kpps it is 99.60% (£0.03%).
The modest reduction reflects BMv2/Mininet software-switch
buffering rather than policy overhead, demonstrating the de-
sign sustains high delivery across realistic load ranges.

Scenario B (Enforcement validation). The middle panel
presents results for a per-client soft limit of 15,000 mes-
sages. Injecting 16,000 PUBLISH messages yields 1,000 ex-
pected drops (beginning at the 15,001st packet). We observe
14,987 passed and 1,015 dropped packets, achieving 99.8%
enforcement accuracy. The negligible +2-packet variance
lies within measurement uncertainty in BMv2/Mininet across
five trials. All drops are reason 181 (soft limit); none for
150/180/182/183, validating deterministic enforcement with-
out false positives.

Scenario C (Latency and anomalies). The bottom panel of
Fig. 4 presents end-to-end latency measurements (publisher to
broker) in the Mininet/BMv2 software environment. Median
latency is 0.45-0.68 ms with 99th percentile below 4.5 ms,
encompassing Mininet virtualization overhead (= 0.1-0.2 ms)
and BMv2 processing (= 0.3-0.6 ms); incremental per-packet
policy overhead remains sub-millisecond. Anomaly detection
aligns with design goals: Remaining-Length screening (rea-
son 183) detects 100% of crafted large payloads, while the

390

100.1

100.04

99.8+

99.74

99.61

Packet Delivery Ratio (%)

N=5 runs
+95% CI

99.5+

---- Target SLA: 99.9%
99.4

100 500 1k 5k 10k 16k
Traffic Load (packets/sec)
18000

mmm Expected

== Observed

16000 15,000

14,987

140004 Accuracy: 99.8%
(16,002/16,000)
12000

10000 (EXEHOHHE,

8000

Packet Count

6000 (AT

4000 ALY

20004 1,000 1,015

ZHEFZONNNNN

Dropped
(Reason 181)

0-

Passed

MW Median
-1 = 95th Percentile
@ 99th Percentile 4.5

o

Latency (ms)

Enforcement
16k PUBLISH

Benign
1k pps

Fig. 4: Performance evaluation across: (top) Scenario A:
delivery ratio vs. load (benign traffic); (middle) Scenario B:
drop accuracy for 16,000 PUBLISH with 15,000 soft limit;
(bottom) Scenario C: latency percentiles (N=>5; 95% CI).

KeepAlive heuristic (reason 182) achieves 98% true positives
with negligible false positives over 6,000 benign packets. The
full pipeline’s memory footprint is ~ 2.5 MB, supporting
stateful tracking of 512 concurrent clients.

D. Scalability Discussion

With 512 concurrent clients our dataplane uses ~2.5 MB
state, or =4.9 KB per client. Supporting 10,000 clients requires
~49 MB for registers and ~5 MB for topic ACLs (at 0.1 MB

391

per 1,000 rules). On production ASICs such as Tofino and
Alveo, memory footprints depend on table implementations
and TCAM budgets; TCAM is typically the scaling bottleneck.
The per-packet overhead is designed to be minimal; with
sufficient stage and bandwidth, line-rate enforcement on 10—
100 Gbps links is feasible. Scaling improvements include
hierarchical topic prefixes, two-stage policy lookups, and prob-
abilistic telemetry to reduce control-plane load from cloning.

V. CONCLUSION AND FUTURE WORK

This paper presents a P4-based MQTT security and
anomaly-detection scheme that combines parser-safe MQTT
extraction, session validation, topic-prefix authorization, and
lightweight heuristics for detecting protocol deviations. Ex-
periments on BMv2 show 99.8 percent enforcement accuracy,
98 percent anomaly-detection sensitivity, and sub-millisecond
latency, demonstrating that protocol-aware filtering can be
performed efficiently in the data plane.

The design is compatible with hardware P4 targets because
the parser uses bounded extraction and the per-client state fits
typical on-chip SRAM limits. Topic-prefix rules map directly
to TCAM, and the pipeline runs in a single forward pass,
enabling line-rate processing. Conventional MQTT security
baselines such as CPU firewalls, broker ACLs, and cloud IDS
are not compared because they operate at different layers and
depend on slower software inspection, usually with tens to
hundreds of milliseconds of latency. Such comparisons would
not meaningfully reflect P4 data-plane behavior.

Future work includes evaluation on hardware P4 targets,
integration of in-band telemetry for adaptive policies, and
extensions to MQTT-SN and CoAP for broader IoT coverage.

VI. ACKNOWLEDGMENT

This work was supported by JST-ALCA-Next (JPM-
JAN23F4) and the Vietnam Ambassador.

REFERENCES

[1] D. Reinsel, J. Gantz, and J. Rydning, “The digitization of the world: From
edge to core,” IDC White Paper, Sponsored by Seagate Technology, Tech.
Rep. US44413318, November 2018, data refreshed May 2020.

[2] S. A. G. Asgar, N. Dong, and D. Mohaisen, “Analysis of misconfigured
iot mqtt deployments and a microsegmentation approach,” in Proceedings
of the NDSS Workshop on Security of Things (SDIoTSec), San Diego, CA,
USA, February 2025.

[3] Unit 42, Palo Alto Networks, “2020 unit 42 iot threat report,” Palo Alto
Networks, Tech. Rep., March 2020.

[4] NIST, “Cve-2024-6786: Mqtt message path traversal allows arbitrary file
read,” September 2024.

[S] NIST, “Cve-2024-31409: Cyberpower powerpanel business — certain
mgqtt wildcards not blocked (data exposure risk),” May 2024.

[6] NIST, “Cve-2024-31041: Nanomq 0.21.7 topic filtern null pointer deref-
erence (dos),” April 2024.

[7] B. Asulba, P. F. Souto, and L. Almeida, “Bringing iot intrusion detection
to the edge,” in Proceedings of the Sth International Conference on Future
Networks and Distributed Systems (ICFNDS "24). New York, NY, USA:
Association for Computing Machinery, 2025, pp. 295-304.

[8] A. AlSabeh, E. Kfoury, J. Crichigno, and E. Bou-Harb, “P4ddpi: Securing
p4-programmable data plane networks via dns deep packet inspection,”
in Proceedings of the Workshop on Measurements, Attacks, and Defenses
for the Web (MADWeb), San Diego, CA, USA, April 2022.

[9] R. Banno and K. Osawa, “Acceleration of mqtt-sn protocol using p4,” in
Proceedings of the 2022 IEEE 11th International Conference on Cloud
Networking (CloudNet), 2022, pp. 16-21.

