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Abstract—When mobile base stations are disabled due to nat-
ural disasters such as earthquakes, or when network congestion
occurs during large-scale events where many people gather, a
method is required to deploy a temporary network that does
not depend on terrestrial base stations. This paper investigates
the use of millimeter-wave UAV (Unmanned Aerial Vehicle)
base stations to provide wireless communication infrastructure.
However, in areas with clusters of high-rise buildings, there is
a high possibility that a line of sight between UAVs and user
terminals cannot be secured. To address this, we propose to create
new propagation paths using IRS (Intelligent Reflecting Surfaces)
and further extend coverage by optimizing UAV placement with
3D city models.

Index Terms—6G, mmWave, UAV, UAV cellular networks,
interference control, IRS, Optimization, NTN

I. INTRODUCTION

When mobile base stations become inoperative due to
earthquakes or other disasters, or when network congestion
occurs as a result of large-scale events, it is necessary to deploy
a temporary network that does not rely on terrestrial base
stations. Non-Terrestrial Networks (NTNs), represented by
Low Earth Orbit (LEO) satellites and High Altitude Platform
Stations (HAPS), have recently been studied intensively as
technologies to address this issue. Among these technologies,
UAV base stations have attracted considerable attention as a
promising solution.

UAV base stations can provide services quickly where
needed and can flexibly change their placement in three-
dimensional space. UAV base stations have been studied from
various perspectives. In [1], the authors investigated the three-
dimensional placement of UAV base stations to maximize the
number of covered users with minimum power consumption.
In [2], Particle Swarm Optimization (PSO) was employed
to determine the optimal UAV placement for maximizing
coverage. Most previous studies on UAV base stations have
mainly focused on connectivity using the microwave band.
However, as communication speeds increase, the size of web
pages has also grown rapidly [3], and in disaster-stricken areas,
there are increasing cases where large-capacity transmission
is required, such as for rescue operations using remotely
controlled equipment. Therefore, this study focuses on UAV
base stations using the millimeter-wave band to realize high-
speed and high-capacity communication.
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The millimeter-wave band allows for high-speed data trans-
mission due to its large available bandwidth. However, it also
has strong directivity and is highly susceptible to blockage
by obstacles. To mitigate this drawback, especially in densely
built-up urban areas, the introduction of IRS (Intelligent Re-
flecting Surface), a reconfigurable reflecting surface that can
dynamically control the direction of reflected radio waves, is
expected. According to the Beyond 5G white paper by the
Beyond 5G Promotion Consortium [4], IRS is positioned as an
important and energy-efficient technology for expanding cov-
erage and improving communication quality in the Beyond 5G
era. In [5], the authors investigated UAV networks supported
by IRS installed on buildings and UAVs equipped with IRS
for enhancing ground network performance.

This study integrates IRS into millimeter-wave UAV base
station networks and expands coverage by creating new paths
with IRS in areas where direct paths from UAV base stations
are blocked. In addition, under the “PLATEAU” project [6]
promoted by the Ministry of Land, Infrastructure, Transport
and Tourism of Japan, 3D city models have been developed
and made publicly available. We use these 3D models to
conduct radio propagation simulations that reflect actual ur-
ban structures and investigate methods to address blockage
problems in millimeter-wave communications through global
optimization of UAV base station placement and effective IRS
utilization.

Our previous work [7] [8] demonstrated that integrating
IRS into UAV base station networks can expand high-speed
communication coverage and that the placement of multiple
UAV base stations can be optimized in urban environments
with IRS using optimization algorithms.

The main contributions of this study are summarized as
follows:

o UAV placement optimization in an urban model with IRS

through cooperative control.

¢ QoS-aware optimization for user equipment (UE).

o LoS probability model construction and validation.

II. ARCHITECTURE AND SYSTEM MODEL
A. Architecture

Figure 1 illustrates the overall architecture proposed by
us [7]. We consider a scenario in which base stations become
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inoperative due to natural disasters such as earthquakes, hur-
ricanes, or lightning strikes, and a temporary communication
area must be rapidly established. Thanks to their character-
istics, UAVs can be flexibly deployed in three dimensions,
making it easier to secure line-of-sight conditions essential for
millimeter-wave communications and enabling rapid network
deployment.

In this study, two types of UAVs are used for UAV base
station network deployment: access UAVs and backhaul UAVs.
The backhaul UAV acts as a relay node, bridging the connec-
tion between the access UAVs and undamaged terrestrial base
stations. By using a backhaul UAV, it is possible to mitigate
the impact of distance attenuation and rain attenuation, which
can become problems in the communication link between base
stations and access UAVs. The access UAV delivers traffic
transmitted from the backhaul UAV to the UEs on the ground.
Since the access UAV provides data directly to UEs, the
number of UEs that can be covered is strongly influenced by
its placement. Moreover, when UAVs operate autonomously,
challenges arise such as interference management, ensuring
sufficient throughput, and avoiding redundancy of relay nodes.
To address these challenges, cooperative operation among
multiple UAVs is required. In this study, UAVs are connected
and managed via the control plane of a ground base station.
This paper focuses on the placement problem of access UAVs,
aiming to solve the placement optimization problem while
considering the three-dimensional structure of the city and
leveraging IRS deployed in the urban environment.

Nearby BS

Backhaul UAV

Access UAV

@ T A

Disaster Area

Fig. 1: Overall system architecture

B. System model

The air-to-ground channel between UAVs and ground users
is modeled based on ray tracing using MATLAB. Using the
3D building model of the target area, Line-of-Sight (LoS) and
Non-Line-of-Sight (NLoS) propagation paths are extracted for
each transmitter—receiver pair. The path loss of each path is
expressed as

4rd; f.
Li(d;) = 201ogy, ( clf ) + Lirer (D

where d; is the path length, f. is the carrier frequency, c is the
speed of light, and L, is the additional loss due to reflection
or diffraction.

The corresponding complex path gain in the linear domain
is obtained from (1) as

a = 107 F1(d)/20, )

The antenna gain for each link is configured according
to [9]. Specifically, the main lobe gain G, is applied to
the desired UAV-UE link, and the side lobe gain Ggige i
applied to interfering links. This allows the directional effect of
beamforming to be reflected in the channel gain and simplifies
interference power calculations.

Furthermore, an IRS (Intelligent Reflecting Surface) is in-
troduced. When there is no LoS link between a UAV and
a user, a new reflected path is generated via the IRS. The
IRS is assumed to have ideal reflection characteristics, with
an amplitude reflection coefficient of 1 and fully controllable
phase. As a result, high-gain reflection paths can be established
even for NLoS users.

Let s and ¢ denote the indexes of the serving and interfering
UAVs, respectively. For a generic link between UAV k and
user u, where k € {s,i}, the overall complex baseband
channel coefficient is expressed as

Lg,u
P = Z al’k,uGt’lGre_ﬂﬂfcn, ke {S,Z} 3)
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where Ly, ,, is the number of propagation paths between UAV &
and user u, oy, is the complex gain of the path, G;; and G,
are the transmit and receive antenna gains, respectively, and 7;
is the propagation delay. Communication via IRS is assumed
to occur only along the desired path, and the reflected path is
incorporated into the equation under the assumption of ideal

reflection.

Let s denote the index of the UAV providing service to user
u. The received signal power at user u, Py ,, is expressed as

R'x,u = Ptx Gmain,s,u Gr |hs,u 2 (4)

where Gqin,s, 1S the main lobe gain of the UAV s toward
user u, G, is the receive antenna gain, and h ,, is the complex
channel coefficient between UAV s and user u. This channel
coefficient includes the LoS path, NLoS path, and the ideal
reflection path generated by the IRS.

The interference signal power I,, from other UAVs i (i # s)
using the same time—frequency resources is given by

Nuav

Iu = Z Ptx Gside,i,u Gr |hi,u‘2 (5)
i#£s
where Ggige,i, is the side lobe gain from UAV ¢ to user u.
The thermal noise power Ny is expressed as
No = N4B (6)

where B is the bandwidth and g is the noise power spectral
density.
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Based on the above, the signal-to-interference-plus-noise
ratio (SINR) at user u is defined as
P,

SINR,, = — =% . 7

This channel model comprehensively accounts for direc-

tional antennas, IRS reflections, interference from multiple

UAVs, and multipath propagation effects, enabling high-

fidelity UAV network performance evaluation.

III. SIMULATION RESULTS AND DISCUSSION

A. Simulation parameters

In this section, numerical analysis is conducted based on the
system and channel models described in the previous section.
The simulation parameters are summarized in Table 1.

TABLE I: Simulation Parameters

Parameter Value
Carrier frequency 28 GHz
Bandwidth 100 MHz
Ray-tracing method SBR
Max. number of reflections 1

Max. number of diffractions 0
Environment Tokyo Metropolitan Gov. area
UAV altitude (min / max) 50 m/ 150 m
UAV transmit power 27 dBm
UAV main lobe gain 18 dBi
UAV side lobe gain -2 dBi
Number of IRSs 1000 (4 x 250)
IRS height 10 m

IRS incident/reflect angle range 15°-75°
Number of UEs 6970

UE height I m

UE spacing 10 m

UE antenna gain 0 dBi
Noise power density -174 dBm/Hz
Number of particles 30
Number of iterations 30
Inertia weight w 0.1-1.1
c1, C2 1.49

The optimization algorithm employed in this study is Parti-
cle Swarm Optimization (PSO) [10]. The design of the objec-
tive functions for the optimization problem will be described
in the following subsections.

B. Objective function design

In this study, the UAV base station placement problem is
formulated as a global optimization problem that maximizes a
given objective function. The design variables are the positions
of multiple UAVs, x; = (zs,ys,hs), PSO is employed
to search for UAV placements that maximize the objective
function.

This subsection compares several objective functions to
identify the most appropriate one from the perspective of
fairness in user communication quality.

1) Maximization of average throughput

(x) = ! NE ——logy (1 + ) 3
fi(x o) + Yu 8

281

where Nyg is the number of UEs, v, is the received
SINR of user u, B is the bandwidth, and Ck(u) is the
number of UEs simultaneously connected to UAV k(u).
This objective function maximizes the average through-
put of all UEs. Since UAV resources are shared among
multiple UEs, the throughput is scaled by B/Cj(y)-

2) Maximization of average throughput with a coverage
constraint

1 W
X)= — S 2 log, (14
R0 = s 3 g omall )

1 Nug
Lt — 1(vy = %n) = 0.8 9
s NUE; (Vu = 7tn) ©)

where 741, is the SINR threshold for a user to be con-
sidered in coverage. This objective function maximizes
the average throughput while ensuring that at least 80%
of UEs can communicate.

3) Maximization of peak average throughput

1 Nue
fa(x) = Now > Blog,(1+ ) (10)
u=1

where the throughput is evaluated under the assumption
that all resources are allocated to user u. This function
evaluates the theoretical peak performance without con-
sidering actual resource sharing.

4) Maximization of CDF 20% SINR

(1)

where vcprooy, represents the 20th percentile of the
SINR distribution across all UEs. Since some UEs are
inevitably out of coverage due to building blockages,
the objective focuses on maximizing the 20th percentile
SINR rather than the minimum SINR.

5) Maximization of CDF 20% throughput

f1(x) = vepr20% (%)

f5(x) = Repraon () (12)

where Rcoprogy, 18 the 20th percentile of the throughput
distribution among all UEs. By maximizing this metric,
fairness from a throughput perspective can be consid-
ered.

6) Maximization of the number of connected users

Nug

fo(x) = > 1(vu > in)

u=1

13)

where 7}, is the SINR threshold for determining whether
a user is connected. This objective function simply
maximizes the number of users that can be served.

Based on these objective functions, we performed placement
optimization for five UAVs, repeating the optimization ten
times for each objective function. Figure 2 shows the CDF
of user throughput for the representative optimal placement
obtained for each objective function.
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Fig. 2: CDF of user throughput under different objective

functions.

The comparison of the objective functions revealed that
functions such as (1) and (2), which aim to maximize average
throughput, tend to neglect low-throughput UEs, resulting in
a significant disparity in throughput distribution. In contrast,
objective function (5), which maximizes the 20th percentile
throughput, maintains fairness in terms of throughput and
provides balanced communication performance. Since the goal
of this study is to construct a system capable of temporarily
providing high-speed and high-capacity communication, we
employ objective function (5), in the subsequent analysis to
ensure both performance and fairness.

C. Construction of LoS probability model

To evaluate the propagation environment between UAV base
stations and ground users more efficiently, we introduce a
LoS probability model in addition to the detailed ray tracing
model. The LoS probability model is based on the method
proposed in [11], where the LoS probability is formulated
using statistical building parameters.

In [11], the LoS probability between a transmitter and
receiver, P(LoS, 6), is approximated using the statistical build-
ing parameters «, 3, and ~y as

1

P(Lo8,0) = 7 aexp[—b(f — a)]

(14)

where 0 is the elevation angle, and a and b are parameters
derived from «, (3, and . This model enables the calculation
of LoS probabilities between UAVs and UEs from statistical
information without explicit building geometry. Since it is
significantly faster than ray tracing, the combination of the
two models can be leveraged for efficient UAV network system
design.

The ray tracing model can accurately evaluate propagation
losses by identifying the UAV-UE propagation paths based
on 3D building data, but it incurs a high computational cost,

which limits its applicability in large-scale optimization prob-
lems. In contrast, the LoS probability model probabilistically
determines LoS/NLoS states and evaluates path loss using
PLyos(0) for LoS and PLnpos(6) for NLoS conditions,
thereby drastically reducing computation time. Subsequent
numerical analyses confirmed that the evaluation time of
the objective function using the LoS probability model was
approximately 1/166 of that with the ray tracing model.

Furthermore, we confirmed that UAV placement optimiza-
tion can be performed within the LoS probability model
as well. Figure 3 shows the optimal UAV placement and
the received SINR map of UEs obtained by optimizing the
placement of five UAVs using both the LoS probability model
and the ray tracing model.
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Fig. 3: Comparison of UAV placement optimization results
between the two models (top: ray tracing, bottom: LoS prob-
ability).

The upper panel shows the result of the ray tracing model,
where the building geometry is precisely considered, resulting
in clearly defined cell boundaries. In contrast, the lower panel
shows the result of the LoS probability model. Since the model
does not explicitly handle building geometry and instead
determines LoS probability based on elevation angle, the cell
boundaries appear blurred.

To further demonstrate the similarity between the two
models, we optimized UAV placements for 3, 5, 7, and 9
UAVs in both environments and compared the CDF of the
received throughput of all UEs, as shown in Fig. 5. The
blue line represents the ray tracing model, while the red
line represents the LoS probability model. The optimization
objective function used here is the 20th percentile throughput
maximization (objective function (5)).

The results show that the throughput CDF characteristics
with respect to the number of UAVs are generally similar be-
tween the two models. This indicates that the LoS probability
model can be effectively utilized for UAV number estimation
and as an auxiliary tool for UAV placement optimization.
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D. Optimization support using the LoS probability model

While optimization using the ray tracing model provides
high accuracy, it requires a large amount of computation
time and can become impractical for optimization problems
with large search spaces. To address this, we propose a two-
stage optimization approach that combines the LoS probability
model with the ray tracing model to balance computational

Fig. 4: Overview of the proposed method

efficiency and high accuracy. An overview of the proposed
method is shown in Fig. 4.

In the first stage, Particle Swarm Optimization is performed
using the LoS probability model. Because the LoS probability
model probabilistically determines LoS/NLoS states based on
elevation angle, its computational cost is significantly lower
than that of ray tracing, making it possible to efficiently carry
out large-scale optimization with a large number of particle
evaluations. The particle position distribution obtained at the
final iteration provides useful information for exploring global
solutions in UAV placement.

In the second stage, the final particle positions from the
LoS probability model are directly used as initial solutions
for optimization with the ray tracing model. This enables
the search to focus on promising candidate points expected
to yield high objective function values, thereby accelerating
convergence to the optimal solution.

By combining the lightweight LoS probability model with
the high-accuracy ray tracing model, this approach achieves
efficient and accurate optimization that leverages the strengths
of both models.

Figure 6 shows the convergence characteristics of the ob-
jective function values for both the conventional and proposed
methods. The objective function is set to maximize the 20th
percentile throughput (objective function (5)). The figure plots
the objective function values as a function of the number
of evaluations in the UAV placement optimization with five
UAVs. The blue curve represents the conventional method (ray
tracing model only), and the red curve represents the proposed
method (initialized with pre-optimization results using the
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LoS probability model). The shaded regions indicate the 95%
confidence intervals for each method.

Although the final objective function values of both meth-
ods are similar, the proposed method shows a much faster
increase in the objective function during the initial search
phase, indicating significantly improved exploration efficiency.
This improvement results from narrowing the search space in
advance using the LoS probability model, enabling the ray
tracing model optimization to proceed more efficiently.

This difference is expected to become even more pro-
nounced in scenarios with more complex objective functions.
Therefore, the proposed approach is considered an effective
method for UAV group placement optimization.
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Fig. 6: Comparison of objective function values between the
conventional method and the proposed method.

IV. CONCLUSION AND FUTURE WORK

In this paper, we investigated a placement optimization
method that integrates IRS into millimeter-wave UAV base sta-
tion networks to enhance coverage and communication quality
in urban environments. First, we constructed a high-fidelity
communication environment evaluation framework based on
3D city models and ray tracing. By comparing multiple
objective functions, we quantitatively evaluated overall system
performance and fairness. The results confirmed that using
objective function (5), which maximizes the 20th percentile
throughput (CDF 20%), achieves a good balance between high
throughput and fairness.

Furthermore, in addition to the detailed ray-tracing model,
a LoS probability model with a computation time reduced to
1/166 was introduced. The results demonstrated the similarity
between the two models and indicated that the LoS proba-
bility model can potentially be used to estimate the optimal
number of UAVs and serve as a complementary tool for UAV
placement optimization.

We also proposed a two-stage optimization method that
combines the LoS probability model and the ray tracing model.
By using the pre-optimization results obtained with the LoS

probability model as initial solutions for the ray tracing model,
we confirmed that convergence in the early search phase can
be significantly accelerated. While the final objective function
value was comparable to that of the conventional method, the
proposed approach reduced the number of iterations required
for convergence, demonstrating its effectiveness for large-scale
and high-fidelity optimization.

Future work includes optimizing UAV placement consid-
ering dynamic UAV movement, improving the optimization
algorithms, and evaluating the feasibility of UAV base stations
using IRS in practical scenarios. Through these efforts, we aim
to realize highly efficient wireless communication networks for
disaster response and large-scale events.
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