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Abstract—

In a society facing rapid population decline and aging, the use
of autonomous robots is being considered, but there remains
a risk of unpredictable accidents such as contact accidents
with pedestrians. Especially, in indoor corridor intersections, the
robots cannot easily perceive pedestrians and other robots passing
through, which can result in contact accidents with them. To
address this problem, systems are needed that identify conditions
of blind spots and provide early warnings of potential acci-
dents. Existing studies propose installing a LiDAR and camera
near outdoor intersections for preventing accidents related to
vehicles. However, since these sensors are fixed and blind spots
remain, positional relationships between pedestrians and vehicles
cannot always be observed. Therefore, this study proposes a
new observation system in which multiple three-dimensional
LiDARSs capable of measuring distance, position, and shape are
mounted on facilities, pedestrians, or robots. Additionally, the
system coordinates with autonomous mobile robots equipped with
similar sensors to enable detailed observation of the internal
state of intersections. By sharing and integrating the observation
results among the LiDARs in real time, the system captures
detailed conditions of the intersections without blind spots. In
the proposed system, the coordinate systems of point-cloud
data observed from all LiDARs are unified based on relative
positions estimated from IMU data, then merged into a unified
map. And then, the clusters of points corresponding to moving
objects such as humans and other robots are extracted from
the constructed point-cloud map using clustering algorithms.
Finally, machine learning models are applied to the cluster of
moving objects to identify type of pedestrians such as carrying
luggage, providing information for preventing the accidents to
surrounding pedestrians.

Index Terms—Digital Twin, IoT, 3D LiDAR, 3D point cloud
analysis, human detection, Robot

I. INTRODUCTION

In a society experiencing rapid population aging and declin-
ing birth rates, the use of robots is being considered, but there
exists a risk of collisions with pedestrians. Particularly at in-
tersections within building corridors, not only predestrians but
also robots cannot perceive the state of pathways intersecting
perpendicularly to their moving directions, potentially leading
to contact accidents with people or other robots.

Regarding the contact accidents, the survey by an insurance
company in Japan reveals that the ratio of accidents occurred
when the vehicles turning right at intersections is 39% of the
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total [1]. The primary cause of the high rate of the contact
accidents during right turns is the existence of the blind spots
due to surrounding obstacles, preventing drivers from detecting
pedestrians on the roadside in advance. Similar risks exist at
indoor intersections. To prevent this, systems are needed at
intersections that can observe situations in blind spots and
provide early warnings of potential accidents.

Existing researches propose systems that install LiDAR (a
type of laser radar capable of acquiring distance, position, and
shape data of objects) and cameras at outdoor intersections to
monitor the movement of pedestrians and vehicles near the
intersection [2]. However, since LiDAR and cameras are in-
stalled in fixed positions, it is difficult to observe the conditions
blind spots within the intersection, potentially preventing the
provision of information regarding the relative positions of
pedestrians and vehicles.

Therefore, in the proposed system, the coordinate systems
of point-cloud data observed from all LiDARs are unified
based on relative positions estimated from IMU data, then
merged into a unified map. And then, the clusters of points
corresponding to moving objects such as humans and other
robots are extracted from the constructed point-cloud map
using clustering algorithms. Finally, machine learning models
are applied to the cluster of moving objects to identify type of
pedestrians such as carrying luggage, providing information
for preventing the accidents to surrounding pedestrians.

II. RELATED WORKS AND OBJECTIVES OF OUR STUDY

A. Research on Human Detection Using LiDAR and Infrared
Cameras

Saito et al.’s study proposes a system that 3D LiDAR and in-
frared cameras are installed near traffic signals at intersections
to detect moving objects such as people and vehicles, as well
as obstacles [2]. However, the 3D LiDAR used in this system
has a narrow field of view of 30 degrees, making it difficult
to capture spatial information over a wide area. Furthermore,
since the 3D LiDAR and infrared camera are installed in fixed
positions such as on the roadside, if large trucks or similar
vehicles are present at the intersection, the observable range
becomes limited, creating difficulties in observing conditions
in blind spots.
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B. Research on Human Detection Using LiDAR and Cameras

Yingwei Li et al. propose a method to improve object
detection accuracy using LiDAR and RGB cameras [3].
Specifically, the proposed method enhances object detection
accuracy through machine learning by adding color informa-
tion from the RGB camera to the point cloud data collected
by the LiDAR. However, this approach faces the challenge
of unstable object detection in areas with fluctuating ambient
brightness.

C. Research on a Three-Dimensional Behavior Observation
Network System Utilizing Multiple LiDARs

In our previous study, Mito et al. propose a system that
observes the positions and movement trajectories of people
across a wide area of indoor environments by installing mul-
tiple LiIDARSs [4]. Specifically, point cloud data from multiple
LiDARs is integrated to form a single point cloud map, from
which points corresponding to dynamic objects (people) are
extracted. Furthermore, by observing the centroid coordinates
of the cluster of points corresponding to each person, the
system tracks their movement trajectories. However, since
multiple LiDARs are installed at elevated positions, numerous
blind spots (such as shadows cast by obstacles) exist in rooms
with many obstacles (desks, bookshelves, etc.). Consequently,
it is difficult to acquire point cloud data corresponding to
people in all locations within the room.

D. Objectives of Our Research

Existing research faces the problem that observation devices
such as LiDAR are installed in fixed positions such as on
the roadside, resulting in existence of blind spots where ob-
servation results cannot be obtained. Furthermore, processing
the large amounts of point cloud data generated by multiple
LiDARs results in high computational loads and low real-time
performance.

Therefore, this study proposes a new observation system
that integrates point cloud data acquired in real time from
multiple LiDARs fixed within a facility and mounted on
autonomous robots moving within the facility. The proposed
system enables real-time understanding of the state around
indoor intersections and provides information to avoid contact
accidents between pedestrians and robots. Specifically, point
cloud data from multiple 3D LiDARs is integrated based
on relative positions estimated via IMU and point cloud
registration algorithms to construct a unified point cloud
map of the observation environment. The constructed point
cloud map data is then analyzed to extract clusters of points
corresponding to dynamic objects like people and robots.
The extracted clusters are then input into a machine learning
model to identify which category they correspond to, such as
pedestrians. Furthermore, based on the identification results,
the system estimates the risk level of the accidents occurring
near the intersection, and notifies nearby pedestrians.
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Fig. 1: Overview of the proposed system.

TABLE I: Specifications of 3D LiDAR (LIVOX AVIA)

Specification Value
Power Supply Voltage 10-15V

Weight 498¢g

Maximum Range 450m

Field of View
Point Cloud Data Rate
Range Accuracy

240,000 points/sec
2cm

70.4° (Horizontal) X 77.2° (Vertical)

I1I. PROPOSED INDOOR INTERSECTION
OBSERVATION SYSTEM

A. Overview of the Proposed System

Figure 1 shows the overall architecture of the system
proposed in this study. Fixed sensor nodes and mobile sensor
nodes acquire point cloud data from their respective mounted
LiDARs. Each edge node performs preprocessing such as
downsampling on the point cloud data and transmits the pro-
cessed data to the analysis edge node. The analysis edge node
constructs the received point cloud data into a unified point
cloud map and performs clustering processing and pedestrian
type identification from the point cloud using machine learning
models.

B. Configuration of Fixed Sensor Nodes

The fixed sensor node consists of a single board computer
(Nvidia Jetson Orin Nano) and a 3D LiDAR (Livox Avia). The
sensor node is installed on roadside units at intersections to
capture point cloud data of specific areas (such as corridors).
As the 3D LiDAR, the Livox Avia is selected because, it can
capture high-density point cloud data within its observation
range, as shown in Table L.

C. Configuration of Mobile Sensor Nodes

The mobile sensor node consists of a single board computer
(Jetson Orin Nano) and a 3D LiDAR (Livox MID-360). The
sensor node is installed on robots moving near intersections.
As shown in Table II, the MID-360 is suitable for acquiring
surrounding point cloud data to create point cloud maps and
for performing self-localization using LIO (LiDAR-Inertial
Odometry) algorithm because the LiDAR enables omnidirec-
tional observation.

326



TABLE II: Specifications of 3D LiDAR (LIVOX MID-360)

Specification Value

Power Supply Voltage 9-27V
Weight 265¢g
Maximum Range 40m

360° X -7°~52°
200,000 points/sec
2cm

Field of View
Point Cloud Data Rate
Range Accuracy

D. Configuration of Edge Nodes for Analysis

As the edge node for analysis, a Jetson AGX Orin is
selected for the high-performance point-cloud analysis and
processing of machine learning. The edge node can handle
high-performance processing such as analyzing large-scale
data like point cloud data and executing machine learning
models. For example, this includes point cloud alignment
processing and background subtraction processing.

E. Workflow for Analyzing Point Cloud Data

Fixed sensor nodes and mobile sensor nodes acquire point
cloud data from their LiDARs at the same cycle (e.g., 3Hz,
5Hz). The sensor nodes also analyze the point cloud data
acquired from the LiDAR to construct a point cloud map of
the surrounding area. Additionally, the mobile sensor node
simultaneously performs self-localization within that point
cloud map. Subsequently, each sensor node transmits the
generated point cloud map to the edge node of analysis. The
edge node of analysis integrates the received point cloud maps
to construct an overall point cloud around the intersection and
performs processing such as extracting points corresponding
with each moving objects on the point cloud map. Details of
the processing are described in the Section IV.

IV. POINT CLOUD DATA ANALYSIS METHODS

A. Method for Generating Point Cloud Maps Around Mobile
Sensor Nodes

This section describes a method for integrating point cloud
data acquired by mobile sensor nodes to generate a point
cloud map of their surroundings. In this study, the mobile
sensor nodes constantly estimate their relative position from
the starting point and use an algorithm called Fast-LIO2 to
integrate point cloud data based on the estimated position
[5]. This algorithm continuously estimates the relative position
using three-dimensional acceleration and angular velocity data
acquired at 3-millisecond intervals from the IMU embedded
on the LiDAR. Furthermore, the continuously obtained point
cloud datasets are aligned based on this relative position
and incorporates a mechanism to gradually construct a point
cloud map by correcting misalignments between consecutively
acquired point cloud data sets using EKF (Extended Kalman
Filter) [6].

B. Method for Combining Point Cloud Data Between Sensor
Nodes

This section describes the method for integrating point cloud
data obtained from fixed-installation sensor nodes and mobile
sensor nodes. The point cloud map composed by the sensor
nodes is merged with a global point cloud map constructed by
the edge node. Here, the point cloud map obtained from each
sensor node is designated as the source point cloud, and the
pre-constructed global point cloud map is designated as the
target point cloud.

In the proposed method, the coordinate system of the source
point cloud is transformed into that of the target point cloud.
First, for both the source point cloud and the target point cloud,
the FPFH (Fast Point Feature Histograms) feature vector,
which represents the spatial relationships between points, is
calculated. The FPFH is a 33-dimensional vector capturing the
spatial relationships between each point in the point cloud and
its neighboring points. This feature vector is used to evaluate
the similarity of the 3D structure between point clouds [7].
Based on these FPFH features, a rotation matrix is estimated
using the RANSAC (Random Sample Consensus) algorithm
to align the coordinate system of the source point cloud with
that of the target point cloud [8]. The RANSAC algorithm
is designed to derive a rotation matrix that fits representative
shapes (e.g., planes) across different datasets. As shown in Fig.
2, the algorithm randomly selects pairs of points from both
point clouds and calculates a transformation matrix (rotation
+ translation) so that bot point-cloud datasets overlap as much
as possible. Next, this transformation is applied to all points
in the source point cloud, and the number of points that end
up in close proximity (the number of inliers) is evaluated.
By repeatedly performing the process the algorithm becomes
less susceptible to outliers and noise, enabling it to achieves
a roughly correct alignment by identifying a transformation
matrix so as to maximize the number of inliers.

Subsequently, precise alignment is performed using the ICP
(Iterative Closest Point) algorithm. This algorithm rotates the
coordinate systems to match the closest points between the
source and target point clouds by minimizing the distance
between the a small number of points randomly extracted from
both point-cloud dataset as shown in Fig. 4. Through these
processes, the rotation matrix is obtained for each source point
cloud. After applying the rotation matrix to each source point
cloud, they are integrated to generate a unified point cloud
map on the global coordinate system of the target point cloud.

C. Method for Extracting Clusters Corresponding to Pedes-
trians

This section describes a method for extracting cluster of
point corresponding to pedestrians from point cloud data. First,
a point cloud map generated beforehand when no pedestrians
are present is treated as the background point cloud. Next, for
a newly generated point cloud map, background difference
processing is applied based on the background point cloud
to extract points corresponding to moving objects, including
pedestrians and robots. The background subtraction processing
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Fig. 3: Overview of Point Cloud Data Registration Using the
ICP Algorithm

is a technique that extracts points present only in the newly
generated point cloud by taking the difference of the nearest
points between the background and the newly generated point
cloud maps.

Subsequently, the DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) algorithm is applied to the
points corresponding to the moving objects to build clusters
based on point density [9]. As shown in Fig. 4, a core point is
randomly selected from the point cloud. If a number of points
greater than the threashold (min_points) are contained within
a distance eps from the core point, the set of points are treated
as a same cluster. Finally, the maximum value along the Z-axis
(height) is calculated for the points within each cluster. If this
value exceeds a predefined threshold (100 cm), the cluster is
judged to correspond to a pedestrian.

D. Classification of Cluster Types Using Machine Learning
Model

The proposed system identifies the pedestrian type of clus-
ters extracted from point cloud maps by applying a machine
learning model to them. The model identifies the clusters into
three types (e.g., pedestrian, cargo carrier, pulling a suitcase)
in order to assess the potential for the contact accident at
intersections and the severity of such collisions. For example,
pedestrians with obstructed forward vision may collide due to
inattention.

@ : Core point
® : Reachable point
@®: Noise

min_points =2

Fig. 4: Overview of Point Cloud Clustering Using the DB-
SCAN Algorithm

First, the cluster of points is vertically divided into two
parts based on the average height along the Z-axis. For each
part of the cluster, sizes in the x, y, and z axis directions
and the number of points are calculated. Additionally, to
obtain geometric features of the cluster point cloud, the Global
Radius-based Surface Distribution (GRSD) is derived. The
GRSD is a feature vector that represents the shape of the
point cloud formed by each point as a feature. As shown in
Fig. 5, it calculates the the GRSD is calculated by identifying
geometric structures such as “plane”, “edge” and “cylinder” at
various locations within the point cloud cluster, generating 21-
dimensional features [11]. As a result, the proposed method
derives the number of point clouds, the height along the Z-
axis, and the geometric information derived from GRSD for
both the vertically split point cloud clusters and the entire point
cloud.

Furthermore, the proposed method adopts LightGBM as the
machine learning model for classifying pedestrian types [10].
The lightGBM is an open-source machine learning framework
based on Gradient Boosting Decision Trees (GBDT) developed
by Microsoft capable of efficiently handling large datasets and
high-dimensional features. By inputting the features derived
from each cluster to the model, the system identifies the type
of the cluster.

V. PERFORMANCE EVALUATION OF THE PROPOSED
METHOD

A. Experimental Objectives

It is necessary to verify whether the point cloud data
obtained from the mobile edge node and the pre-prepared point
cloud map are accurately aligned during the registration pro-
cess. Additionally, it is necessary to verify the accuracy rate of
the machine learning model in correctly identifying pedestrian
types from the point cloud data. Finally, it is necessary to
verify whether the system’s sequence of processing steps can
be executed in real time.

B. Performance Evaluation Settings

RMSE = )

328



© O|C \

H

: Plane portion of the
target point cloud
: Edge portions of the
target point cloud

Extraction of
part of a point
cloud

E—————)

The target
data

Aggregate the adjacency
relationships of
geometric shapes

Analysis Results

Fig. 5: Overview of Feature Extraction Using the GRSD
Algorithm

In this experiment, the point cloud map obtained from the
mobile sensor node is used as the source point cloud, and the
point cloud constructed beforehand using the MID-360 LiDAR
serves as the target point cloud. As explained in Section IV-A,
the point cloud map of the mobile sensor node is generated by
Fast-LIO2, from point cloud data observed over a 30-second
period. The experimental environment is prepared in a Rit-
sumeikan University building and is assuming as an intersec-
tion, as shown in Fig. 6. One fixed sensor node and one mobile
sensor node are deployed on the intersection. After performing
alignment using the method described in Section IV-A, such
as wall corners and floor heights are selected, as shown in Eq.
1, and multiple points are randomly acquired from these areas.
The alignment accuracy is evaluated by calculating the Root
Mean Squared Error (RMSE) between corresponding points.
In Eq. 1, y; is the point coordinate from the point cloud
map obtained by Fast-LIO2, and g; is the point coordinate
from the pre-acquired point cloud map. Furthermore, the
alignment success rate is evaluated by visually confirming
whether randomly selected corresponding points are correctly
aligned, assessing the percentage of successful completions
out of 20 alignment processes. Additionally, for evaluating
the accuracy of the machine learning model in identifying
pedestrian types, clusters corresponding to each class people
carrying items in front, and people pulling suitcases, extracted
from the point cloud map, are prepared. For training the
machine learning model, 240 datasets corresponding to each
type are utilized, and 60 datasets are utilized for performance
evaluation. An example of the prepared clusters is shown
in Fig. 7. As performance metrics of the proposed method,
the accuracy rate, which represents the percentage of subjects
correctly identified is used.

C. Evaluation of Point Cloud Map Alignment

This section presents the evaluation results for RMSE and
success rate in the point cloud registration method. As shown
in Tab. III, the root mean square error (RMSE) in the proposed

Mobile node
Fixed-installation
node
> w—

Point cloud data obtained
from mobile sensor
nodes

S— )

Fig. 6: Experimental Environment and Sensor Node Configu-
ration

TABLE III: Results of Point Cloud Map Alignment Accuracy

Point Cloud Data Type RMSE
With Point Cloud Map 5.48cm
Real-time Point Cloud without Map | 27.23cm

point cloud registration is 5.48 cm. On the other hand, this
table also presents the results when raw point-cloud data is
used without constructing the map, and the RMSE in that case
is 27.23 cm.

Furthermore, the alignment success rate was 80% when
using the proposed method, compared to 35% when using
the raw point cloud data. These results demonstrate that
constructing point cloud maps with three-dimensional struc-
tural characteristics facilitates the identification of key feature
points, leading to reduced alignment errors and improved
success rates.

D. Evaluation of pedestrian Identification Algorithms

This section evaluates the accuracy of human type iden-
tification using LightGBM for clusters of moving objects
extracted from point cloud maps. Figure 8 shows the accuracy
rate of pedestrian type identification in cases of acquisition
frequency of 3Hz and 5Hz. In all cases of the frequency,
the identification accuracy is close to 90%, indicating high-
precision inference capability. Future research will aim to

Pedestrian point cloud

Pedestrian bringing a box Pedestrian pulling a suitcase

Fig. 7: Example of point cloud data for pedestrians.

329



100.0

Bl Pedestrian
B Bringing a box

97.51
96% B Pulling a suitcase

94%

Identification Accuracy (%)

3Hz 5Hz
Point Cloud Acquisition Frequency (Hz)

Fig. 8: Evaluation of the accuracy of human type identification.

TABLE IV: Results of Processing Time for Each Operation

Processing Content Processing Time (s)
Point Cloud Map Construction 0.01
RANSAC 19.0
ICP 0.007
Voxelization 0.008
Background Subtraction 0.108
Cluster Extraction 0.015
Feature Extraction 0.03

Human Type Classification 0.00001

improve pedestrian type identification accuracy by collecting
more data and refining feature extraction methods from point
cloud data.

E. Processing Time Evaluation

This section evaluates the processing time required for
constructing point cloud maps using Fast-LIO2, the processing
time required for each operation on the point cloud maps, and
the processing time for cluster identification using LightGBM.
The Jetson AGX Orin, which constitutes the edge node, is used
for the evaluation.

The average processing time for each task is shown in Tab.
IV. This figure shows that the RANSAC process takes longer
time of about 19 seconds from others. However, this process
only needs to be performed during the initial alignment, and
the subsequent alignments only require the registration by ICP.
Excluding the initial RANSAC processing, the processing time
falls within the 300ms processing interval, ensuring real-time
capability.

VI. CONCLUSION

This study proposed a new observation system that detects
moving objects near intersections with blind spots and identi-
fies pedestrian types by integrating and analyzing point cloud
data acquired from multiple LiDARSs installed at indoor inter-
sections and on robots traversing those intersections. Further-
more, to demonstrate the effectiveness of the proposed system,

a proof-of-concept experiment was conducted in a simulated
indoor intersection space. As a results, it was confirmed
that the system can accurately construct point cloud maps,
enable identification of pedestrian types extracted from these
maps, and execute these processes in real time. In the future
study, we aim to further improve real-time performance of
the point-cloud analysis by proposing algorithms to optimize
RANSAC and ICP processing. Additionally, the system will
be enhanced to identify a wider variety of pedestrian types
and improve the identification accuracy. As a method, we will
install additional fixed-mount LiDAR units to determine how
much they improve pedestrian type identification.
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