Optimizing the Sky: Machine Learning-Based
Aerial Network Planning for UAM

Hyeon Woo Jeon InTaek Lee Duk Kyung Kim
Department of Electrical and 6G Development Team Department of Electrical and
Computer Engineering SK Telecom Computer Engineering
Inha University Republic of Korea Inha University
Republic of Korea intaek31.lee@sk.com Republic of Korea

hw3652@inha.edu kdk@inha.ac.kr

Abstract— Urban Air Mobility (UAM) demands a reliable
low-altitude communication fabric, yet planning aerial
networks is intrinsically combinatorial because base-station
(BS) activation and 3D beam orientation (swing/tilt/HPBW)
jointly determine coverage and interference. We formulate this
design as a high-dimensional optimization over real corridor
data and present a two-stage BO-MARL framework with
sequential multi-agent learning (MA-Sequential). First,
Bayesian optimization (BO) explores BS on/off states and
initializes beam angles to prune the search space. Then, a
sequential MARL phase treats each active beam as an agent
that updates its policy in turn, improving stability and sample
efficiency relative to parallel multi-agent updates. A coverage-
centric objective, augmented with distance and angular-overlap
penalties, encourages wide coverage while curbing redundant
infrastructure. Evaluations on an urban UAM corridor
corroborate that the proposed pipeline delivers effective and
efficient network plans, yielding robust convergence and
improved coverage under diverse path conditions.

Keywords— Urban Air Mobility (UAM), Aerial Network
Planning, Multi-Agent Reinforcement Learning (MARL),
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1. INTRODUCTION

Urban Air Mobility (UAM) has emerged as a promising
solution to mitigate severe traffic congestion in rapidly
expanding metropolitan areas. UAM refers to a short-distance
air transportation system that utilizes three-dimensional
airspace through low-noise, eco-friendly electric vertical
takeoff and landing (eVTOL) aircraft and supporting
infrastructure. Recently, the concept has expanded to
encompass Regional Air Mobility (RAM) under the broader
framework of Advanced Air Mobility (AAM).

In South Korea, UAM has been identified as a strategic
future industry, with active efforts underway through the K-
UAM policy roadmap. This includes regulatory revisions, the
establishment of a technical roadmap, and phased
demonstration projects[1]. In particular, the K-UAM Grand
Challenge (GC), a public-private joint demonstration project,
has been launched to define operational standards for UAM
services. The project spans from 2022 to 2024 and consists of
two phases. The first phase focuses on testing vehicle stability
and traffic management in open areas, while the second phase
extends to semi-urban and eventually urban environments
with higher population densities[2]. Unlike drones operating
below 150 meters or commercial aircraft flying above 18
kilometers, UAM vehicles are expected to operate at altitudes
ranging from 300 to 600 meters within designated air
corridors, which function as structured aerial routes similar to
roads for ground transportation. During the initial deployment
phase (starting in 2025), services will operate with a limited
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number of vertiports and fixed corridors. As the technology
matures, the growth phase (starting around 2030) will enable
operations between multiple vertiports using remotely piloted
aircraft, followed by the maturity phase (from 2035 onward)
featuring fully autonomous operations and automated traffic
control systems.

To support the deployment of UAM services, both national
and international efforts are being made to establish dedicated
aerial communication infrastructures. In South Korea,
government-led demonstration projects are underway to
evaluate technologies for aerial traffic management and
wireless communication in low-altitude urban air corridors,
involving collaboration between public institutions and
private industry to lay the groundwork through staged testing
and regulatory development. Concurrently, research and
development into eVTOL aircraft and network integration,
including terrestrial and satellite-based communication, is
progressing.

International studies highlight that aerial networks differ
significantly from terrestrial networks, particularly in radio
propagation and interference patterns. Because aerial links
have a high probability of line-of-sight (LoS), airborne UEs
experience stronger inter-cell interference than terrestrial
users, which can degrade performance for both aerial and
ground users. In addition, most terrestrial base stations are
down-tilted for ground coverage, so aerial UEs are often
served via antenna sidelobes; this can cause attachment to
more distant cells, frequent serving-cell changes, and reduced
effectiveness of conventional handover procedures [3]. In
addition, UAM services involve heterogeneous traffic
demands: command and control (C2) data typically require
low latency and moderate throughput, while application
services such as real-time video and autonomous flight
control demand much higher data rates and stricter delay
constraints. These latency and reliability targets imply ultra-
reliable and low-latency communication (URLLC)-like
capabilities; aerial networks therefore require prioritized low-
latency paths, resource reservation, and multi-connectivity to
meet diverse QoS demands [4].

To enable such operations, a dedicated aerial
communication infrastructure, referred to as the aerial
network, must be established. Signal propagation in aerial
links is generally favorable; however, this also increases the

risk of long-range interference from neighboring base stations.

To ensure reliable coverage within the three-dimensional
corridor structure, base station antennas must be uptilted, and
beam pattern designs must accommodate both vertical and
horizontal dimensions. Moreover, the complexity of aerial
network design is heightened by diverse flight routes, varying
service requirements, and deployment constraints tied to
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existing ground infrastructure. These factors make traditional
ground-based network design strategies difficult to apply,
emphasizing the need for a dedicated aerial network design
approach. Given that no aerial network has yet been deployed
in practice, prior research and validation of specialized design
methodologies are essential.

Various optimization and learning-based approaches have
been explored to address the challenges of aerial network
design in complex UAM corridor environments. In particular,
BO improves cellular-network performance by tuning
antenna uptilt, half-power beamwidth (HPBW), and
transmission power. High-dimensional variants jointly
optimize uptilt and HPBW, yielding notable SINR gains
while preserving ground-user performance [5]. BO also
balances aerial and terrestrial SINR through coordinated
antenna and power control [6]. While these studies
demonstrate the efficacy of BO in infrastructure parameter
tuning, their applicability remains limited in real-world UAM
scenarios characterized by dynamically varying flight paths,
traffic demands, and channel conditions. When both base
station activation states and beam orientation angles
(swing/tilt) must be considered, the configuration space
grows exponentially, making traditional search-based
optimization methods inefficient and slow to converge.

To overcome these limitations, we propose a reinforcement
learning (RL)-based framework suited for policy-driven
control and sequential decision-making. Specifically, each
base station is modeled as an independent agent operating
under a multi-agent sequential (MA-Sequential) learning
structure, where agents act in sequence without explicit
coordination. Although conventional decentralized multi-
agent RL approaches offer scalability and independence, they
are susceptible to convergence instability and difficulties in
learning binary on/off behaviors. To address this, we leverage
BO to generate near-optimal initial configurations, which are
then used to initialize the MA-Sequential training process.
This hybrid approach enhances convergence stability and
learning efficiency, as validated through simulations
conducted under diverse aerial corridor conditions.

This paper makes the following contributions:
 Problem formulation: We cast UAM aerial-network

planning over real urban corridors as a joint discrete—

continuous optimization that couples BS activation with 3D
beam orientation (swing/uptilt/HPBW) under
coverage/QoS constraints.

* Hybrid BO-MARL framework: We introduce a two-stage
pipeline where BO prunes the combinatorial space (on/off
and initial angles) and seeds a sequential multi-agent DQN
that fine-tunes continuous parameters, improving sample
efficiency and convergence.

* Learning design: We propose an MA-Sequential update
rule that uses the next agent’s Q-value as the target. and
specify a compact 27-bit state encoding with a five-action
control set tailored to practical antenna actuation.

* Objective shaping: We design a coverage-centric objective
augmented with distance and angular-overlap penalties plus
a conditional efficiency term to reduce redundant BS usage
while meeting coverage targets.

+ Empirical gains: On a real urban corridor, the method
achieves 100% coverage with 7/9 BSs, outperforming a 9-
BS baseline (90.87%) and BO-only (95.43%).

The remainder of this paper is organized as follows.
Section II formulates the UAM aerial network design
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Fig. 1. UAM corridor and Base station deployment

problem based on real-world corridor data. Section III
presents the proposed aerial network planning framework,
including its architecture and optimization procedure. Section
IV describes the simulation environment and analyzes the
performance of the proposed method under various path
conditions and configuration combinations. Finally, Section
V concludes the paper and discusses potential directions for
future research.

II. SYSTEM MODEL

In this section, the aerial network planning problem is
modeled based on a real-world UAM flight scenario. Fig. 1
illustrates an example of the flight corridor and the
corresponding base station deployment on a map-based
layout. The flight path spans several tens of kilometers across
an urban area, and the UAM vehicle is assumed to follow this
predefined route at a fixed altitude of 300 meters. The path is
discretized into points at intervals of up to 100 meters, and
the Reference Signal Received Power (RSRP) is measured at
each point to evaluate coverage performance. Each base
station is deployed at a fixed location and equipped with two
independent antenna beams. For each beam, configurable
parameters include power state (On/Off), uptilt angle, swing
angle, and beamwidth, which enable flexible coverage
configurations. This flexibility significantly enlarges the
search space per base station, making efficient parameter
control and optimization a key challenge addressed in this
study.

The wireless environment parameters used in the
simulation are based on the antenna element pattern for macro
base stations, with beamwidth set to 60° in the vertical
domain and 30° in the horizontal domain [7]. The path loss
model adopts the UMa-AV LoS scenario specified by 3GPP
[8]. The channel frequency is set to 866 MHz, with a total of
25 resource blocks (RBs) allocated within a 5 MHz
bandwidth. The RSRP threshold is defined as —83 dBm. The
aerial corridor must satisfy predefined traffic demand
requirements, which necessitates sufficient coverage from
surrounding base stations. Consequently, the problem is
formulated as a high-dimensional combinatorial optimization
task that jointly considers base station selection, antenna
beam configuration, and coverage constraints.

III. PROPOSED AERIAL NETWORK PLANNING

This section presents a two-stage framework for aerial
network optimization that combines Bayesian Optimization
(BO) and Multi-Agent Reinforcement Learning (MARL).
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Fig. 2. Overall framework of the proposed BO-MARL-
based aerial network optimization

The proposed framework begins by defining an initial
configuration based on real-world flight routes, candidate
base station (BS) locations, antenna specifications, and
system coverage requirements. Using this input, an initial
beam configuration is heuristically constructed by
considering the minimum Inter-Site Distance (ISD) between
base stations and setting antenna pointing directions
accordingly. This initial setting serves as the starting point
for BO exploration. In the first stage, BO performs a global
search over the configuration space, which includes the
on/off status of each base station and the initial swing and tilt
angles of each antenna beam. BO approximates the objective
function using a Gaussian Process (GP)-based surrogate
model and selects promising configurations by maximizing
an acquisition function. Through this process, BO refines the
on/off states to improve resource utilization and reduce
redundancy, and the resulting binary decisions are carried
forward to the MARL phase.

In the second stage, MARL is applied to optimize the
continuous parameters, namely the swing and tilt angles of
the activated beams determined in the BO stage. Each
antenna beam is modeled as an independent agent, and the
learning process follows a sequential update structure (MA-
Sequential), where agents are updated one at a time rather
than simultaneously. This sequential decision-making
approach improves convergence stability and mitigates
inefficient exploration, which is often observed in
conventional parallel MARL. By combining BO for global
exploration of binary variables with MARL for fine-tuning
continuous parameters, the proposed framework achieves
both search efficiency and robust convergence. The overall
architecture and data flow are visually summarized in Fig. 2.

A. Bayesian Optimization

Bayesian Optimization is a sample-efficient global
optimization technique designed for black-box functions that
are expensive to evaluate and have unknown internal
structures. BO employs a surrogate model-typically a GP or
Random Forest-to approximate the true objective function.
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Fig. 3. Conceptual diagram of Bayesian Optimization[9]

Based on this surrogate model, an acquisition function
evaluates the expected improvement at potential input
configurations by balancing exploration and exploitation.
The configuration that maximizes the acquisition function is
selected as the next candidate and evaluated through the
actual process. The result of this evaluation is then used to
update the surrogate model with new data, refining its
prediction accuracy. Fig. 3 illustrates this iterative BO
workflow, where the surrogate model, acquisition function,
and evaluation process operate in a closed loop to
progressively search for the optimal configuration.

In this study, BO is applied to derive a near-optimal initial
configuration for aerial network planning. The objective
function is defined based on the overall network coverage
performance, and the surrogate model is constructed using
the RSRP values measured at each observation point. The
input variables include the on/off states of base stations, as
well as the uptilt and swing angles of their antenna beams.
RSRP is calculated for each observation point based on the
geometric relationship, including distance, azimuth angle
(¢ ), and elevation angle (8 ), together with the antenna gain.
The antenna gain is determined by the relative difference
between the observation point direction (¢p, ) and the
configured beam orientation defined by the swing and tilt
angles, so that these control variables are explicitly
incorporated into the RSRP computation. During the BO
process, an observation point is considered covered if the
maximum RSRP among all base stations exceeds a
predefined threshold (Threshold,,,,), and total network
coverage is evaluated accordingly.

The loss function is designed to not only maximize
coverage but also reduce structural inefficiencies in the
network configuration. Specifically, it incorporates the total
coverage ratio (cover), a distance penalty (pg;s)for overly
proximate base stations, and an angular penalty (Pangie) to
prevent excessive overlap between beams from the same
base station. These components are combined into a base
loss function, as defined in Equation (1).

O

Loss = — Wy * cOver + pg;s + Pangte

Coveage weight (w,,,) ensures that the coverage ratio,
which is bounded between 0 and 1, contributes at a scale

293



comparable to the penalty terms. The distance penalty is
defined in Equation (2). Here, d;; denotes the distance
between base stations i and j, and D is the set of unique BS
pairs (i < j) whose distance is below the threshold d,;. The
threshold parameter d,, serves as a minimum distance
criterion to discourage overly dense BS deployments that
could lead to excessive interference.
den
Pais = g
@pep

D={{@)i<jdj<dn} @

The angular penalty is defined in Equation (3), where A8,
denotes the angular separation between two beams of the
same base station, and O is the set of beam pairs with
separation smaller than the angular threshold 6,. The
parameter 6, prevents excessive overlap between beams,
while the normalization constant p,,4, limits the maximum
scale of this penalty to maintain balance with the coverage
term. Ngg denotes the total number of candidate base stations
considered in the optimization.

pmax

o
keo B

0 = (kA6 < 6} )

Pangle =

Furthermore, to balance coverage with infrastructure
efficiency, a conditional loss function is applied as shown in
Equation (4). If coverage is below the target threshold
(Target,oper) , the optimizer prioritizes coverage
improvement when the target is not met. otherwise, the
number of inactive base stations (of fps) is maximized.
of fgs denotes the number of inactive base stations among
all candidates, taking integer values from 0 to Ngg. In this
study, withNgg = 9, the range of of fzs is there fore [0,9].
The coefficient A,¢¢ controls the contribution of this
efficiency term, ensuring that resource saving is encouraged
without dominating coverage optimization.

Loss cover < Target oper

“)
Loss — Aqfr - of fps otherwise

Lossgsgp = {

B. Multi-Agent DON

The learning architecture proposed in this study defines
each antenna beam of a base station as an individual agent,
resulting in two agents per base station and a total of 18
agents in the system. To effectively represent each agent's
state while minimizing dimensionality, The state of each
agent is represented as a 27-bit multi-hot vector encoding the
swing and tilt angles of its antenna beam. Swing is encoded
with 12 bits, consisting of a 2-bit quadrant index (0-360°
divided into four quadrants) and a 10-bit single-hot vector
representing the tens digit within each quadrant (0-90°). Tilt
is encoded with 15 bits, using a 10-bit single-hot vector for
the tens digit (0-90° in steps of 10°) and a 5-bit single-hot
vector for the units digit (0-9 in steps of 2°). Concatenating
these yields the 27-bit state vector.

The action space is defined based on the adjustment
parameters that each base station can apply. While a joint
action approach could be considered, since Swing and Tilt
can be adjusted independently, this leads to an exponential
increase in the number of possible actions, making it
impractical. Instead, each of Swing and Tilt includes two
actions for increasing or decreasing the angle, along with a
Stay action that keeps the current value unchanged. As a

result, a total of five discrete actions are defined. Table 1
summarizes the actions associated with each action index.
TABLE I. ACTIONS

INDEX 0 1 2 3 <
ACTION Tilt-2° | Tiltw2° | STAY

Swing-10° Swing+10°

Each agent receives the current state from the environment
and selects an action accordingly. Based on the chosen action,
the next state and resulting coverage are calculated. The
reward is computed as the difference between the updated
coverage and the previous coverage. That is, if the agent’s
action leads to improved coverage, it receives a positive
reward; if the coverage decreases, a negative reward is
assigned.

In Equation (5), C,, represents the coverage after agent n
has taken an action, S denotes the set of all feasible states
under the given constraints, and s refers to the current state.
The reward is calculated as the coverage difference between
the current and previous states when the resulting state
remains valid, as shown below:

R,=C,—-C,_,, SES ®)

If an agent’s action results in a state outside the feasible set
§, the episode is terminated early and a penalty of -1, is
applied to discourage invalid state transitions.

Conventional multi-agent reinforcement learning (MARL)
frameworks typically adopt a simultaneous execution
scheme, where all agents observe their states and perform
actions at the same time. However, in scenarios like this
study, where the number of agents is large and each agent
has a high-dimensional action space, such synchronous
updates can lead to unstable convergence and inefficient
exploration.

To address this issue, this study adopts a sequential multi-
agent update structure, referred to as MA-Sequential. In this
framework, each agent receives the current state from the
environment, selects an action, and updates its policy based
on the resulting reward. Unlike conventional MARL, where
all agents act simultaneously, the MA-Sequential structure
updates agents one at a time within a single timestep. The
process begins with the first agent and proceeds sequentially
to the last. Although each agent makes decisions
independently, it does so in a state that reflects the updates
made by preceding agents. This allows each agent not only
to respond to changes in the environment, but also to
implicitly account for the influence of other agents' actions
during learning.

The loss function in the sequential multi-agent (MA)
framework is formulated differently from that of the
conventional MA-DQN. In this study, the loss is computed
using the Mean Squared Error (MSE) approach. For a given
agent k, let the Q-value be represented as Q(s,a),. The
target value is calculated based on the reward r; at the
current timestep t and the maximum Q-value of the next
state s;,,, obtained from the target network. In conventional
MA-DQN, the target network is updated independently
within each agent. The loss function used in the standard
MA-DQN framework is defined as shown in Equation (6).
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Algorithm 1 Multi-Agent Reinforcement Learning Algorithm

1: Input: Initial base station and beam configuration
2: Objective: Maximize cumulative coverage reward

3: Initialize all agent networks and target networks
1: for each episode do

5 Reset environment and initialize state S

6:  for each timestep t do

- for each agent k do

8: Observe current state s,

9: Select action a; according to e-greedy policy

10: Execute action ay, receive next state s,y and done flag
11: Reward function:

—100, if invalid action (out of state space)
=
* ACoverage, otherwise

where ACoverage = Coverage(s;4+1) — Coverage(s;)

12: Store transition (s;,a,, 7, $;41,done) into replay buffer
13: Update agent k’s network by minimizing the loss:

2
L= (rt +7max Q(st41,030 )1 — Q(Sullﬂ”k))

14: Update environment state based on a;

15: end for

16: if timestep t mod target update interval = () then
17: Update target networks: 0, < 0. for all agents
18: end if

19: if episode done then

20: Break

21: end if

22:  end for

23: end for

24: Return: ‘Trained policies 7 (s) = arg max, Q(s, a;0x) for all agents

Loss = (r, + ymax, Q(s;11,a’;07 ) 6)
— Q(se,ap; 0)i )?

In contrast, the sequential multi-agent update framework
differs from the conventional MA-DQN in that each agent
performs its action one after another. As a result, the Q-value
of the next state used in the target value corresponds to the
Q-value predicted by the next agent, not the same agent.
Therefore, the loss function in the proposed approach is
formulated as shown in Equation (7).

LOSS = (rt + ymaxa’Q(St+1r a,; 9_)k+1 (7)
— (S, ae; )i )?

In MA-Sequential, the environment state evolves step-by-
step as agents act sequentially within the same timestep. The
state s;,, reached after agent k takes an action is observed
and acted upon by agent k + 1. Therefore, using the Q-value
of the same agent to compute the target value can introduce
a mismatch with the actual decision-making order, causing
the update to diverge from the sequential structure of the
framework. By instead using the Q-value predicted by the
next agent, the proposed method ensures that the target value
accurately reflects the state transitions that occur during
sequential decision-making, leading to more coherent and
stable learning.

Algorithm 1 summarizes the proposed reinforcement
learning-based aerial network optimization framework. The
algorithm operates on an episodic basis, where the
environment is reset at the beginning of each episode. For
every timestep, each agent is sequentially updated. Each
agent observes its current state and selects an action
according to the e-greedy policy. Based on the executed
action, the environment returns the next state and a reward,

(a) Baseline

(b) BO & MA-DQN

Fig. 4. Simulation Results

which reflects the change in coverage or applies a penalty for
invalid actions. Transitions are stored in a replay buffer, and
the agent’s Q-network is updated by minimizing the loss
function using the next agent’s Q-value. This sequential
update structure differs from the conventional MA-DQN by
enabling each agent to learn with consideration of the prior
agents’ actions, enhancing learning stability and
convergence. Target networks are periodically updated, and
learning proceeds until the episode terminates. Through this
process, each agent independently learns an optimal policy,
ultimately aiming to maximize communication coverage in
the UAM aerial corridor environment.

IV. PERFORMANCE EVALUATION

The detailed simulation parameters are summarized in
Table II below.

TABLE II. SIMULATION PARAMETERS

Coverage weight (We,y) 100
Distance threshold (d) 1000m
Angular threshold (6;,) 90°
Max angle penalty (Pimax) 30
Off-BS weight (4,f) 10
Penalty coefficient (A,¢r) 100
Discount factor (y) 0.95
Exploration rate (€) 1.0
Exploration decay (€gecay) 0.9975
Learning rate («) 0.001
Hidden layer sizes [1024, 256, 64]
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The simulation results are visually summarized in Fig. 4,
where (a) illustrates the baseline configuration, and (b)
compares the BO-based configuration with the final result of
the proposed MA-DQN learning. In (a), all nine candidate
base stations (BSs) are activated and uniformly distributed
along the flight path to ensure consistent coverage. However,
in certain curved segments, beam directions were misaligned
with the actual trajectory, resulting in coverage gaps despite
full BS deployment.

In (b), both the results of the BO-based configuration (blue
arrows) and the MA-DQN learning outcome (red arrows) are
visualized. During the BO stage, several base stations that
could be effectively substituted by neighboring ones were
deactivated. Most agents adjusted their swing and tilt angles
to better align with the path’s geometry.

In the subsequent MA-DQN learning stage, fine-tuning
was conducted based on the configuration derived from BO.
While swing angles remained mostly unchanged, tilt angles
were updated in 11 agents. These adjustments resolved the
remaining uncovered regions along the path, ultimately
achieving complete coverage. In particular, region (A)
required some antennas to cover relatively distant areas due
to BSs deactivated during the BO stage. To address this, the
MA-DQN phase compensated by lowering the tilt angles to
widen the coverage range. In region (B), where the flight
path formed a loop, swing angles were adjusted to realign the
beam directions with the curved trajectory. These local
refinements demonstrate that the proposed framework can
effectively adapt to diverse path geometries.

Table III presents a summary of the number of base
stations used and the corresponding coverage performance
for each configuration. The baseline configuration achieved
90.87% coverage using nine base stations, while the BO
Only configuration improved coverage to 95.43% with only
seven base stations. The proposed MA-DQN method further
enhanced the coverage to 100% using the same seven base
stations. Therefore, the simulation results confirm that the
proposed combination of BO-based search and MA-
Sequential learning can achieve stable communication

coverage with fewer base stations than conventional methods.

This demonstrates the effectiveness of the approach in
balancing resource efficiency and network performance in
aerial network planning.

TABLE III. SIMULATION RESULTS

Technique Number of Base Stations Coverage
Baseline 9 90.87%
BO Only 7 95.43%
Proposed MA-DQN 7 100.00%

V. CONCLUSIONS

This paper addressed the problem of aerial network
planning for UAM by considering a real-world urban flight
corridor. To solve this problem, we proposed a hybrid
framework that combines Bayesian Optimization with a
sequential multi-agent reinforcement learning method (MA-
Sequential DQN). Each base station was modeled as an
independent agent with two beams, and the configuration-
including antenna swing and tilt angles as well as power
state-was sequentially optimized. Simulation results show ed

that the proposed method achieved full coverage along the
entire route while utilizing only 7 out of 9 candidate base
stations. These results demonstrate that the proposed
learning-based design approach is both efficient and
practical for ensuring reliable aerial communication
coverage.
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