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Abstract— Urban Air Mobility (UAM) demands a reliable 

low-altitude communication fabric, yet planning aerial 
networks is intrinsically combinatorial because base-station 
(BS) activation and 3D beam orientation (swing/tilt/HPBW) 
jointly determine coverage and interference. We formulate this 
design as a high-dimensional optimization over real corridor 
data and present a two-stage BO–MARL framework with 
sequential multi-agent learning (MA-Sequential). First, 
Bayesian optimization (BO) explores BS on/off states and 
initializes beam angles to prune the search space. Then, a 
sequential MARL phase treats each active beam as an agent 
that updates its policy in turn, improving stability and sample 
efficiency relative to parallel multi-agent updates. A coverage-
centric objective, augmented with distance and angular-overlap 
penalties, encourages wide coverage while curbing redundant 
infrastructure. Evaluations on an urban UAM corridor 
corroborate that the proposed pipeline delivers effective and 
efficient network plans, yielding robust convergence and 
improved coverage under diverse path conditions. 

Keywords— Urban Air Mobility (UAM), Aerial Network 
Planning, Multi-Agent Reinforcement Learning (MARL), 
Bayesian Optimization (BO) 

I. INTRODUCTION 
Urban Air Mobility (UAM) has emerged as a promising 

solution to mitigate severe traffic congestion in rapidly 
expanding metropolitan areas. UAM refers to a short-distance 
air transportation system that utilizes three-dimensional 
airspace through low-noise, eco-friendly electric vertical 
takeoff and landing (eVTOL) aircraft and supporting 
infrastructure. Recently, the concept has expanded to 
encompass Regional Air Mobility (RAM) under the broader 
framework of Advanced Air Mobility (AAM).  

In South Korea, UAM has been identified as a strategic 
future industry, with active efforts underway through the K-
UAM policy roadmap. This includes regulatory revisions, the 
establishment of a technical roadmap, and phased 
demonstration projects[1]. In particular, the K-UAM Grand 
Challenge (GC), a public-private joint demonstration project, 
has been launched to define operational standards for UAM 
services. The project spans from 2022 to 2024 and consists of 
two phases. The first phase focuses on testing vehicle stability 
and traffic management in open areas, while the second phase 
extends to semi-urban and eventually urban environments 
with higher population densities[2]. Unlike drones operating 
below 150 meters or commercial aircraft flying above 18 
kilometers, UAM vehicles are expected to operate at altitudes 
ranging from 300 to 600 meters within designated air 
corridors, which function as structured aerial routes similar to 
roads for ground transportation. During the initial deployment 
phase (starting in 2025), services will operate with a limited 

number of vertiports and fixed corridors. As the technology 
matures, the growth phase (starting around 2030) will enable 
operations between multiple vertiports using remotely piloted 
aircraft, followed by the maturity phase (from 2035 onward) 
featuring fully autonomous operations and automated traffic 
control systems. 

To support the deployment of UAM services, both national 
and international efforts are being made to establish dedicated 
aerial communication infrastructures. In South Korea, 
government-led demonstration projects are underway to 
evaluate technologies for aerial traffic management and 
wireless communication in low-altitude urban air corridors, 
involving collaboration between public institutions and 
private industry to lay the groundwork through staged testing 
and regulatory development. Concurrently, research and 
development into eVTOL aircraft and network integration, 
including terrestrial and satellite-based communication, is 
progressing.  

International studies highlight that aerial networks differ 
significantly from terrestrial networks, particularly in radio 
propagation and interference patterns. Because aerial links 
have a high probability of line-of-sight (LoS), airborne UEs 
experience stronger inter-cell interference than terrestrial 
users, which can degrade performance for both aerial and 
ground users. In addition, most terrestrial base stations are 
down-tilted for ground coverage, so aerial UEs are often 
served via antenna sidelobes; this can cause attachment to 
more distant cells, frequent serving-cell changes, and reduced 
effectiveness of conventional handover procedures [3]. In 
addition, UAM services involve heterogeneous traffic 
demands: command and control (C2) data typically require 
low latency and moderate throughput, while application 
services such as real-time video and autonomous flight 
control demand much higher data rates and stricter delay 
constraints. These latency and reliability targets imply ultra-
reliable and low-latency communication (URLLC)-like 
capabilities; aerial networks therefore require prioritized low-
latency paths, resource reservation, and multi-connectivity to 
meet diverse QoS demands [4]. 

To enable such operations, a dedicated aerial 
communication infrastructure, referred to as the aerial 
network, must be established. Signal propagation in aerial 
links is generally favorable; however, this also increases the 
risk of long-range interference from neighboring base stations. 
To ensure reliable coverage within the three-dimensional 
corridor structure, base station antennas must be uptilted, and 
beam pattern designs must accommodate both vertical and 
horizontal dimensions. Moreover, the complexity of aerial 
network design is heightened by diverse flight routes, varying 
service requirements, and deployment constraints tied to 
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existing ground infrastructure. These factors make traditional 
ground-based network design strategies difficult to apply, 
emphasizing the need for a dedicated aerial network design 
approach. Given that no aerial network has yet been deployed 
in practice, prior research and validation of specialized design 
methodologies are essential. 

Various optimization and learning-based approaches have 
been explored to address the challenges of aerial network 
design in complex UAM corridor environments. In particular, 
BO improves cellular-network performance by tuning 
antenna uptilt, half-power beamwidth (HPBW), and 
transmission power. High-dimensional variants jointly 
optimize uptilt and HPBW, yielding notable SINR gains 
while preserving ground-user performance [5]. BO also 
balances aerial and terrestrial SINR through coordinated 
antenna and power control [6]. While these studies 
demonstrate the efficacy of BO in infrastructure parameter 
tuning, their applicability remains limited in real-world UAM 
scenarios characterized by dynamically varying flight paths, 
traffic demands, and channel conditions. When both base 
station activation states and beam orientation angles 
(swing/tilt) must be considered, the configuration space 
grows exponentially, making traditional search-based 
optimization methods inefficient and slow to converge.  

To overcome these limitations, we propose a reinforcement 
learning (RL)-based framework suited for policy-driven 
control and sequential decision-making. Specifically, each 
base station is modeled as an independent agent operating 
under a multi-agent sequential (MA-Sequential) learning 
structure, where agents act in sequence without explicit 
coordination. Although conventional decentralized multi-
agent RL approaches offer scalability and independence, they 
are susceptible to convergence instability and difficulties in 
learning binary on/off behaviors. To address this, we leverage 
BO to generate near-optimal initial configurations, which are 
then used to initialize the MA-Sequential training process. 
This hybrid approach enhances convergence stability and 
learning efficiency, as validated through simulations 
conducted under diverse aerial corridor conditions. 

This paper makes the following contributions: 
 Problem formulation: We cast UAM aerial-network 

planning over real urban corridors as a joint discrete–
continuous optimization that couples BS activation with 3D 
beam orientation (swing/uptilt/HPBW) under 
coverage/QoS constraints.  

 Hybrid BO–MARL framework: We introduce a two-stage 
pipeline where BO prunes the combinatorial space (on/off 
and initial angles) and seeds a sequential multi-agent DQN 
that fine-tunes continuous parameters, improving sample 
efficiency and convergence.  

 Learning design: We propose an MA-Sequential update 
rule that uses the next agent’s Q-value as the target. and 
specify a compact 27-bit state encoding with a five-action 
control set tailored to practical antenna actuation.  

 Objective shaping: We design a coverage-centric objective 
augmented with distance and angular-overlap penalties plus 
a conditional efficiency term to reduce redundant BS usage 
while meeting coverage targets.  

 Empirical gains: On a real urban corridor, the method 
achieves 100% coverage with 7/9 BSs, outperforming a 9-
BS baseline (90.87%) and BO-only (95.43%). 
The remainder of this paper is organized as follows. 

Section II formulates the UAM aerial network design 

problem based on real-world corridor data. Section III 
presents the proposed aerial network planning framework, 
including its architecture and optimization procedure. Section 
IV describes the simulation environment and analyzes the 
performance of the proposed method under various path 
conditions and configuration combinations. Finally, Section 
V concludes the paper and discusses potential directions for 
future research.  

II. SYSTEM MODEL 
In this section, the aerial network planning problem is 

modeled based on a real-world UAM flight scenario. Fig. 1 
illustrates an example of the flight corridor and the 
corresponding base station deployment on a map-based 
layout. The flight path spans several tens of kilometers across 
an urban area, and the UAM vehicle is assumed to follow this 
predefined route at a fixed altitude of 300 meters. The path is 
discretized into points at intervals of up to 100 meters, and 
the Reference Signal Received Power (RSRP) is measured at 
each point to evaluate coverage performance. Each base 
station is deployed at a fixed location and equipped with two 
independent antenna beams. For each beam, configurable 
parameters include power state (On/Off), uptilt angle, swing 
angle, and beamwidth, which enable flexible coverage 
configurations. This flexibility significantly enlarges the 
search space per base station, making efficient parameter 
control and optimization a key challenge addressed in this 
study. 

The wireless environment parameters used in the 
simulation are based on the antenna element pattern for macro 
base stations, with beamwidth set to 60° in the vertical 
domain and 30° in the horizontal domain [7]. The path loss 
model adopts the UMa-AV LoS scenario specified by 3GPP 
[8]. The channel frequency is set to 866 MHz, with a total of 
25 resource blocks (RBs) allocated within a 5 MHz 
bandwidth. The RSRP threshold is defined as −83 dBm. The 
aerial corridor must satisfy predefined traffic demand 
requirements, which necessitates sufficient coverage from 
surrounding base stations. Consequently, the problem is 
formulated as a high-dimensional combinatorial optimization 
task that jointly considers base station selection, antenna 
beam configuration, and coverage constraints. 

III. PROPOSED AERIAL NETWORK PLANNING 
This section presents a two-stage framework for aerial 

network optimization that combines Bayesian Optimization 
(BO) and Multi-Agent Reinforcement Learning (MARL). 

 

Fig. 1. UAM corridor and Base station deployment 
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The proposed framework begins by defining an initial 
configuration based on real-world flight routes, candidate 
base station (BS) locations, antenna specifications, and 
system coverage requirements. Using this input, an initial 
beam configuration is heuristically constructed by 
considering the minimum Inter-Site Distance (ISD) between 
base stations and setting antenna pointing directions 
accordingly. This initial setting serves as the starting point 
for BO exploration. In the first stage, BO performs a global 
search over the configuration space, which includes the 
on/off status of each base station and the initial swing and tilt 
angles of each antenna beam. BO approximates the objective 
function using a Gaussian Process (GP)-based surrogate 
model and selects promising configurations by maximizing 
an acquisition function. Through this process, BO refines the 
on/off states to improve resource utilization and reduce 
redundancy, and the resulting binary decisions are carried 
forward to the MARL phase. 

In the second stage, MARL is applied to optimize the 
continuous parameters, namely the swing and tilt angles of 
the activated beams determined in the BO stage. Each 
antenna beam is modeled as an independent agent, and the 
learning process follows a sequential update structure (MA-
Sequential), where agents are updated one at a time rather 
than simultaneously. This sequential decision-making 
approach improves convergence stability and mitigates 
inefficient exploration, which is often observed in 
conventional parallel MARL. By combining BO for global 
exploration of binary variables with MARL for fine-tuning 
continuous parameters, the proposed framework achieves 
both search efficiency and robust convergence. The overall 
architecture and data flow are visually summarized in Fig. 2.   

A. Bayesian Optimization 
Bayesian Optimization is a sample-efficient global 

optimization technique designed for black-box functions that 
are expensive to evaluate and have unknown internal 
structures. BO employs a surrogate model-typically a GP or 
Random Forest-to approximate the true objective function. 

Based on this surrogate model, an acquisition function 
evaluates the expected improvement at potential input 
configurations by balancing exploration and exploitation. 
The configuration that maximizes the acquisition function is 
selected as the next candidate and evaluated through the 
actual process. The result of this evaluation is then used to 
update the surrogate model with new data, refining its 
prediction accuracy. Fig. 3 illustrates this iterative BO 
workflow, where the surrogate model, acquisition function, 
and evaluation process operate in a closed loop to 
progressively search for the optimal configuration.  

In this study, BO is applied to derive a near-optimal initial 
configuration for aerial network planning. The objective 
function is defined based on the overall network coverage 
performance, and the surrogate model is constructed using 
the RSRP values measured at each observation point. The 
input variables include the on/off states of base stations, as 
well as the uptilt and swing angles of their antenna beams. 
RSRP is calculated for each observation point based on the 
geometric relationship, including distance, azimuth angle 
( ), and elevation angle ( ), together with the antenna gain. 
The antenna gain is determined by the relative difference 
between the observation point direction ( ,  ) and the 
configured beam orientation defined by the swing and tilt 
angles, so that these control variables are explicitly 
incorporated into the RSRP computation. During the BO 
process, an observation point is considered covered if the 
maximum RSRP among all base stations exceeds a 
predefined threshold ℎℎ , and total network 
coverage is evaluated accordingly. 

The loss function is designed to not only maximize 
coverage but also reduce structural inefficiencies in the 
network configuration. Specifically, it incorporates the total 
coverage ratio (), a distance penalty for overly 
proximate base stations, and an angular penalty  to 
prevent excessive overlap between beams from the same 
base station. These components are combined into a base 
loss function, as defined in Equation (1).  

Coveage weight ( ) ensures that the coverage ratio, 
which is bounded between 0 and 1, contributes at a scale 

     ∙      (1) 

 

Fig. 2. Overall framework of the proposed BO-MARL-
based aerial network optimization 

 

Fig. 3. Conceptual diagram of Bayesian Optimization[9] 
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comparable to the penalty terms. The distance penalty is 
defined in Equation (2). Here,  denotes the distance 
between base stations  and , and  is the set of unique BS 
pairs  <  whose distance is below the threshold . The 
threshold parameter   serves as a minimum distance 
criterion to discourage overly dense BS deployments that 
could lead to excessive interference. 

   ,∈
,   , | < ,  <  (2) 

The angular penalty is defined in Equation (3), where ∆ 
denotes the angular separation between two beams of the 
same base station, and   is the set of beam pairs with 
separation smaller than the angular threshold . The 
parameter  prevents excessive overlap between beams, 
while the normalization constant   limits the maximum 
scale of this penalty to maintain balance with the coverage 
term.  denotes the total number of candidate base stations 
considered in the optimization. 

   ∈
,   |∆ <  (3) 

Furthermore, to balance coverage with infrastructure 
efficiency, a conditional loss function is applied as shown in 
Equation (4). If coverage is below the target threshold  , the optimizer prioritizes coverage 
improvement when the target is not met. otherwise, the 
number of inactive base stations   is maximized.  denotes the number of inactive base stations among 
all candidates, taking integer values from 0 to . In this 
study, with  9, the range of  is there fore [0,9]. 
The coefficient  controls the contribution of this 
efficiency term, ensuring that resource saving is encouraged 
without dominating coverage optimization. 

                          <    ∙                 ℎ (4) 

B. Multi-Agent DQN  
The learning architecture proposed in this study defines 

each antenna beam of a base station as an individual agent, 
resulting in two agents per base station and a total of 18 
agents in the system. To effectively represent each agent's 
state while minimizing dimensionality, The state of each 
agent is represented as a 27-bit multi-hot vector encoding the 
swing and tilt angles of its antenna beam. Swing is encoded 
with 12 bits, consisting of a 2-bit quadrant index (0-360° 
divided into four quadrants) and a 10-bit single-hot vector 
representing the tens digit within each quadrant (0-90°). Tilt 
is encoded with 15 bits, using a 10-bit single-hot vector for 
the tens digit (0-90° in steps of 10°) and a 5-bit single-hot 
vector for the units digit (0–9 in steps of 2°). Concatenating 
these yields the 27-bit state vector. 

The action space is defined based on the adjustment 
parameters that each base station can apply. While a joint 
action approach could be considered, since Swing and Tilt 
can be adjusted independently, this leads to an exponential 
increase in the number of possible actions, making it 
impractical. Instead, each of Swing and Tilt includes two 
actions for increasing or decreasing the angle, along with a 
Stay action that keeps the current value unchanged. As a 

result, a total of five discrete actions are defined. Table 1 
summarizes the actions associated with each action index. 

TABLE I. ACTIONS 
INDEX 0 1 2 3 4 
ACTION Swing-10° Swing+10° Tilt-2° Tilt+2° STAY 

 
Each agent receives the current state from the environment 

and selects an action accordingly. Based on the chosen action, 
the next state and resulting coverage are calculated. The 
reward is computed as the difference between the updated 
coverage and the previous coverage. That is, if the agent’s 
action leads to improved coverage, it receives a positive 
reward; if the coverage decreases, a negative reward is 
assigned. 

 In Equation (5), ̅ represents the coverage after agent   
has taken an action,    denotes the set of all feasible states 
under the given constraints, and  refers to the current state. 
The reward is calculated as the coverage difference between 
the current and previous states when the resulting state 
remains valid, as shown below: 

   ̅  ̅,  ∈  (5) 

If an agent’s action results in a state outside the feasible set   ,,  the episode is terminated early and a penalty of - is 
applied to discourage invalid state transitions. 

Conventional multi-agent reinforcement learning (MARL) 
frameworks typically adopt a simultaneous execution 
scheme, where all agents observe their states and perform 
actions at the same time. However, in scenarios like this 
study, where the number of agents is large and each agent 
has a high-dimensional action space, such synchronous 
updates can lead to unstable convergence and inefficient 
exploration. 

To address this issue, this study adopts a sequential multi-
agent update structure, referred to as MA-Sequential. In this 
framework, each agent receives the current state from the 
environment, selects an action, and updates its policy based 
on the resulting reward. Unlike conventional MARL, where 
all agents act simultaneously, the MA-Sequential structure 
updates agents one at a time within a single timestep. The 
process begins with the first agent and proceeds sequentially 
to the last. Although each agent makes decisions 
independently, it does so in a state that reflects the updates 
made by preceding agents. This allows each agent not only 
to respond to changes in the environment, but also to 
implicitly account for the influence of other agents' actions 
during learning. 

The loss function in the sequential multi-agent (MA) 
framework is formulated differently from that of the 
conventional MA-DQN. In this study, the loss is computed 
using the Mean Squared Error (MSE) approach. For a given 
agent  , let the Q-value be represented as ,  . The 
target value is calculated based on the reward r at the 
current timestep   and the maximum Q-value of the next 
state , obtained from the target network. In conventional 
MA-DQN, the target network is updated independently 
within each agent. The loss function used in the standard 
MA-DQN framework is defined as shown in Equation (6). 
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     , ;  , ;   (6) 

In contrast, the sequential multi-agent update framework 
differs from the conventional MA-DQN in that each agent 
performs its action one after another. As a result, the Q-value 
of the next state used in the target value corresponds to the 
Q-value predicted by the next agent, not the same agent. 
Therefore, the loss function in the proposed approach is 
formulated as shown in Equation (7). 

    , ;  , ;   (7) 

In MA-Sequential, the environment state evolves step-by-
step as agents act sequentially within the same timestep. The 
state  reached after agent  takes an action is observed 
and acted upon by agent   1. Therefore, using the Q-value 
of the same agent to compute the target value can introduce 
a mismatch with the actual decision-making order, causing 
the update to diverge from the sequential structure of the 
framework. By instead using the Q-value predicted by the 
next agent, the proposed method ensures that the target value 
accurately reflects the state transitions that occur during 
sequential decision-making, leading to more coherent and 
stable learning. 

Algorithm 1 summarizes the proposed reinforcement 
learning-based aerial network optimization framework. The 
algorithm operates on an episodic basis, where the 
environment is reset at the beginning of each episode. For 
every timestep, each agent is sequentially updated. Each 
agent observes its current state and selects an action 
according to the ε-greedy policy. Based on the executed 
action, the environment returns the next state and a reward, 

which reflects the change in coverage or applies a penalty for 
invalid actions. Transitions are stored in a replay buffer, and 
the agent’s Q-network is updated by minimizing the loss 
function using the next agent’s Q-value. This sequential 
update structure differs from the conventional MA-DQN by 
enabling each agent to learn with consideration of the prior 
agents’ actions, enhancing learning stability and 
convergence. Target networks are periodically updated, and 
learning proceeds until the episode terminates. Through this 
process, each agent independently learns an optimal policy, 
ultimately aiming to maximize communication coverage in 
the UAM aerial corridor environment.  

IV. PERFORMANCE EVALUATION 
The detailed simulation parameters are summarized in 

Table II below.  

TABLE Ⅱ. SIMULATION PARAMETERS 

Coverage weight () 100 

Distance threshold () 1000m 

Angular threshold () 90° 

Max angle penalty () 30 

Off-BS weight () 10 

Penalty coefficient () 100 

Discount factor ()  0.95  

Exploration rate () 1.0  

Exploration decay () 0.9975  

Learning rate () 0.001  

Hidden layer sizes  [1024, 256, 64]  

 

 

(a) Baseline 

 

(b) BO & MA-DQN 

Fig. 4. Simulation Results 
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The simulation results are visually summarized in Fig. 4, 
where (a) illustrates the baseline configuration, and (b) 
compares the BO-based configuration with the final result of 
the proposed MA-DQN learning. In (a), all nine candidate 
base stations (BSs) are activated and uniformly distributed 
along the flight path to ensure consistent coverage. However, 
in certain curved segments, beam directions were misaligned 
with the actual trajectory, resulting in coverage gaps despite 
full BS deployment. 

In (b), both the results of the BO-based configuration (blue 
arrows) and the MA-DQN learning outcome (red arrows) are 
visualized. During the BO stage, several base stations that 
could be effectively substituted by neighboring ones were 
deactivated. Most agents adjusted their swing and tilt angles 
to better align with the path’s geometry. 

In the subsequent MA-DQN learning stage, fine-tuning 
was conducted based on the configuration derived from BO. 
While swing angles remained mostly unchanged, tilt angles 
were updated in 11 agents. These adjustments resolved the 
remaining uncovered regions along the path, ultimately 
achieving complete coverage. In particular, region (A) 
required some antennas to cover relatively distant areas due 
to BSs deactivated during the BO stage. To address this, the 
MA-DQN phase compensated by lowering the tilt angles to 
widen the coverage range. In region (B), where the flight 
path formed a loop, swing angles were adjusted to realign the 
beam directions with the curved trajectory. These local 
refinements demonstrate that the proposed framework can 
effectively adapt to diverse path geometries.  

Table III presents a summary of the number of base 
stations used and the corresponding coverage performance 
for each configuration. The baseline configuration achieved 
90.87% coverage using nine base stations, while the BO 
Only configuration improved coverage to 95.43% with only 
seven base stations. The proposed MA-DQN method further 
enhanced the coverage to 100% using the same seven base 
stations. Therefore, the simulation results confirm that the 
proposed combination of BO-based search and MA-
Sequential learning can achieve stable communication 
coverage with fewer base stations than conventional methods. 
This demonstrates the effectiveness of the approach in 
balancing resource efficiency and network performance in 
aerial network planning. 

TABLE Ⅲ. SIMULATION RESULTS 
Technique  Number of Base Stations  Coverage 

Baseline 9  90.87% 

BO Only 7  95.43% 
Proposed MA-DQN 7  100.00% 

 

V. CONCLUSIONS 
This paper addressed the problem of aerial network 

planning for UAM by considering a real-world urban flight 
corridor. To solve this problem, we proposed a hybrid 
framework that combines Bayesian Optimization with a 
sequential multi-agent reinforcement learning method (MA-
Sequential DQN). Each base station was modeled as an 
independent agent with two beams, and the configuration-
including antenna swing and tilt angles as well as power 
state-was sequentially optimized. Simulation results show ed 

that the proposed method achieved full coverage along the 
entire route while utilizing only 7 out of 9 candidate base 
stations. These results demonstrate that the proposed 
learning-based design approach is both efficient and 
practical for ensuring reliable aerial communication 
coverage.  
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