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Abstract—In this work, we propose an intrusion detection
system (IDS) designed to effectively detect various attacks that
can occur in uncomplicated application-level vehicular computing
and networking (UAVCAN) protocol. UAVCAN is an upper-layer
communication protocol built on the controller area network
(CAN) physical layer, allowing electronic control units (ECUs)
within UAVs to exchange messages. Recently, various IDSs have
been proposed for the CAN protocol because of its vulnerability
to security threats. However, these existing IDSs were designed
for in-vehicle CAN networks. As a result, they fail to fully
reflect the message structure and communication characteristics
of UAVCAN, making it difficult to apply them directly to
UAVCAN environments. Therefore, we propose a UAV-specific
IDS optimized for UAVCAN using a multilayer perceptron
(MLP). The proposed model is designed to effectively reflect the
characteristics of UAVCAN. We evaluate the proposed model
using a dataset collected from a real drone equipped with a
UAVCAN bus. Moreover, the same dataset is applied to existing
in-vehicle CAN IDS models for performance comparison. The
experimental results confirm that existing CAN IDS models
fail to effectively detect attacks in the UAVCAN environment,
whereas the proposed model achieves a high average accuracy
of approximately 98.69%.

Index Terms—UAVCAN, CAN, drone, intrusion detection sys-
tem, multilayer perceptron

I. INTRODUCTION

Recently, unmanned aerial vehicles (UAVs) have been
widely used in various civil and commercial fields beyond
military applications [1]. The electronic control unit (ECU), a
key component of these UAVs, serves to control and manage
various electrical subsystems. Multiple ECUs are intercon-
nected via the controller area network (CAN) protocol, which
provides low-latency communication for efficient system oper-
ation [2]. CAN is a representative in-vehicle network standard
that has been widely adopted for its high transmission speed,
reliability, and cost-effectiveness. It operates as a serial bus
based on a broadcast communication mechanism. However, it
lacks authentication and encryption capabilities, which makes
it vulnerable to cyberattacks such as message injection.

These limitations have received considerable attention in
the automotive industry, and numerous studies have been
conducted to enhance CAN security [3]–[5]. In particular,
various machine learning–based intrusion detection system
(IDS) have been proposed [6]–[8]. Among them, DCNN is

a representative supervised learning-based IDS utilizing a re-
duced Inception–ResNet architecture, which has demonstrated
high detection performance [9]. An LSTM-based IDS model
was introduced by Hossain et al., using CAN ID, DLC, and
payload information as training data [10]. Similarly, HyDL-
IDS combines CNN and LSTM architectures while adopting
identical training data [11]. Seo et al. proposed a generative
adversarial network (GAN)–based IDS, referred to as GIDS
[12]. GIDS is a representative unsupervised-learning model
for CAN security that is trained only on normal data and can
detect previously unknown attacks.

Existing IDSs were designed for in-vehicle CAN. Conse-
quently, these models are difficult to apply directly to uncom-
plicated application-level vehicular computing and networking
(UAVCAN) systems and may exhibit degraded performance.
UAVCAN constructs its data frames based on data structures
defined by the data structure description language (DSDL), and
the detailed frame composition is determined by the tail-byte
and multi-frame handling mechanism. In short, UAVCAN ex-
tends the conventional in-vehicle CAN with additional mech-
anisms. Therefore, this study proposes a multilayer perceptron
(MLP)-based IDS optimized for the UAVCAN environment.

The contributions of this work are described as follows:
• We propose a UAVCAN-specific IDS based on MLP

(UM-IDS) that utilizes the CAN ID, DLC, and payload as
bit-level inputs. Furthermore, the configurations of MLP
layers are evaluated to determine the optimal number of
hidden layers and design an efficient IDS architecture
suitable for the UAVCAN environment.

• The proposed UM-IDS was evaluated using a publicly
available dataset collected from an actual drone. Ex-
perimental results demonstrate that the proposed model
achieved an average accuracy of 98.69%, a precision of
96.71%, and a recall of 99.70% for various attack types
such as flooding, fuzzy, and replay.

• In addition, representative CAN-based IDS models were
implemented and applied to the UAVCAN dataset to
demonstrate the superiority of the proposed UM-IDS
through performance comparison.

The rest of this work is organized as follows. Section II
introduces the background for this study such as CAN and
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Fig. 1. Structure of a CAN frame.

UAVCAN protocols. Section III describes the data preprocess-
ing procedure and the architecture of the proposed UM-IDS
model. In Section IV, we present the experimental environ-
ment, experimental results, and a discussion of limitations.
Finally, Section V concludes this work.

II. BACKGROUND

A. Controller Area Network (CAN)

CAN is a representative in-vehicle communication protocol
that enables the exchange of control signals and status infor-
mation between multiple ECUs within a vehicle [13]. CAN-
based networks are designed with real-time capability, reliabil-
ity, and efficiency to support the core functions of the vehicle.
Consequently, they have become a standard communication
protocol in in-vehicle networks.

Fig. 1 shows the two formats of the CAN protocol: CAN
2.0A and CAN 2.0B. CAN 2.0A uses an 11-bit identifier (ID)
to determine message priority. CAN 2.0B adopts an extended
frame format with a 29-bit ID, providing a wider identifier
space. During bus arbitration, a dominant bit (0) overrides a
recessive bit (1), so the frame with the lowest ID wins.

B. Uncomplicated Application-level Vehicular Computing and
Networking (UAVCAN)

UAVCAN is a lightweight communication protocol based
on CAN 2.0B that provides stable and reliable communication
for modern vehicles such as UAVs. This protocol adopts a dis-
tributed network architecture to prevent single point of failure.
In addition, unlike conventional in-vehicle CAN systems, each
node in the UAVCAN network has a unique identifier and
exchanges data between nodes through two methods: message
broadcasting and service invocation. The message formats
used in these two transmission methods are defined by the
DSDL. DSDL is a data schema that specifies a data type name
and a unique identifier in each file. UAVCAN data types are
predefined and embedded in the firmware of each node. Nodes
encode and decode messages according to these definitions.
Therefore, UAVCAN is an upper-layer protocol operating over
the CAN bus that interprets and transmits messages according
to the data types defined by DSDL.

In UAVCAN, message dissemination follows a pub-
lish–subscribe principle, enabling efficient exchange of data
messages among network nodes. This process is classified
into single-frame and multi-frame transmissions. Single-frame
transmission is used when the entire data payload can be

contained within a single CAN frame of up to 8 bytes. Multi-
frame transmission is applied when the data size exceeds the
transmission capacity of a single frame, in which case the
payload is divided into multiple frames and sent sequentially.
Meanwhile, service invocation operates as a peer-to-peer com-
munication mechanism for node configuration and firmware
updates. In this method, a server node receives a request from
a client node and returns the processing result as a response.

C. MultiLayer Perceptron (MLP)

MLP is an artificial neural network architecture that includes
one or more hidden layers between the input and output layers.
It performs sequential nonlinear transformations by applying
nonlinear functions between each layer. Through this process,
the network can learn complex interactions among input
features that cannot be represented by linear transformations
alone. The output of the l hidden layer in a typical MLP can
be expressed as follows:

h(l) = ϕ
(
W (l)h(l−1) + b(l)

)
, h(0) = x (1)

Here, x ∈ RD denotes the input vector, while W (l) and b(l)

represent the weight matrix and bias vector of the l-th layer,
respectively. ϕ(·) denotes the activation function (e.g., ReLU).

III. THE PROPOSED UAVCAN MLP-BASED IDS

A. Data Preprocessing

We use a preprocessing technique that converts UAVCAN
frame data into a binary representation at the bit level. Each
frame consists of an ID (29 bits), a DLC (4 bits), and a payload
(64 bits), which are combined to form a total of 97 bits. The
frame is then converted into a 1 × 97 binary image, where the
bit sequence follows the order from the MSB to the LSB. This
preprocessing step accurately preserves the CAN ID priority,
DLC, and byte-level payload structure without any information
loss. Consequently, the input dimension is fixed at 97, enabling
direct utilization in the proposed UM-IDS. Finally, normal data
are labeled as 0 and attack data as 1, allowing the model to
distinguish between the two classes during training.

B. Model Design

As the proposed UM-IDS adopts an MLP-based architec-
ture, its detection performance is highly influenced by the
number of hidden layers. Therefore, this study aims to design a
model that effectively distinguishes between normal and attack
frames by optimizing the hidden-layer structure. Initially, the
preprocessed 97-bit feature vector is fed into the input layer
and subsequently propagated through the hidden layers. In the
final output layer, a sigmoid function is applied to determine
whether each frame is normal or an attack.

Fig. 2 illustrates the architecture of the proposed UM-IDS
model. In this study, we compare six models, each with a
different number of hidden layers (0, 1, 2, 3, 4, and 8), to
evaluate their detection performance. The number of neurons
in the hidden layers is configured from a maximum of 256
to a minimum of 2. A decay rate of 0.5 is applied so that
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Fig. 2. Model architecture of UM-IDS

the number of neurons in each layer decreases by half as the
number of hidden layers increases. For example, in the struc-
ture with eight hidden layers, the number of neurons gradually
decreases from 256 in the first hidden layer to 128 in the
second layer, and finally to 2 in the eighth layer. This gradual
reduction structure enables hierarchical feature learning while
efficiently controlling the model complexity. Furthermore, the
ReLU activation function is employed for each hidden layer
to allow the model to learn nonlinear relationships between
inputs and outputs. At this stage, a dropout rate of 0.3 is set to
prevent overfitting, thereby suppressing excessive dependence
on specific inputs and improving the overall generalization
performance.

IV. EXPERIMENTS AND RESULTS

A. Experimental Settings

We trained and evaluated the UM-IDS model under the
following experimental environment.

• OS: Windows 11
• CPU: Intel(R) Core(TM) i9-13900K @ 3.00GHz
• GPU: NVIDIA GeForce RTX 4090
• RAM: 128.0GB
• Framework: PyTorch 2.4.1

In addition, the hyperparameters were carefully tuned to ensure
that the UM-IDS model achieved optimal performance during
the experiments. The batch size was set to 32, and the training
was conducted for a total of 50 epochs. The Adam optimizer
was employed with a learning rate of 0.001. To prevent
overfitting during training, an early stopping mechanism was
applied.

B. Dataset

In this work, we used the UAVCAN dataset [14] provided
by HCRL, as shown in Table 1. The dataset was collected
by attaching a CAN shield and a Raspberry Pi 4 to a drone

TABLE I
UAVCAN ATTACK SCENARIOS

Scenario Attack Type Interval (s) Total Time (s) Data Frame (N/A)

1 Flooding 0.0015 180 91,042 / 116,816
2 Flooding 0.0050 180 102,240 / 31,930
3 Fuzzy 0.0015 180 101,601 / 95,878
4 Fuzzy 0.0050 180 104,204 / 29,170
5 Replay 0.0050 210 129,996 / 50,612
6 Replay 0.0050 280 160,233 / 81,088

running the Pixhawk 4 (PX4) autopilot, and remotely injecting
attacks from a PC over an SSH connection. Scenarios 1 and
2 correspond to flooding attacks, scenarios 3 and 4 to fuzzy
attacks, and scenarios 5 and 6 to replay attacks. Scenarios
1–2 and 3–4 are distinguished by the attack-packet injection
interval, whereas scenarios 5–6 are distinguished by the total
data collection time. Each attack is defined as follows.

1) Flooding Attack
Flooding attack is a type of denial-of-service (DoS) at-
tack that repeatedly transmits a large number of packets
to exhaust the computational and communication re-
sources of the target system. In UAV environments, this
attack causes delays in normal communication between
control and data exchange subsystems, making it impos-
sible to maintain stable flight and mission execution.

2) Fuzzy Attack
Fuzzy attack is a type of attack that injects random
values into the data field of message frames to induce ab-
normal behavior in ECUs. This attack can cause critical
communication errors that disrupt flight control and may
ultimately result in the drone becoming immobilized.

3) Replay Attack
Replay attack is a type of attack that deceives the re-
ceiver by copying and retransmitting legitimately trans-
mitted data. Such attacks can cause the drone to re-
peatedly perform actions that may lead to potentially
dangerous consequences.

C. Evaluation Metrics

The performance is evaluated based on four met-
rics—accuracy, precision, recall, and F1-score—using the pro-
posed UM-IDS model. These metrics provide quantitative
criteria for assessing the reliability and classification capability
of the model. The metrics are computed from the confusion
matrix using the counts of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). Each
metric is calculated as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)
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TABLE II
PERFORMANCE OF UM-IDS ACROSS DIFFERENT HIDDEN LAYER NUMBERS

Number of
Hidden layers Attack Type Accuracy Precision Recall F1-score

No Hidden Layer
Flooding 0.9865 ± 0.0002 0.9699 ± 0.0005 1.0000 ± 0.0000 0.9847 ± 0.0003

Fuzzy 0.9823 ± 0.0008 0.9765 ± 0.0015 0.9765 ± 0.0016 0.9765 ± 0.0011
Replay 0.9340 ± 0.0016 0.8612 ± 0.0039 0.9399 ± 0.0011 0.8988 ± 0.0022

1 Hidden Layer
(256)

Flooding 0.9865 ± 0.0002 0.9699 ± 0.0005 1.0000 ± 0.0000 0.9847 ± 0.0003
Fuzzy 0.9985 ± 0.0001 0.9985 ± 0.0005 0.9975 ± 0.0004 0.9980 ± 0.0002
Replay 0.9716 ± 0.0006 0.9295 ± 0.0016 0.9838 ± 0.0012 0.9558 ± 0.0010

2 Hidden Layer
(256, 128)

Flooding 0.9865 ± 0.0002 0.9699 ± 0.0005 1.0000 ± 0.0000 0.9847 ± 0.0003
Fuzzy 0.9990 ± 0.0002 0.9990 ± 0.0004 0.9983 ± 0.0003 0.9986 ± 0.0002
Replay 0.9753 ± 0.0004 0.9324 ± 0.0011 0.9928 ± 0.0004 0.9617 ± 0.0006

3 Hidden Layer
(256, 128, 64)

Flooding 0.9865 ± 0.0002 0.9699 ± 0.0005 1.0000 ± 0.0000 0.9847 ± 0.0003
Fuzzy 0.9983 ± 0.0004 0.9983 ± 0.0012 0.9973 ± 0.0009 0.9978 ± 0.0006
Replay 0.9723 ± 0.0009 0.9277 ± 0.0029 0.9883 ± 0.0013 0.9570 ± 0.0014

4 Hidden Layer
(256, 128, 64, 32)

Flooding 0.9865 ± 0.0002 0.9699 ± 0.0005 1.0000 ± 0.0000 0.9847 ± 0.0003
Fuzzy 0.9985 ± 0.0003 0.9986 ± 0.0006 0.9974 ± 0.0007 0.9980 ± 0.0004
Replay 0.9718 ± 0.0012 0.9269 ± 0.0034 0.9876 ± 0.0014 0.9563 ± 0.0018

8 Hidden Layer
(256, 128, ..., 4, 2)

Flooding 0.7497 ± 0.2410 0.5718 ± 0.4254 0.7000 ± 0.4583 0.6135 ± 0.4264
Fuzzy 0.7996 ± 0.2003 0.3362 ± 0.4450 0.3980 ± 0.4874 0.3538 ± 0.4492
Replay 0.5556 ± 0.2618 0.3403 ± 0.3203 0.6948 ± 0.4549 0.4272 ± 0.3315

F1− score =
2 ·Recall · Precision

Recall + Precision
(5)

where TP denotes cases in which the model correctly classifies
actual attack data as an attack, and TN refers to correctly iden-
tifying normal data as normal, while FP represents misclassify-
ing normal data as an attack, and FN indicates misclassifying
attack data as normal.

D. Experimental Results

For the experiments, each dataset was divided into training
(70%), validation (15%), and testing (15%) sets. The perfor-
mance evaluation was repeated using ten random seeds, with
the mean performance and standard deviation calculated across
all experiments. The standard deviation represents the degree
of variation among experimental results, where a smaller
value indicates that the model performs more consistently and
stably. Therefore, we evaluated not only performance but also
consistency and stability via standard-deviation analysis.

Table II presents the detection performance of the proposed
UM-IDS according to the number of hidden layers for each
attack type. As a result of the experiments, the model with two
hidden layers achieved the highest performance, recording an
average accuracy of 98.69% and an F1-score of 98.17%. In
addition, the standard deviation values were less than 0.0012
for all performance metrics, indicating that this structure
achieved the best balance between model complexity and
generalization performance.

However, as the number of hidden layers increased to eight
or more, the performance tends to degrade significantly. In
particular, the model with eight layers showed remarkably
lower performance for all attack types, and the standard
deviation increased by at least 200 times and up to 400

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED UM-IDS WITH

EXISTING IDS MODELS

Attack Type Models Precision Recall F1-score

Flooding Attack

DCNN [9] 88.84 94.12 91.40
LSTM-IDS [10]∗ 0 0 0
HyDL-IDS [11] 97.08 100 98.52
UM-IDS 96.99 100 98.47

Fuzzy Attack

DCNN [9] 86.12 94.10 89.93
LSTM-IDS [10]∗ 0 0 0
HyDL-IDS [11] 93.77 98.69 96.17
UM-IDS 99.90 99.83 99.86

Replay Attack

DCNN [9] 85.34 94.82 89.83
LSTM-IDS [10]∗ 0 0 0
HyDL-IDS [11] 86.36 82.01 84.13
UM-IDS 93.24 99.28 96.17

∗Predicted all inputs as normal; ineffective as a UAVCAN IDS.

times compared with other structures. This indicates that the
variance of the training results was greatly enlarged, leading
to a decrease in the stability and consistency of the model.

Table III presents a performance comparison between the
proposed UM-IDS with the best-performing two-hidden-layer
architecture and existing CAN-IDS models. The existing CAN
IDS models showed relatively high detection performance
under the flooding attack scenario of UAVCAN, but their
performance decreased under the fuzzy and replay attack
scenarios. In particular, the LSTM-IDS [10] failed to operate
properly as an effective IDS in the UAVCAN environment.
This result is mainly attributed to the fundamental differences
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in data structure and transmission mechanisms between CAN
and UAVCAN. For example, in UAVCAN, a single message
is segmented into multiple CAN frames for transmission. An
attacker can exploit this mechanism to manipulate certain
frames or alter the transmission order, thereby causing ab-
normal patterns within the same data type. Therefore, con-
ventional CAN IDSs designed for single frame analysis have
difficulty effectively detecting transmission pattern variations
in UAVCAN. That is, conventional CAN IDS models have
limitations because they fail to fully reflect the structural
characteristics and transmission pattern diversity of UAVCAN,
resulting in performance degradation. In contrast, the proposed
UM-IDS is designed by considering these characteristics of
UAVCAN and achieved superior detection performance in the
UAVCAN environment.

E. Discussion and Limitation

In this work, we proposed UM-IDS, which explores the
optimal network structure according to the number of hidden
layers and achieves excellent attack detection performance in
the UAVCAN environment. The experimental results demon-
strated that excessively increasing the number of hidden layers
can lead to performance degradation, while the model with
two hidden layers achieved the highest detection performance.
Furthermore, compared with existing in-vehicle CAN IDS
models, the proposed UM-IDS achieved superior performance.
This result experimentally demonstrates the necessity of a ded-
icated IDS specifically designed for UAVCAN environments.
However, this study still has several limitations.

First, although the proposed model achieved higher de-
tection accuracy than existing in-vehicle CAN IDS models,
it has not yet achieved near-perfect performance. To ensure
stable UAV operation in the presence of attacks, a model with
higher detection performance is still required. Second, since
the proposed UM-IDS can only perform binary classification,
it is necessary to extend it to a multiclass model in the future to
establish countermeasures for each attack type. Finally, since
the proposed UM-IDS is based on supervised learning, it has a
limitation in detecting unknown attacks. Therefore, additional
techniques, such as threshold adjustment, should be applied to
enable the detection of new attacks.

V. CONCLUSION

In this study, we propose a MLP-based IDS to enhance the
security of UAVCAN. The proposed UM-IDS is specifically
designed for the UAVCAN environment. It effectively reflects
the multi-frame transmission characteristics and structural dif-
ferences of UAVCAN that were not considered in conventional
in-vehicle CAN IDS models. UM-IDS achieved detection ac-
curacies of approximately 98.65%, 99.90%, and 97.53% under
flooding, fuzzy, and replay attack scenarios, respectively. In
contrast, existing in-vehicle CAN IDS models failed to achieve
sufficient detection performance in the UAVCAN environment.
These results demonstrate the necessity of a dedicated IDS
specifically designed for UAVCAN. By comparing and ana-
lyzing the proposed UM-IDS with existing CAN-based IDS

models, this study is expected to contribute to UAV security
research based on the UAVCAN protocol. In future work, we
will extend our model to an unsupervised learning-based IDS
capable of detecting unknown attacks.
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