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Abstract—Positioning of Wi-Fi equipped Unmanned Aerial
Vehicle (UAV) and subsequent user association remains a complex
problem due to unknown pattern of interference caused by
UAV movements, user mobility and quality of service (QoS)
constraints. Conventional deterministic approaches are known
to under-perform in such non-stationary scenarios. In this
manuscript, we proposed a decentralized multi-agent reinforce-
ment learning (MARL) framework to jointly address the UAV
positioning and user association problem for Wi-Fi enabled UAV
network. The proposed MARL framework considers UAV colli-
sion, frequency of handover and number of frames successfully
transmitted by UAVs. Based on the framework, three exist-
ing MARL approaches namely Value Decomposition Networks
(VDN), QMIX and DeepNashQ have been evaluated through
simulation. The MARL approaches have been compared with
two existing deterministic algorithms as well. Results show the
superiority of MARL algorithms over the deterministic coun-
terparts, towards maximizing system throughput and fairness.
Additionally, QMIX has been found to be the best MARL
algorithm in this context.

Index Terms—Multi-Agent Reinforcement Learning, UAV po-
sitioning, Wireless Fidelity, Throughput optimization.

I. INTRODUCTION

Despite significant advances in wireless communication,
large portions of the world’s rural, remote, and sparsely
populated regions continue to suffer from inadequate internet
connectivity, because traditional cellular infrastructure deploy-
ment in those areas is often economically infeasible [1].
This motivates the use of Unmanned Aerial Vehicles (UAVs)
as a mobile, cost-effective communication platform [2]. By
equipping UAVs with IEEE 802.11ax Wireless Fidelity (Wi-
Fi) modules, the aerial platforms can dynamically provide
on-demand coverage without the logistical burdens of static
infrastructure [3]. In such a Wi-Fi enabled UAV network,
optimal positioning of UAVs and subsequent association with
user equipments (UEs) are extremely important, in order to
meet the high data rate requirements of enhanced mobile
broadband (eMBB) applications. Most of the existing studies
[4]–[7] utilize UAV as relay to enhance coverage in cellular
network; and the possibility of exploiting UAV as a mobile
Wi-Fi platform is often overlooked.

*All of the authors are equally contributing. Souvik Deb is currently
associated with the School of Computer Science, University of Petroleum
and Energy Studies, Dehradun, India.

Optimizing UAV positioning and subsequent UE association
remain a complex problem due to UE mobility and stringent
data rate requirements of eMBB services. Here, the goal is to
maximize the system throughput. It may be noted that UAV
positioning is a recurrent and continuous control problem.
To illustrate, let us consider the scenario depicted in Fig.
1. Initially, UEs U1, U2, U3, U4, U5, U6, U7, U9 and
U11 are residing within the coverage of UAV 1. At time t1,
four UEs (U1, U11, U9 and U3) move out of coverage of
UAV 1. Subsequently, at time t2, the UAV 1 repositions to
regain coverage over those UEs. However, this shift leaves U2
uncovered. At this point, two UAVs (UAV 2 and UAV 3) are
available to cover the stranded UEs: one with high coverage
(UAV 3) and another with low coverage (UAV 2). It may be
noted that the movement of the Wi-Fi equipped UAVs may
cause interference to other UAV signals. In case UAV 3 moves
in to cover U2, the coverage regions of UAV 1 and UAV 3
would overlap, resulting in interference to U1. Therefore, at
time t3, UAV 3 is moved to cover U2. In such a way, UAV
positions should be updated using prior positional information
of the UEs with the aim to mitigate inter-UAV interference
and boost system throughput.

Existing geometric approaches for UAV positioning such
as hexagonal tiling or grid-based layouts [6], [7] are static,
and often assume full knowledge of user positions. Such
approaches fail to adapt with mobility and interference. In [6],
minimum number of stop points to completely cover the region
of interest is computed assuming that full knowledge of the
network scenario is available. In [7], neural network has been
employed to find optimal UAV-UE association. Therein, the
authors assume perfect user position and terrain knowledge.
Key deficiencies of these approaches [6], [7] are the inabilities
to handle UE mobility and inter-UAV interference. Such ap-
proach quickly become suboptimal in non-stationary scenarios.
To overcome these limitations, data-driven and learning-based
approaches such as [8] and [9] have gained traction. In partic-
ular, Reinforcement Learning (RL) has shown effectiveness
in dynamically controlling UAV trajectories and UE asso-
ciation without prior knowledge of UE positions. However,
most of the RL approaches adopt a single-agent perspective,
which do not scale to UAV swarms where multiple UAVs
must coordinate among themselves in a decentralized and
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(a) Time t1: Before user movement. (b) Time t2: After user movement. (c) Time t3: UAV positioned.

Fig. 1: UAV positioning at different time steps to maintain user coverage

partially observable environment [10]. This motivates the use
of Multi-Agent Reinforcement Learning (MARL) algorithms,
which enable decentralized agents to learn policies through
interactions among themselves and with the environment [10]–
[12]. However, these independent MARL methods suffer from
nonstationary, where policy updates by one agent destabi-
lize learning for others. To address this, value factorization
methods such as Value Decomposition Networks (VDN) [13]
and QMIX [14] were proposed. The VDN decompose the
global Q-function into a sum of individual Q-values for each
agent, thus supporting centralized training and decentralized
execution (CTDE). However, its linearity constraint limits its
expressiveness. On the other hand, QMIX extends the VDN
with a non-linear, monotonic mixing network that preserves
decentralization, while capturing more complex inter-agent
dependencies. In wireless environments, UAVs often operate
in a shared spectrum and may experience overlapping coverage
or interference, leading to situations where the individual
objectives are not fully fulfilled. To handle such partially
competitive dynamics, game-theoretic MARL approaches such
as Deep Nash Q-learning (DeepNashQ) are also particularly
relevant [15]. This approach compute equilibrium strategies
instead of greedy ones, enabling more principled coordination.
Despite the promise of MARL, prior research rarely use
MARL to address the non-stationarity in UAV positioning and
subsequent UE association problem.

In this work, our objective is to leverage MARL framework
to deal with UAV positioning and subsequent UE association
in IEEE 802.11ax enabled UAV networks. The proposed
framework accounts signal-to-interference plus noise ratio
(SINR) feedback from UEs, eliminating the need for precise
user location. Based on the framework, we evaluate two value-
based approaches (i.e., VDN and QMIX) and one game-
theoretic namely DeepNashQ. Our contributions are summa-
rized below:

• We first formulate the UAV positioning and user asso-
ciation task as a constrained non-separable non-linear
integer programming problem. Therein, the objective is
to maximize the system throughput. Since, the afore-

said optimization problem is NP-complete [16], solving
the problem at each time step is time consuming and
impractical. Hence, to deal with the non-stationarity of
the problem, we reformulate it using MARL framework,
enabling decentralized and adaptive decision-making.

• We explore value-based MARL approaches, including
VDN and QMIX, which allow us to decompose the joint
action-value function across agents while maintaining
cooperative behavior. In addition to value decomposition
methods, we also evaluate DeepNashQ, a decentralized
MARL algorithm designed for general-sum stochastic
games.

• Through extensive simulations, we evaluate the perfor-
mance of DeepNashQ, VDN, and QMIX in terms of
system throughput, lower bound on UE throughput (LBT)
and goodness. Here, system throughput is defined as the
mean amount of data transmitted to all UEs per unit
time. The LBT metric indicates fairness. The goodness
metric is defined as the fraction of UEs achieving their
requested data rate. Results show that learning-based
strategies outperform the deterministic baselines [6], [7].
We further conclude that QMIX performs the best among
the other considered MARL approaches.

In the next section, we describe the considered system model.

II. SYSTEM MODEL

We consider N UEs, indexed by j ∈ N = {1, 2, . . . , N},
are distributed within a discrete spatial domain defined as a
100× 100 square meters area. This region is partitioned into
uniform two-dimensional grids, by discretizing the rows and
columns into sides of 1 meter. A fleet of M UAVs provide
wireless connectivity to the UEs via IEEE 802.11ax-based Wi-
Fi modules mounted on the UAVs. These modules support high
throughput through 256-QAM modulation, multiple input and
multiple output (MIMO) antennas, and channel bonding up
to 160 MHz in the 5 GHz band [17]. These Wi-Fi module
use Carrier Sense Multiple Access with collision avoidance
(CSMA/CA) for medium access control. We assume that
these Wi-Fi modules are tethered to ground power sources,
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thus eliminating energy constraints. The UAVs hover at fixed
altitudes of either 10 or 15 meters, and are repositioned
periodically to optimize network performance. Each UAV
is positioned at the corner points of the 1 square meter
grids. The UAV moves by 1 meter, in any one of the four
directions, i.e., north, south, east and west. Time is divided
into discrete slots of duration δ. At time slot t, UAV i has
3D position coordinates ui(t) = (xi(t), yi(t), zi(t)). Here
x(t), y(t) ∈ {0, 1, . . . , 99}, and z(t) ∈ {10, 15}.

A. Channel Model

Link quality is modeled using SINR, which accounts for
both distance-based path loss and inter-UAV interference
caused by CSMA/CA mechanism [18]. Now, the received
power at UE j from UAV i is computed as:

Pij(t) =
Pt · |hij |2

[dij(t)]α
, (1)

where Pt is the fixed transmit power of each UAV, |hij |
is the Rayleigh fading gain, α is the path loss expo-
nent and dij(t) is the Euclidean distance between UAV
i and UE j. Here dij(t) is computed as: dij(t) =√
(xi(t)− xu

j (t))
2 + (yi(t)− yuj (t))

2 + z2i (t). Accordingly,
the SINR experienced by UE j from UAV i at time t is
computed as:

γij(t) =
Pij

σ2 +
M∑
k ̸=i

Pkj

. (2)

To model τi(t), the downlink throughput (in frames per
second) from UAV i in time slot t, we adopt the Bianchi’s
framework which is widely used in this context [19], [20].
Using this framework, Pij(t), the probability of failure in
frame transmission is computed as [20]:

Pij(t) = 1−
M∏
k ̸=i

1

1 + γreqeXi−Xk [
dkj(t)
dij(t)

]α
. (3)

where γreq is the minimum required SINR threshold to suc-
cessfully decode a frame at the UE, Xi is a Gaussian r.v. with
zero mean and variance β2 representing log-normal shadow-
ing. Accordingly, Pi(t), the probability that transmission by
all the UEs are unsuccessful under the coverage of UAV i is
computed as:

Pi(t) =
∏
j∈ℵi

Pij(t). (4)

Here, ℵi = {j ∈ N| j is covered by UAV i}. We use the
M/M/1/K queue to model the buffer of the Wi-Fi access points
mounted on the UAVs. The buffer can hold at most K frames.
Subsequently, PBi(t), the probability that the buffer at UAV i
is full in time slot t, is computed as follows [19]:

PBi(t) =

(
λi(t)
µMAC,i

)K

∑K
j=0

(
λi(t)
µMAC,i

)j
. (5)

Here, λi(t) is the arrival rate of frame at the buffer of UAV
i at time slot t, and µMAC,i is the expected time to process a
frame in the MAC layer. Based on equations (4) and (5), τi(t)
is computed as follows:

τi(t)=
∑
j∈Ii

τij=
∑
j∈Ii

λij(t) (1− PBi(t))
(
1− Pν+1

i (t)
)
. (6)

Here, τij is the downlink throughput from UAV i to UE j,
λij(t) is the independent arrival rate of frames intended for
UE j at the buffer of UAV i, Ii is the set of UEs being
served by UAV i and ν is the maximum allowed number
of retransmissions. Based on this system model, in the next
section, we formulate the UAV positioning and UE association
problem using MARL framework.

III. PROBLEM FORMULATION

In this section, we formulate the UAV positioning and
subsequent UE association problem as a non-linear non-
separable integer programming problem. Here the objective
is to jointly optimize UAV positions and UE associations,
aiming to maximize the system throughput while satisfying
data rate requirements. In this formulation, xi(t), yi(t), zi(t),
cij(t) and Iij(t) are decision variables, where i ∈ {1, . . . ,M}
and j ∈ {1, . . . , N}. Here, (xi(t), yi(t)) is the horizontal
coordinate of UAV i, whereas zi(t) ∈ {10, 15} denotes the
altitude of UAV i. The variable cij(t) = 1 if UE j is served
by UAV i at time slot t, and 0 otherwise. The variable Iij(t)
represents whether UE j switches from UAV i to any other
UAV between consecutive time slots, and is defined in terms
of cij(t) as follows:

Iij(t) =

{
1, if cij(t) ̸= cij(t− 1),

0, otherwise.
∀i, j, t, (7)

The objective is to maximize the system throughput, which
can be expressed mathematically as follows:

max
M∑
i=1

N∑
j=1

cij(t)λij(t)× (1− PBi(t))×
(
1− Pν+1

i (t)
)
,

(8)
It may be noted that PBi(t) and Pν+1

i (t) are functions of
dij(t), which in turn is a function of xi(t), yi(t) and zi(t).
Now, the objective function (8) need to be maximized sub-
jected to the following constraints:

M∑
i=1

cij(t) = 1, ∀j (9)

τij(t) ≥ rmin, ∀j (10)
t∑

t′=t−w

Iij(t
′) ≤ x, ∀i, j (11)

Here, constraint (9) ensures that each UE must be connected
to exactly one UAV in every time slot. The constraint (10)
ensures that each UE must receive the requested data rate. Here
τij = cij(t)λij(t) × (1− PBi(t)) ×

(
1− Pν+1

i (t)
)
. Finally,

constraint (11) ensure that the number of handovers for each
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UE is restricted within a sliding window of length w. The
parameter w controls the memory depth for recent handovers.
A smaller w allows frequent handovers, whereas a larger w
may restrict necessary handovers. The optimal value of w
changes over time depending on varying channel conditions
and UE positions. It is to be noted that, for a fixed w itself,
the resulting optimization problem is a non-separable and a
non linear integer programming problem, which is known to
be NP-complete [16]. Furthermore, the optimization problem
has to be solved at each time step to compute the optimal UAV
positions which is computationally intensive, and impractical
from implementation perspective. Given such a prevailing
characteristics of the problem, it is worthy to develop a
sequential decision making solution that can adaptively change
the UAV positions based on adequate memory depth. In such
a context, MARL can be employed which enables UAVs
to cooperatively and adaptively adjust their positions over
time, aiming to maximize the system throughput. The MARL
framework is well-suited for decentralized decision-making
with the objective to maximize the cumulative reward. In
the subsequent section, we reformulate the UAV positioning
problem using MARL framework.

A. MARL framework

Each UAV is equipped with an RL agent, operating in a
3D spatial grid. The movement of each UAV is driven by its
current state and the action it takes. At each discrete time
step, agent at UAV i (say agent i) observes the state of the
environment and choose an action Ai. Based on the chosen
action, agent i receives an individual reward ri. The objective
of all the agents in a cooperative MARL system is to learn
the optimal policy such that the cumulative reward (

∑
i

ri)

for all agents is maximized. In this work, we translate the
optimization problem presented in Section III to a MARL
framework which aims to maximize the system throughput.

State space

The state space U(t) at time t is the concatenation of all
UAV positions at time t− 1 i.e UAV positions at the previous
time step:

U(t) = ⟨u1(t− 1), u2(t− 1), . . . , uN (t− 1)⟩.

The system is partially observable (to each UAV), limited to
itself and its neighboring UAVs.

Action Space

Each UAV is only allowed to observe and coordinate with
its immediate neighbors in the 3D spatial grid. UAV j is
considered to be a neighbor of UAV i, if it is located within
two grid blocks in any direction.

The action space for agent i consists of 2-tuples of the
form Ai = (ai(t), w). Here, ai(t) represents the movement
OF UAV i, i.e., North, South, East, West and Stay
(i.e., no change); whereas w ∈ {1, · · · ,W} represents the

sliding window length. Each action corresponds to a position
alteration, which is determined by ai(t) as follows:

ui(t) = ui(t− 1) + ai(t), (12)

where ai(t) is (0, 0, 0) for action Stay, (0,+1, 0) for action
North, (0,−1, 0) for action South, (+1, 0, 0) for action
East and (−1, 0, 0) for action West. After computing the
next state, each UE j is associated with the UAV i such that

i = max
k

γkj(t)− γreq
ζkj(t)

, where ζkj(t) is the duration between

the current time slot t and the time slot when UAV k was
assigned to UE j for the last time. Here, ζij(t) is initialised
to δ which allows the UEs to associate with UAVs based on
SINR in the initial phase.

Reward structure

The reward function accounts UAV collision, frequency of
handover and throughput. The individual reward of agent i at
time t is defined as:

ri(t) =

1

wM

w−1∑
k=0

N∑
j=1

cij(t− k)Φij(t− k)

1 +
1

w

w−1∑
k=0

Ψi(t− k)

, (13)

when UAV i does not face any physical collision. Otherwise,
ri(t) = 0. Here, Φij(t) is defined as the ratio of successfully
transmitted frames to the total number of attempted transmis-
sions and Ψi(t) is the number of UE switches experienced
by UAV i. We set cij(t) = Φij(t) = Ψi(t) = 0 when t
is negative. Accordingly, the global reward R(t) at time t is
computed as the sum of all individual UAV rewards as follows:

R(t) =
M∑
i=1

ri(t). (14)

It may be noted that the reward function encourages the agents
to maximize their throughput via favorable positioning while
avoiding physical collision. Moreover, it drives the agent to
learn the optimal value of w for which average number of
frame transmissions is maximized while avoiding unnecessary
handovers.

IV. RESULTS AND DISCUSSIONS

In this section, we evaluate the performances of three
MARL algorithms namely VDN, QMIX and DeepNashQ-
based on the MARL framework proposed in Section III-A.
In VDN, the global Q-function is additively decomposed into
per-agent Q-values, allowing each agent to learn independently
from local rewards. In QMIX, a monotonic mixing network is
trained to combine individual Q-values into a global Q-value,
thus supporting CTDE mechanism. Accordingly, all the UAVs
have access to global state and shared rewards. Each UAV
stores its experience in a replay buffer and updates its Q-
network via backpropagation. The agents rely solely on their
local observations and learned policies, ensuring scalability
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and robustness. In DeepNashQ, each agent computes equi-
librium strategies over joint actions using a local Q-network,
enabling coordination via game-theoretic reasoning.

The aforementioned MARL approaches have been com-
pared with two deterministic baselines [6], [21]. In [6] (say
Deterministic I), fixed UAV placement has been considered,
whereas UE association has been done based on SINR. In
[21] (say Deterministic II), the UAV positioning problem has
been considered as a geometric problem aiming to maximize
the coverage using minimum number of circles. Both Deter-
ministic I and Deterministic II approaches are snapshot-based
which do not account UE mobility, varying channel condition
due to fading and inter-UAV interference. We consider system
throughput, LBT and goodness as performance evaluation
metrics. In the next subsection, we describe the simulation
set-up.

A. Simulation setup

TABLE I: MARL Parameters

Parameter Value Parameter Value
Learning rate 0.001 Discount factor 0.99

Exploration rate 0.1 Replay buffer size 10,000

Batch size 64 Update frequency 100 steps
Collision penalty −100.0 Boundary violation −50.0

Altitude violation −50.0 Handover penalty 2.0

We have developed a simulator using Python version 3.81.
We consider a 3D grid environment of size 10× 10× 5 cubic
meters, with UAVs constrained to maintain altitudes between
10 and 15 meters [6]. The UEs are moving according to a
random way-point mobility model with UE velocity fixed to
1 m/s. UEs are distributed according to homogeneous Poisson
Point Process (PPP), where the parameter is the number of
UEs per square meter. The duration of a time slot (δ) has
been set to 25.39ms, which is the channel coherence time
[22]. We set W = 5. The UAV transmit power is set to
1.0 Watt, while the noise power is set to 10−6 Watts. The
frame arrival rate is set at 4000 frames/second. The frame
size is 1500 bytes [23]. We assume Raleigh fading channels
with unit mean where the path loss exponent is set to 2.5.
The total simulation time spans 10000 training episodes, with
each episode running until termination conditions are met. The
considered termination conditions are: collision between UAVs
and boundary violations by the UAVs. The results have been
generated by averaging over 10000 independent training runs,
ensuring statistical significance of the performance metrics.
The system employs a bandwidth of 1 Mbps, where the peak
data rate requirement by a UE is 10 Mbps. The MARL specific
parameters are depicted in Table I. The MOE measurements
with 95% confidence interval show the accuracy of the re-
ported results.

B. Performance evaluation
Fig. 2 presents the moving average of rewards and through-

put (per episode) for each model, across 1000 training

1Code available at: github.com/Dhruv27Mishra/UAV-Repositioning

Fig. 2: Reward per episode across all models

episodes. It is observed that QMIX converges faster and
achieves the highest overall reward, showing more effective
agent cooperation. DeepNashQ and VDN demonstrate perfor-
mance with slight variations in stability, while DeepNashQ
remains consistently lower due to its lack of learning adapt-
ability. The reward curves further state that RL agents improve
over time through exploration.

Fig. 3a illustrates the variation in system throughput across
different user densities for all models. The RL-based models
(QMIX, DeepNashQ, and VDN) consistently outperform the
deterministic models, especially as user density increases.
Among them, QMIX achieves the highest system throughput,
showing better resource coordination under high user density.
In contrast, both deterministic models descend early, showing
limited adaptability to growing user demand. This highlights
the advantage of learning-based policies in handling complex
association and repositioning situations.

Fig. 3b illustrates the LBT across varying UE densities
for all models. As the number of UEs increases, all models
experience a decrease in LBT due to increased resource
usage. Among learning-based approaches, QMIX consistently
achieves the highest LBT, which is closely followed by Deep
NashQ and VDN, indicating the effectiveness of the coordi-
nated multi-agent strategies in ensuring fairness. In contrast,
the Deterministic models exhibit significantly lower LBT, with
the Deterministic II model falling below 0.6 Mbps as UE
density increases beyond 2. This highlights the advantage of
learning-based models in optimizing worst-case user perfor-
mance. Fig. 3c measures the impact of minimum throughput
requirement on goodness. We observe that QMIX consistently
outperforms other MARL approaches which is consistent with
Fig. 3b. The VDN outperforms NashQ in overall goodness
despite showing lower LBT. This stems from NashQ’s higher
computational complexity with increasing number of UAVs.
Despite showing lower LBT, the VDN approach enables a
higher fraction of UEs to achieve the required minimum
throughput as compared to NashQ. In Fig. 4, we evaluate
goodness as a function of minimum required throughput by
each UE and the UE densities. The evaluation has been
done for QMIX only, because QMIX performs best among
other approaches. Here, goodness is defined as the fraction
of UEs achieving throughput above the predefined threshold.
The result shows that more than 90% of the UEs have
throughput above 10 Mbps, underscoring the robustness of
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(a) System throughput vs. UE density
(MOE < 9× 10−3)

(b) LBT vs. UE density
(MOE < 9.8× 10−3)

(c) Goodness vs. threshold
(MOE < 9.3× 10−3)

Fig. 3: (a) Average throughput (b) LBT and (c) Goodness vs. threshold.

Fig. 4: Goodness as a function of UE density and threshold
(MOE < 9.3× 10−3)

QMIX. Moreover it is observed that the goodness value is
consistent across all examined UE densities.

V. CONCLUSION

In this manuscript, we propose a MARL-based framework
for UAV positioning and UE association in Wi-Fi enabled UAV
network. Our approach considers UAV collision, frequency
of handover and throughput; and demonstrates significant
improvements as compared to deterministic baselines. Among
the evaluated methods, QMIX showed the best performance
in terms of throughput and fairness. In future work, we aim to
extend our MARL framework to jointly optimize throughput
and latency under the same network scenario.
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