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Abstract—Wildfires pose a significant threat to human life
and result in substantial economic and environmental losses.
Early detection and classification of wildfires is a critical task
for safeguarding life and infrastructure across diverse environ-
ments, including forests, industrial complexes, and urban areas.
Existing supervised approaches rely on large labeled datasets
and task-specific retraining, which limit scalability in real-world
deployments. In this paper, we present SpectroFire, a lightweight
CLIP-style dual encoder model for zero-shot fire and smoke
detection. By combining a custom CNN-based visual encoder with
contrastive alignment to textual prompts, SpectroFire eliminates
the need for task-specific fine-tuning while retaining strong per-
formance under diverse conditions. Experiments on the Kaggle
fire and smoke dataset demonstrate that SpectroFire achieves
90% accuracy without fire-specific retraining and sustains real-
time throughput of 2239 FPS (0.45 ms) on Raspberry Pi 5
devices. Beyond standalone inference, we evaluate edge-IoT
deployment scenarios where only compact event-level outputs are
transmitted instead of raw video streams. This design maintains
low-latency processing and ensures rapid response for UAV-based
wildfire monitoring and disaster management systems in IoT data
networking.

Index Terms—Zero-Shot Learning, Fire and Smoke Classifica-
tion, Prompt-Based Inference, Lightweight CNN, Embedded Al,
Cross-Modal Representation, IoT data networking

I. INTRODUCTION

Wildfires are intensifying globally, driven by rising temper-
atures, prolonged droughts, and unsustainable land use prac-
tices. Beyond immediate destruction, wildfires cause long-term
ecological degradation—including soil erosion, water contam-
ination, and the loss of carbon-sequestering forests—thereby
accelerating climate change. In addition, wildfire smoke in-
troduces harmful particulates into the atmosphere, leading to
poor air quality and increased public health risks.

Recent incidents underscore the scale and urgency of this
challenge. In 2023, South Korea reported 596 forest fires,
burning nearly 5,000 hectares of land [1]. In early 2025,
catastrophic wildfires in Los Angeles County resulted in at
least 29 fatalities and over $250 billion in damages—the most
costly natural disaster in U.S. history [2]. As wildfires become
more severe and unpredictable, timely and accurate detection
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is essential to minimize damage and support rapid response
efforts.

However, wildfire detection remains difficult due to dy-
namic fire behavior, variable environmental conditions, and
the limitations of conventional monitoring systems. Manual
observation methods are prone to delays and errors, while
fixed sensors are susceptible to environmental noise and are
constrained in spatial coverage. Although satellite imaging
offers broad monitoring, it is hindered by low temporal resolu-
tion and occlusion from cloud or smoke cover, often delaying
detection when time is critical.

Conventional wildfire detection systems, such as lookout
towers and manual reporting, form the basis of early warning
frameworks but suffer from key limitations. Human-dependent
methods can lead to delays in detection, subjective errors, and
inefficiencies, particularly in large or hard-to-reach forested
areas [3]. Automated sensor networks—using smoke, tem-
perature or gas sensors—provide continuous monitoring but
are highly sensitive to environmental noise (e.g., fog, dust, or
controlled burns), often resulting in false alarms. Their fixed
spatial deployment also limits coverage, reducing effectiveness
in detecting distant or rapidly spreading fires [4].

Satellite imagery enables large-scale wildfire monitoring by
detecting thermal anomalies and smoke plumes over wide ar-
eas. However, its effectiveness is constrained by low temporal
resolution, limited image quality, and frequent occlusion from
clouds or dense smoke, often resulting in delayed detection
(51, [6].

Unmanned aerial vehicles (UAVs) equipped with RGB or
thermal sensors offer greater flexibility and high-resolution
data acquisition. They can rapidly scan affected areas and
support localized monitoring. However, manual UAV opera-
tion is labor-intensive, and real-time onboard fire classification
remains computationally demanding. These limitations under-
score the need for Al-driven approaches that offer scalable, ef-
ficient, and accurate fire detection under diverse environmental
conditions.

In recent years, computer vision (CV) techniques based on
deep learning have significantly advanced wildfire monitoring
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and response. Convolutional Neural Networks (CNNs) [7]
have been widely adopted for fire and smoke detection, classi-
fication, and segmentation tasks. Among these, segmentation-
based approaches enable the precise delineation of fire regions,
enhancing monitoring accuracy and facilitating rapid interven-
tion [8].

Object detection models such as YOLO and SSD have been
successfully applied to fire detection under complex envi-
ronmental conditions. YOLO-based variants provide real-time
inference capabilities, making them particularly suitable for
UAV-based applications [9], while region-based CNNs offer
robust performance across diverse datasets [10]. These deep
learning models have demonstrated high accuracy but still rely
heavily on large annotated datasets and lack generalization in
unseen or dynamically evolving fire scenarios.

Despite recent progress, fire detection models based on
supervised learning remain limited by their reliance on large
labeled datasets and their poor generalization to unseen
environments. Curating annotated fire data is costly, time-
consuming, and often impractical in dynamic real-world set-
tings. Furthermore, models trained on specific fire types or
locations frequently fail under novel conditions, reducing their
reliability in critical deployments [11].

To address these limitations, we propose a zero-shot,
prompt-aligned fire and smoke classification framework op-
timized for edge devices and IoT data networking. Inspired
by the CLIP architecture [11], the method learns cross-modal
representations by aligning lightweight CNN-based visual
embeddings with semantic textual prompts through contrastive
learning. This design enables inference on unseen fire scenar-
ios without task-specific fine-tuning, offering high scalability
and efficiency for embedded wildfire monitoring applications.

The proposed framework aligns visual embeddings with
natural language prompts using a contrastive loss objective,
enabling cross-modal retrieval and zero-shot classification.
During inference, the model requires only textual descriptions
such as “a fire scene in picture” or “a smoke scene in picture”
to identify fire-related scenarios without any task-specific fine-
tuning.

The key contributions of this work are as follows:

o We design and implement a lightweight, prompt-aligned
dual-encoder framework for zero-shot fire and smoke
classification, optimized for embedded edge devices.

o Beyond vision accuracy, SpectroFire is optimized for
real-time operation in IoT data networking. By trans-
mitting only event-level outputs instead of raw video
streams, our design significantly reduces communication
overhead while preserving low-latency response in dis-
tributed UAV-IoT systems.

e We apply LoRA-based parameter-efficient fine-tuning,
reducing training overhead while preserving model of
size 0.46 MB, and demonstrate real-time feasibility by
achieving 2339 FPS inference on a RPi 5.

o We validate SpectroFire using the Kaggle fire and smoke
dataset and further evaluate its end-to-end performance
in network-aware settings, confirming its scalability and
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robustness for collaborative UAV-IoT wildfire monitoring
in distributed environments.

The remainder of the paper is structured as follows. In
Section II, we review prior work on sensor-based and vision-
based wildfire detection methods. Section III describes the
proposed zero-shot classification framework in detail. Sec-
tion IV presents experimental results validating the model’s
effectiveness. Section V discusses current limitations and
potential directions for future research. Finally, the conclusion
is presented in Section VL.

II. RELATED WORKS

Sensor-based and vision-based fire and smoke detection and
classification methods are used to classify fire and smoke in
a real-time environment.

Sensor Based Methods: Ground-based early detection sys-
tems utilize either standalone sensors, such as fixed, Pan-Tilt-
Zoom (PTZ), or 360° cameras, or interconnected networks of
terrestrial sensors. The strategic placement of these devices is
essential to guarantee sufficient coverage and visibility. There-
fore, these sensors are commonly installed on watchtowers,
elevated structures positioned at strategically high points to
monitor areas prone to fire risk. They serve not only for
early detection but also for verifying and pinpointing the
locations of reported fire incidents. Early fire detection typ-
ically relies on two types of cameras: optical and IR cameras;
both are capable of capturing imagery from low to ultra-high
resolution, depending on the specific detection scenario [12].
While optical cameras capture the color details of a scene, IR
sensors detect and measure the thermal radiation emitted by
objects, offering complementary information for fire detection
[13]. In recent developments, early detection systems have
been introduced that integrate both optical and IR cameras
to enhance detection accuracy and reliability. Computer-based
approaches are capable of handling large volumes of data with
the goal of maintaining consistent accuracy while minimizing
false alarms. In the sections that follow, we first explore
traditional techniques relying on handcrafted features and then
discuss more recent DL methods that enable automated feature
extraction. Detection techniques utilizing optical sensors or
RGB cameras extract features linked to the physical charac-
teristics of flames and smoke, including color, motion, spatial
and temporal patterns, and texture attributes. Various color
spaces have been employed for early fire detection, including
RGB, HSV, CIELAB, YCbCr, CIELAB, and YUV. However, a
major limitation of color-based fire detection methods is their
likelihood of producing high false alarm rates, as relying solely
on color information is often inadequate for achieving early
and reliable fire detection [14]. Zhang et al. [15] proposed a
probabilistic model based on color features to identify poten-
tial fire regions and further incorporated motion characteristics
to determine the final presence of fire. Avgerinakis et al. [16]
first localized potential smoke regions by identifying candidate
blocks, then extracted Histogram of Oriented Gradients (HOG)
and Histogram of Optical Flow (HOF) features to jointly
capture appearance and motion cues. Similarly, Mueller et



al. [17] adopted a dual-strategy approach incorporating both
optimal mass transport formulations and data-driven optical
flow models for motion dynamics.

Vision-based DL methods: Over the past decade, Al and
DL techniques have significantly advanced a wide range of CV
tasks, including object detection and segmentation, satellite
image analysis, medical diagnosis, autonomous driving and
road monitoring. This progress is largely attributed to the rich
feature representations learned by convolutional layers, which
enable DL models to perform pixel-wise classification and
accurately capture object appearance in segmentation tasks.
These algorithms have demonstrated greater reliability and
performance compared to traditional ML models [18]. In
recent years, extensive research has focused on employing
DL methods for effective fire detection. Muhammad et al.
[19] introduced a novel, energy-efficient, and computationally
lightweight CNN architecture for fire detection, localization,
and semantic understanding of fire appearance, inspired by
the SqueezeNet framework and tailored for deployment in
CCTV surveillance systems. Bochkov et al. [20] proposed
UUNet, a novel concatenative DL architecture that integrates
binary and multiclass U-Net models. This design enables
color-based multiclass segmentation of signals derived from
the binary segmentation of single-nature objects, such as fire
regions. Additionally, they introduced a custom fire-image
dataset consisting of 6,250 samples of 224 x 224 resolution.
Experimental results demonstrated that UUNet outperformed
the original U-Net by 3% in multiclass segmentation and 2%
in binary segmentation tasks. Akhloufi et al. [21] integrated
an encoder—decoder architecture with their Deep-Fire model,
achieving an F-measure score of 97.09% on the training
set and 91% on the test set. The model was trained on a
limited dataset of 419 images from the Corsican wildfire
dataset, using Dice loss as the optimization objective. Huang
et al. [22] proposed the Wavelet-CNN framework, which
integrates CNNs with wavelet-based analysis. In this approach,
multiple features are incorporated into multiple CNN layers,
enhancing representation learning and detection performance.
The method demonstrated improved results when applied to
backbone architectures such as MobileNetV2 and ResNet50.
Hassan et al. [23] applied transfer learning on SqueezeNet
for fire detection and classification. The model achieved an
accuracy of 95% on the benchmark fire dataset. Barmpoutis
et al. [24] employed the Faster R-CNN framework to lo-
calize potential fire regions, incorporating multidimensional
texture analysis to improve detection accuracy. Despite its
effectiveness, the approach results in increased computational
demands due to the incorporation of high-dimensional texture
feature analysis. Talaat et al. [25] employed YOLOVS for fire
detection in smart cities. They achieved a precision of 97.1%
for forest fire detection. DL models like CNNs, ResNets, and
Yolo variants have significantly improved detection accuracy
but require large-scale annotated datasets, failing under unseen
environmental conditions. In contrast, our proposed CLIP-
like zero-shot learning method offers a robust, annotation-
free alternative specifically adapted for RGB fire and smoke

classification.

III. METHOD

This section first defines the fire and smoke classification
task, followed by a description of the proposed CLIP-style
zero-shot classification framework. The overall architecture of
SpectroFire is presented in Fig. 1.

A. Model Framework

The proposed model, SpectroFire is inspired by CLIP but
tailored for lightweight, edge-oriented deployment. It consists
of two key components: a visual encoder and a text encoder,
both projecting input into a shared embedding space. The
overall framework is designed to be lightweight and efficient
for real-time deployment. Unlike large vision-language models
that have hundreds of millions of parameters, SpectroFire
emphasizes a compact architecture to reduce computational
cost and memory footprint, making it feasible for use on edge
devices such as surveillance drones or IoT cameras. Both the
image and text representations are D- dimensional vectors
in a common embedding space, so that their compatibility
can be measured directly via similarity. During training, the
two encoders learn jointly such that matching image-text
pairs provide closely aligned embeddings while non-matching
pairs are pushed far apart. We detail each component of the
framework below, followed by the training objective used for
cross-modal alignment.

1) Visual Encoder The visual encoder f(-) is a lightweight
four-block CNN (Conv + ReLU per block) that uses strided
convolutions, not max pooling, to downsample efficiently.
After standard resizing and normalization, features are ag-
gregated with adaptive average pooling and projected to the
shared embedding space R”. The projection is a LoRA-
injected linear layer, which enables low-rank, parameter-
efficient fine-tuning with minimal overhead and is suitable
for edge devices. The output f(I) is Lo-normalized, so dot
products become cosine similarities. This design captures
global semantics and fine fire or smoke cues while maintaining
high throughput for zero-shot classification via a contrastive
similarity head.

2) Text Encoder The text encoder g(-) maps a prompt 7" to a
D-dimensional embedding shared with the image space. We
use a reduced-size Transformer (fewer layers/heads): tokens
are embedded, passed through Transformer blocks with Lay-
erNorm, and the mean representation is linearly projected to
RP. The output is Lo-normalized, enabling cosine-similarity
comparison with image embeddings. This compact design
keeps computation and memory low while preserving semantic
discrimination between concepts such as “fire” and ”smoke”.

B. Cross-Modal Alignment and Similarity

We compute cosine similarity between Lo-normalized im-
age and text embeddings to measure semantic correspondence.
A learnable temperature 7 controls the sharpness of the scores.
For a batch of pairs {(I;, T;)}¥,, let
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Training uses a symmetric contrastive objective (InfoNCE):
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which pulls matched image—text pairs together and pushes
mismatches apart. This alignment yields a shared embedding
space where prompts such as “fire” or “smoke” act as pro-
totypes, enabling zero-shot recognition by selecting the class
whose prompt has the highest cosine similarity.

C. Prompt Engineering

Since the text encoder’s output can be sensitive to the
phrasing of the input text, we design natural language prompts,
such as “a fire scene in picture” for fire scenarios and ’a smoke
scene in picture” for smoke to encode prior knowledge about
fire and smoke scenarios. These prompts serve as semantic
anchors in the cross-modal space, allowing the model to
associate learned patterns with high-level contextual mean-
ings. During inference, the model computes cosine similarity
between encoded features and textual prompts, facilitating
zero-shot fire scene classification without explicit retraining.
By covering fundamental fire and smoke conditions, prompt-
based supervision effectively generalizes the model’s decision
boundary across diverse unseen scenarios, enabling robust
wildfire detection even in variable environmental settings.

IV. EXPERIMENTS

In this section, experiments are conducted to demonstrate
the effectiveness of the proposed SpectroFire model. We com-
pare our model with the CLIP baseline and MobileNetV2, a
lightweight supervised classification method. The performance
of all the models is evaluated on Kaggle fire and smoke
dataset.

A. Dataset

The dataset consists of 23,730 images of fire and smoke.
The dataset includes different fire and smoke scenarios such
as garbage burning, paper and plastic burning, agricultural
crop burning, and home cooking, covering a comprehensive
range of fire scenarios. The dataset contains a variety of fire
and smoke scenarios of different sizes. According to the fire
stages, the early, middle, and late stages of fire are included.
According to the fire environment, different backgrounds are
included, such as fog and nighttime. According to the shooting
angle, fire images taken from different angles are included,
such as distant, close and above. Additionally, the dataset also
covers fire images with other interference factors, such as light,
clouds, and steam. The dataset samples are shown in Fig. 2
and dataset statistics are presented in Table. I

TABLE I
STATISTICS OF THE KAGGLE FIRE AND SMOKE DATASET

Split  RGB Fire RGB Smoke
Train 9661 8082
Valid 2415 1020

B. Experimental Setup

Experiments were conducted on both high-performance and
edge environments. For training and large-scale evaluation, we
used a GPU server equipped with a single NVIDIA H100
GPU (80 GB of memory). For embedded deployment bench-
marking, we employed a Raspberry Pi (RPi) 5 with a quad-
core ARM Cortex-A76 CPU and 4 GB LPDDR4 RAM. The
software environment included Python 3.12, PyTorch 1.12, and
TensorFlow 2.8.0. Model training utilized the Adam optimizer
with an initial learning rate of 0.0001 and parameters 5; = 0.9,
B2 = 0.999. All models were trained for 100 epochs with
binary cross-entropy (BCE) loss. Input images were resized
to 224x224 pixels, normalized using ImageNet statistics, and
trained with a batch size of 64. For edge deployment, static
quantization to 8-bit precision was applied using TensorFlow
Lite. In addition to standalone inference benchmarking, we
evaluated network-aware deployment conditions to emulate
real-world 10T scenarios. RPi 5 nodes transmitted detection
results to a central server over Wi-Fi and 4G links. Instead
of streaming raw video, only low-dimensional classification
embeddings and event-level alerts were transmitted, which
reduced bandwidth. End-to-end latency, including both on-
device inference and IoT data networking, was measured. This
experimental setup highlights that SpectroFire is optimized not
only for high-throughput local inference but also for efficient
operation within distributed edge—cloud networks, an essential
requirement for UAV-based wildfire monitoring and IoT-driven
disaster management systems.

C. Evaluation Metrics

Evaluating a model is crucial for improving its efficiency.
Various metrics can be used to assess model performance. In
this study, we used the F1 score [26] as the primary evaluation
metric to measure and enhance the model’s effectiveness.

D. Experimental Analysis

Table II presents a comparative evaluation of three fire
detection and classification models on the Kaggle dataset. We
compare our proposed method, SpectroFire, against a baseline
CLIP model and a fully supervised MobileNetV2 classifier.
The CLIP baseline, while offering zero-shot flexibility, shows
limited performance with only 67% accuracy and an infer-
ence speed of 174 FPS. This result highlights the limita-
tions of unmodified vision-language models in fine-grained
anomaly detection tasks such as fire classification, without
additional adaptation. The MobileNetV2 model, trained in a
fully supervised manner, achieves a high accuracy of 94%,
establishing a strong upper-bound for lightweight supervised
architectures. However, its inference speed reaches only 226
FPS, making it less suitable for real-time, high-throughput
embedded systems. Our proposed model, SpectroFire, delivers
a compelling trade-off by achieving 90% accuracy which is
only 4% lower than MobileNetv2 while providing a ten-
fold improvement in inference speed, reaching 2239 FPS
with an average inference time of just 0.45 ms per frame.
This substantial throughput advantage is achieved without
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Fig. 1. SpectroFire: Overview of the proposed fire and smoke classification framework
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Fig. 2. Sample Images from Kaggle fire and smoke dataset. In the first row
we include the RGB fire images and in second row we presented RGB smoke
images

requiring supervised fine-tuning, making the system highly
suitable for low-latency deployment on resource-constrained
devices, such as the RPi 5. Additionally, SpectroFire benefits
from LoRA-based parameter-efficient tuning and quantization-
aware optimization, both of which contribute to maintaining
high performance while reducing computational and memory
overhead. The model’s prompt-driven generalization capability
further enables adaptation to unseen environments and camera
domains, eliminating the need for retraining.

E. Evaluation of Quantized Model

We evaluate the performance of an 8-bit quantized version
of our model on a RPi 5 platform, targeting the deployment
of efficient fire detection models in resource-constrained edge

TABLE IT
PERFORMANCE COMPARISON OF CLASSIFICATION MODELS ON KAGGLE
FIRE AND SMOKE DATASET

Methods Accuracy  FPS  Inference Time (ms)
CLIP (Baseline) 67 174 5.75
MobileNetv2 (Supervised) 94 226 4.41
SpectroFire (Ours) 90 2239 0.45

environments. The original model size was 0.42 MB, which
was reduced to 0.36 MB after applying 8-bit static quan-
tization, achieving a 10.6% reduction in memory footprint.
This quantization process was carefully selected to minimize
storage and memory usage while maintaining high classifica-
tion performance, critical for real-time embedded applications
operating under strict resource budgets.

To assess real-world feasibility, we conducted single-image
inference tests on the RPi 5, equipped with a quad-core ARM
Cortex-A76 CPU and 4 GB of LPDDR4 RAM. The quantized
SpectroFire model achieved an average inference time of 0.45
milliseconds per image, corresponding to approximately 2239
FPS. These results confirm that the quantized model meets
the real-time processing threshold necessary for UAV-based
wildfire monitoring, where rapid scene analysis is crucial for
early fire detection and timely intervention.

V. LIMITATIONS AND FUTURE WORK

While SpectroFire demonstrates strong performance in zero-
shot fire classification, it also has several limitations that open
opportunities for future research. First, the current framework
supports only binary classification (fire vs. smoke) and does
not differentiate between fire stages or surrounding context
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(e.g., smoke, vegetation type). Extending the model to handle
multi-class or multi-label recognition scenarios remains an im-
portant direction. Second, although the system generalizes well
to unseen scenes, its performance under extreme occlusion
(e.g., heavy smoke, dense foliage) and low-resolution thermal
imagery has not been fully assessed. Third, SpectroFire relies
on handcrafted prompt templates during inference. Prompt en-
gineering introduces sensitivity to phrase choice, which could
be mitigated by using recent prompt-tuning or vision-language
pretraining strategies. Additionally, the current model operates
on single-frame image input. Temporal modeling using video
streams or frame history could improve detection stability and
enable early prediction of fire spread. The model may face
difficulty for fire and smoke detection when UAV is flying over
hight altitudes. To address this limitation, we plan to collect
data from varying heights. From a deployment perspective,
UAV-based operation may face real-world constraints such
as limited bandwidth, frame drops, and environmental noise.
Future work will therefore focus on integrating fault-tolerant
communication protocols and video-based aggregation mecha-
nisms to improve robustness in distributed, large-scale wildfire
surveillance networks. Furthermore, we plan to conduct real-
world UAV deployment experiments, embedding SpectroFire
directly on drones to validate system performance under
realistic conditions. This will provide critical insights into
operational feasibility, scalability, and resilience for practical
wildfire monitoring scenarios.

VI. CONCLUSION

This paper presents SpectroFire, a lightweight CLIP-style
dual encoder for zero-shot fire and smoke detection. By com-
bining a custom CNN-based visual encoder with contrastive
alignment to textual prompts, the model eliminates the need
for task-specific supervised retraining while retaining strong
performance. Experiments showed that SpectroFire achieves
90% accuracy on the Kaggle fire and smoke dataset and a real-
time throughput of over 2200 FPS on RPi 5 devices. Beyond
standalone performance, the model was also evaluated under
network-aware deployment scenarios, where transmitting only
event-level outputs instead of raw video reduced bandwidth
consumption. This confirms the model’s feasibility for collab-
orative UAV and IoT-based wildfire monitoring in IoT data
networking.
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