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Abstract—The rapid growth of vehicular populations has
intensified challenges such as congestion, delays, and inefficiencies
in traditional traffic management systems. This work proposes an
integrated paradigm that combines cloud computing, vehicle-to-
everything communications, Artificial Intelligence, and Big Data
analytics to enhance Intelligent Transportation Systems. Two
representative ITS services are presented, first, AI-driven FASTag
data mining using a Naı̈ve Bayes classifier to identify insufficient
toll balances and proactively notify drivers, and second, optimal
route navigation, modeled as a multi-commodity flow problem,
to minimize end-to-end delays by leveraging vehicular density
and stochastic delay factors. Performance evaluations show
that the proposed architecture outperforms standalone servers
and conventional systems, achieving reduced CPU time, higher
success rates, and resilience against up to 15% node failures.
Overhead analysis further highlights that CPU cycles are the
primary bottleneck, while memory usage remains modest. In
general, the integration of cloud, Vehicle-to-everything, Artificial
Intelligence, and Big Data provides a scalable, fault-tolerant, and
cost-effective platform for next-generation ITS.

Index Terms—Intelligent Transportation System, Naı̈ve Bayes
Classifier, Vehicular Cloud, Vehicular Communication.

I. INTRODUCTION

Modern society continues to encounter significant difficul-
ties in everyday transportation. It is because of the rapid
urbanization and the exponential growth of vehicular popu-
lations that have significantly strained existing transportation
infrastructures. According to some studies, there are more than
1.6 billion vehicles on the road by 2025, with an annual growth
rate of 1.7% [1]. In such an ever-growing scenario, traditional
traffic management approaches become inadequate and lead
to issues such as traffic congestion, unpredictable delays,
increased accident rates, and environmental degradation. Since
the demand for more efficient and responsive transportation
systems grows, modern Intelligent Transportation Systems

(ITS) have to adapt accordingly. To overcome these limita-
tions, ITS should seamlessly integrate advanced computing,
communication, and control technologies to improve traffic
efficiency, safety, and sustainability. However, current ITS
implementations often operate in isolated paradigms, lacking
interoperability and real-time responsiveness. Recent research
has focused on amalgamating multiple emerging technologies
such as cloud computing, Big data analytics, autonomous vehi-
cles, and vehicular communication technologies [2]. However,
not only is integration of these technologies required, but
applications that run on these modern systems are also required
to be more intelligent and efficient.

The integration of Vehicle-to-Everything (V2X) communi-
cation technology, Vehicular Cloud Computing (VCC), Ar-
tificial Intelligence (AI), and Big Data analytics can trans-
form traditional transportation systems into advanced ITS.
These technologies enable real-time information processing
and sharing for traffic monitoring, route planning, and safety
management. The cooperative use of resources creates a
mutually beneficial ecosystem between on-road and parked
vehicles. Parked vehicles, often idle for extended durations,
can act as distributed computing nodes within Static Vehicular
Clouds (SVCs). By contributing their underutilized computa-
tional and storage resources, they support data aggregation,
processing, and dissemination. In turn, on-road vehicles benefit
from receiving timely traffic insights and optimized routes,
compensating parked vehicles with minimal remuneration for
their contributions.

Several ITS applications, such as real-time route navigation
and optimization, require high-volume traffic and environmen-
tal data, as well as intensive computational resources, often
beyond the capacity of individual vehicles. In such scenarios,
V2X serves as the communication backbone, enabling vehicles
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to establish connections with the infrastructure. Through this
cooperative framework, vehicles can access AI-driven services
powered by large-scale Big Data analytics, enhancing accuracy
and responsiveness.

The joint operation of SVC, V2X, Big Data, and AI
ensures scalable, efficient, and cost-effective service delivery.
This synergy not only improves transportation efficiency and
safety, but also motivates the deployment of innovative ITS
applications. Ultimately, such integration provides a productive
and rewarding model for all stakeholders, ensuring optimal use
of vehicular resources while driving progress towards next-
generation intelligent mobility solutions.

This work proposes two representative ITS services: (i)
AI-driven vehicular Big Data mining and (ii) vehicle route
navigation, on an ITS infrastructure that includes V2X com-
munications and cloud computing facilities. The effectiveness
of these services is evaluated, highlighting the practical po-
tential for next-generation ITS deployments. In this work, a
paradigm is considered where Vehicular Cloud Computing
(VCC) with V2X establishes an ITS infrastructure. It provides
a unified infrastructure and communication backbone for ITS.
In addition to this paradigm, AI and Big Data analytics are
incorporated to ensure efficient and reliable delivery of ITS
services. Within this architecture, the SVC functions as the
service provider, while moving vehicles on surrounding road
segments act as service consumers, as shown in Fig. 1. This
arrangement enables the deployment of both conventional
cloud-based services and ITS-specific applications, including
traffic management, vehicle navigation assistance, and dissem-
ination of real-time road condition information. These services
are made accessible to various stakeholders, such as drivers,
safety controllers, and transportation authorities, intelligently
and resiliently.

II. RELATED WORKS

In this section, a literature review on the modern technolo-
gies involved in this work for next-generation ITS is presented.

A. Vehicular Clouds

Vehicular Clouds (VCs) consist of a group of vehicles that
interact and coordinate with each other to virtualize and share
their computing and communication resources with users,
typically following a pay-as-you-go model [3]. This approach
offers significant advantages by enabling efficient utilization
of otherwise underused resources at reduced costs. Beyond
traditional cloud services, VCs support a wide range of ITS-
related applications, such as traffic management support and
real-time parking assistance [4]. Olariu et al., first introduced
the concept of Vehicular Clouds, where vehicles contribute
computational, storage, and sensing resources with others [5].
Since then, several architectures have evolved. Bitam et al. pro-
posed VANET-Cloud, a hybrid model that utilized vehicular
nodes and external cloud servers for cooperative services [6].
VCs are generally classified according to the mobility of the
participating vehicles into two main types. Static Vehicular
Clouds (SVCs), which are typically formed in parking areas

equipped with cloud computing infrastructure [7]. Dynamic
Vehicular Clouds (DVCs), which consist of a group of moving
vehicles, often traveling at similar speeds on highways or
within urban congestion zones [8]. Although DVCs formed by
moving vehicles are more volatile, SVCs offer a more stable
and predictable environment. In this work, SVCs are part of
the system model.

B. Vehicular Big Data Analytics

Vehicular environments generate massive amounts of data
from sensors, GPS modules, and onboard systems. Handling
such high-volume, high-velocity, and high-variety data in real
time is a significant challenge. Cheng et al. discussed the
use of cloud computing for the aggregation of vehicular
data [9]. In another work, Abas et al. emphasized mobile edge
computing for real-time data processing [10]. Nevertheless,
there is limited research that combines Big Data processing
with cooperative vehicular clouds and uses that combination
for real-time ITS applications like route planning and vehicle
diagnostics.

C. AI for ITS Services

There are several applications in the ITS domain that
benefit from AI techniques. In [2], a detailed review of
such applications is presented. In [11], the deep learning
approach is used to predict future traffic conditions that help
optimize traffic signal timings and manage congestion. AI
algorithms are integral to perception, decision making, and
path planning in self-driving cars [12]. AI is applied to smart
parking solutions to detect available spaces, guide vehicles,
and predict parking availability using computer vision and
predictive analytics [13]. Travel-time prediction and incident
detection require AI algorithms like gradient boosting [14].
However, no ways have been presented to offer a large set of
applications running on integrated architectures and common
platforms.

III. SYSTEM MODEL AND ARCHITECTURE

Figure 1 illustrates the system model adopted in this work.
The architecture follows a three-layer structure that consists
of vehicles, an intermediate communication layer, and the
cloud infrastructure. The cloud layer incorporates a Static
Vehicular Cloud (SVC), established in a parking facility,
and supported by a traditional cloud backend. This SVC
assists in executing various AI-driven applications. The cloud
infrastructure is further connected to ITS elements, such as
toll booths, via a 5G communication network. Vehicles are
equipped with FASTag and Global Positioning System (GPS)
modules, enabling them to interact with the ITS through
Near Field Communication (NFC) and cellular V2X commu-
nication. On-board applications can request services such as
route optimization or FASTag-related data retrieval. The cloud
infrastructure processes these requests by performing FASTag
data mining and computing optimal routes, which are then
communicated back to the vehicles to assist in navigation and
decision-making. In this system model, vehicles are capable of
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Fig. 1: The system model for vehicular cloud-assisted ITS

communicating over multiple hops using V2V communication
technology using IEEE 802.11p. If the vehicle is away from
the roadside unit or cellular base station, then it could send
data over multi-hop Vehicular Ad hoc Networks (VANETs).

Figure 2 illustrates the architecture implemented in this
work, which is based on our previous work [2]. In this
architecture, the system model is organized into three dis-
tinct layers: presentation, communication, and service. The
presentation layer consists of components located on vehicles,
such as sensors, GPS modules, and on-board units (OBUs).
Its primary role is to perceive the environment, perceive
relevant data, and send service requests to the upper layers to
access various ITS services. The communication layer enables
seamless interaction between vehicles and cloud infrastructure
by employing multiple communication technologies, including
Near Field Communication (NFC), IEEE 802.11p, and cellular
V2X communications. This layer supports various vehicle-to-
everything (V2X) scenarios, ensuring reliable data exchange
under dynamic traffic conditions. The service layer is respon-
sible for receiving service requests from vehicles, processing
them, and distributing computational tasks to suitable vehicles
within a Static Vehicular Cloud (SVC). In addition, it manages
essential backend functions such as resource allocation, client
negotiation, service orchestration, and virtualization, ensuring
optimal use of available vehicular and cloud resources.

IV. AI-DRIVEN FASTAG MINING AND ROUTE
NAVIGATION

This section presents two potential ITS applications are
proposed, to operate on top of the system model outlined in
the previous section.

Fig. 2: Architecture of vehicular cloud-assisted ITS

A. Naı̈ve Bayesian Classifier based FASTag Mining

In India, the national electronic toll collection system man-
dates the use of FASTag, an RFID-based card affixed on
the vehicle windshield for automatic toll payment. Linked
accounts can be recharged online through service providers or
participating banks. By February 2020, nearly 2 million pas-
senger cars were processed through toll plazas in a single day,
generating vast amounts of vehicular data [15]. This FASTag
data, if mined in real time, can provide significant value to ITS.
Vehicles with insufficient FASTag balance before reaching
their destination can be identified and notified, allowing timely
top-ups and avoiding delays at tolls. Such data-driven services
offer multiple benefits, such as better passenger experience,
reduced travel time and fuel consumption, increased business
opportunities for service providers, and smoother traffic man-
agement due to fewer stops.

To develop a vehicular Big Data mining service in an
SVC, it is necessary to design and implement a suitable data
mining model. In this work, the focus is on an AI-based
learning technique, specifically the Naı̈ve Bayes Classifier. The
information collected from each vehicle at a toll booth as a
structured document. This document can consist of multiple
fields, such as Vehicle ID, FASTag ID, Time stamp, vehicle
type, balance in FASTag account, origin, and destination toll
plazas. Using these features, the Naı̈ve Bayes Classifier can be
trained to classify or predict various outcomes, such as whether
a vehicle is likely to face balance exhaustion before reaching
the next toll, which can be mathematically represented as
Dn = {d1, d2, d3, ...dx}.

Consider the document D = {D1, D2, D3, ...Dn} and the
class C = {C1, C2, C3, ..., Cm}, there is a need to map F :
D → C. If the fields of a document are not independent of
each other, which is true in real-world scenarios, using Naı̈ve
Bayes Classifier, a document is classified by [16]:

P (c)P (d1, d2, d3, ..., dx) =
P (c)

∏x
i=1 P (di|c)∑

c [P (c)
∏x

i=1 P (di|c)]
(1)
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where P represents the probability and, for simplicity, C is
used for Cm and D is used for Di. Now, the decision rule
for assigning a document to the best possible class Ĉ, i.e., the
class with the maximum posterior probability, is expressed as
follows:

Ĉ = argmax
c∈C

P (c)
x∏

i=1

P (di|c) (2)

The training process of the AI-based agent, using the Naı̈ve
Bayes Classifier based mathematical model, is presented in
Algorithm 1.

Algorithm 1 Naı̈ve Bayes Classification for FASTag Mining

1: Given: Training set T = {D(j), c(j)}Nj=1

2: Goal: Learn mapping F : D → C by using eq. 2
3: procedure TRAINING(Parameter Estimation)
4: for k = 1 to m do
5: P (Ck) ←

j

N
: j = count{c(j) = Ck}

6: end for
7: for k = 1 to m do
8: Compute counts of each field di ∈ D labeled Ck

9: Apply Laplace function and set P (di | Ck)
10: end for
11: end procedure
12: procedure INFERENCE(Classification of a New Document

D = {d1, . . . , dx})
13: for k = 1 to m do

14: Value(Ck) ← logP (Ck) +
x∑

i=1

logP (di | Ck)

15: end for
16: Ĉ ← argmax

c∈C
Value(c)

17: Return Ĉ
18: end procedure

B. Optimal Route Navigation System using V2X

Traffic congestion often leads to long delays, accidents, and
driver frustration. Real-time traffic information can alleviate
this by enabling dynamic route selection with lower congestion
levels. Such data can be collected from vehicles on specific
road segments through the wireless communication backbone,
aggregated, and processed at a centralized facility to compute
optimal routes. This functionality can be effectively supported
by the SVC-assisted ITS infrastructure. In the proposed ITS
application, vehicles are assumed to be equipped with ad-
vanced ICT technologies that enable seamless participation in
cooperative traffic management. Each geographical partition
is supported by an SVC that hosts a route optimization
server. Vehicles are assumed to cooperate under a consensus
mechanism and continuously share relevant traffic data. On the
vehicle side, an onboard application collects information on
parameters such as vehicle speed, traffic density, and blockage
location using GPS, sensors, and cameras. This information,
along with the intended destination, is periodically transmitted
to the local SVC using V2X communications. The SVC
aggregates traffic data from all participating vehicles. When a

vehicle requests the optimal route to a destination, the query is
forwarded to the local SVC controller. The controller delegates
the route computation task to a subset of SVC nodes, which
estimate travel times across candidate paths using a function
of vehicular density and expected delay. The recommended
path, selected to minimize end-to-end delay, is then returned
to the vehicle via V2X communications.

The routing mechanism draws parallels with data commu-
nication networks, where intersections act as routers, roads
as links, and vehicles as packets. Thus, the vehicular route
navigation problem can be modeled as a multi-commodity flow
problem, where the objective is to identify optimal paths for
multiple concurrent flows while minimizing routing delays,
which is expressed as follows:

Tr = minr∈R

[
n∑

s=1

rs
A∫

(
1

ρs − rs

)
+ Tdelay ± PTacc.

]
(3)

where route r ∈ R is defined as the aggregate of individual
road segments s, among all available routes in the set R. For
each segment, the vehicle arrival rate is represented by As,
while ρ denotes the maximum capacity that the road segment
can accommodate. The travel delay experienced on a route
is denoted as Tdelay. Stochastic factors, such as accidents or
sudden obstructions, are incorporated through a probability
term P , which indicates the likelihood that a vehicle will
accelerate or decelerate under such conditions. The additional
delay caused by this behavior is captured by Tacc, quantifying
the extra time incurred during acceleration or deceleration.

V. EXPERIMENT SETUP AND RESULT ANALYSIS

A. Experimental Setup for Vehicular Cloud Assisted ITS

To evaluate the proposed framework, the simulation sce-
nario illustrated in fig. 1 is employed. Vehicles equipped
with GPS modules and NFC cards execute the two proposed
applications while driving across multiple road segments. The
SVC functions as the primary service provider, integrated
within a three-layer architecture as shown in fig. 2. The
simulation testbed consists of 120 parked vehicles acting as
static nodes and 300–700 mobile nodes representing on-road
vehicles. Vehicular mobility topologies are generated using
NPART, where vehicle speeds range between 5–40 km/h, and
the minimum inter-vehicle distance is maintained at 3 meters
to reflect realistic traffic conditions. For wireless communi-
cations, the IEEE 802.11p standard is adopted to support
V2X interactions. The SVC infrastructure is established using
the distributed Apache Hadoop framework, enabling scalable
data aggregation and processing. To implement the AI-based
algorithms, the experimental environment leverages Python
along with standard data science libraries such as Scikit-learn,
NumPy, and Pandas.

B. Discussion on Results

Figure 3 illustrates the performance analysis of the system
that runs the AI-driven FASTag mining application compared
to a standalone server and a standalone computer.
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(a) CPU time vs. vehicle inflow rate (b) CPU time vs. no. of files (c) Success rate vs. nu. of service requests

Fig. 3: Performance analysis of the system running AI-driven FASTag mining application.

Fig. 4: Performance analysis of the system with route naviga-
tion application against node failures.

Figure 3a illustrates the CPU time performance of three
different architectures, SVC, a standalone server, and a single
computer system, as a function of the inflow rate i.e., the
number of vehicles crossing a road segment in an hour,
ranging from 6000 to 10000 vehicles per hour. The CPU time
represents the time required to handle the queries of these
vehicles. The SVC shows the lowest CPU time across all
inflow rates. CPU time increases gradually from about 1.7
seconds at 6000 vehicles/hour to nearly 2.7 seconds at 10000
vehicles/hour. The SCV performs better than the standalone
server and the computer system. This indicates that the SVC
scales efficiently with increasing traffic, maintaining very low
computational overhead.

Figure 3b shows the variation in CPU time with respect to
the number of files processed in the three computing archi-
tectures. The SVC architecture outperforms in this scenario
by 40% to 60% compared to the standalone server and the
computer system. The SVC achieves the lowest CPU times for
all file sizes. The CPU time gradually increases from ∼ 4.9
seconds at 1000 files to ∼ 8.3 seconds at 3000 files. The
growth is relatively smooth, highlighting efficient scalability
for increasing file volume. Thus, the analysis confirms that
SVC is the most efficient and scalable solution, capable of

handling growing workloads with minimal CPU overhead.

The graphs shown in fig. 3c illustrate the success rate
achieved by all three architectures under varying loads of the
number of service requests made by the vehicles per hour,
ranging from 5,000 to 30,000. SVC maintains the highest
and most stable success rate. In general, it is better for
∼ 3% to ∼ 21% compared to a standalone server and a
computer system. This indicates that SVC is the most reliable
architecture for managing large service loads in real-time ITS
applications.

In SVC, participating vehicles are generally parked in an
area, and vehicles may have to leave at any point in time,
which could cause node failures in SVC while performing
the tasks. Therefore, the next evaluation is to analyze the
performance when there are multiple node failures in the
system. Here, the route navigation application is considered
for evaluation. The graph in fig 4 illustrates the effect of node
failures on system processing time. In can be seen that up to
∼ 15% node failures, CPU time increases moderately, suggest-
ing that the system can tolerate limited failures without severe
performance impact. However, beyond it, CPU performance
deteriorates significantly, but it is in an acceptable range. This
insight is crucial for designing robust and fault-tolerant ITS.

Finally, an overhead analysis is performed and presented in
fig. 5. Figure 5a shows the 3D surface plot that illustrates the
variation in CPU time as a function of the number of SVC
nodes and VANET nodes. Higher node density leads to more
data and request handling, thereby increasing computational
requirements. In contrast, when the number of SVC nodes
is larger, CPU time is significantly reduced, demonstrating
the system’s ability to offload and parallelize tasks efficiently
across multiple service nodes. In fig. 5b, CPU overhead as
a function of rescheduling time and the number of nodes
leaving the system. CPU overhead grows sharply with both pa-
rameters. For small-scale failures, the CPU overhead remains
moderate, but as failures scale to 30 nodes, the overhead in-
creases rapidly. Longer rescheduling times further amplify the
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(a) Performance analysis (CPU time) (b) Overhead analysis (time) (c) Overhead analysis (memory)

Fig. 5: Performance and overhead analysis of the ITS system.

overhead since the system must repeatedly reallocate resources
and recompute task mappings. The third plot, i.e., fig. 5c
extends the analysis to memory overhead, evaluated under
the same parameters. Compared to CPU overhead, memory
overhead increases more gradually. With 30 nodes leaving and
longer rescheduling times, the memory overhead peaks only
around 20–22%, significantly lower than the CPU overhead.
This shows that while memory consumption increases with
workload instability. However, the primary concern is CPU
cycles rather than memory availability.

VI. CONCLUSION AND FUTURE WORK

This article explored the integration of cloud computing,
V2X communications, AI, and Big Data analytics to improve
ITS. In this paradigm, parked vehicles contribute idle resources
as SVCs, which provide real-time services to on-road vehicles
through V2X communications. Two representative ITS ser-
vices were demonstrated, namely, FASTag data mining using
a Naı̈ve Bayes classifier to predict balance exhaustion and alert
drivers in advance, and route optimization modeled as a multi-
commodity flow problem to minimize end-to-end delay using
vehicular density and delay factors. These services highlight
the potential of AI-driven big data solutions for efficient
real-time decision-making in ITS. Performance evaluations
confirmed that SVC-based solutions outperform standalone
servers and nodes, offering reduced CPU time, higher success
rates, and resilience to up to 15% node failures. In general,
SVC, V2X with AI and Big Data presents a scalable, cost-
effective, and fault-tolerant foundation for next-generation
ITS, paving the way for robust real-world deployment. In the
future, more advanced ITS applications will be developed, and
a dedicated testbed can be created for performance evaluation.
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