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Abstract—The study of multipartite nonlocality provides key
insights into the fundamental limits of quantum correlations
and their robustness under realistic noise. In this work, we
investigate the noisy violation of the Svetlichny inequality for mul-
tipartite Greenberger—Horne-Zeilinger (GHZ) states subjected
to independent and identically distributed (i.i.d.) dephasing and
depolarizing channels. We derive the analytical form of the noisy
GHZ state under these channels, and compute the expectation
value of the Svetlichny operator for arbitrary number of parties.
Specializing to the case of three qubits, we present numerical
results showing how noise degrades the violation, and determine
the critical noise thresholds beyond which genuine multipartite
nonlocality is lost. Our results provide a clear characterization of
the relationship between noise models and multipartite quantum
correlations.

Index Terms—genuine multipartite entanglement, nonlocality,
noisy quantum channel, quantum network, Bell inequality.

I. INTRODUCTION

Multipartite entanglement and nonlocality are central re-
sources for quantum information processing, playing a cru-
cial role in multipartite quantum cryptography [1], especially
towards the development of device-independent schemes [2].
Among various tools to characterize genuine multipartite
entanglement, the Svetlichny inequality is the most suitable
genuine multipartite entanglement witness, capable of distin-
guishing between partial entanglement and even general form
of partial correlation [3]. The Greenberger—Horne—Zeilinger
(GHZ)-type states maximally violates this inequality, making it
suitable for multiparty cryptogaphy protocols such as quantum
conference-key agreement [4].

In realistic scenarios, multipartite GHZ states are distributed
through noisy quantum channels [5]. A widely studied model
is the independent and identically distributed independent and
identically distributed (i.i.d.) noise acting on each subsystem,
with depolarizing or dephasing channels being the most rep-
resentative [6]. Understanding the robustness of Svetlichny
inequality violations under such noise models is essential for
assessing the feasibility of practical applications of the GHZ
states.

In this work, we derive analytical expressions for the expec-
tation value of the Svetlichny operator when GHZ states are
distributed through i.i.d. depolarizing and dephasing channels.
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Our derivation applies to the general M -partite case, allowing
us to determine the scaling behavior of nonlocal correlations
with system size and noise strength. The derivations results
provide an insight on how the noise affect the nonlocality
violations as we move from genuine multipartite nonlocality
to local separability.

For concreteness, we present explicit numerical results for
the case of M = 3, which serves as the simplest non-trivial
setting. We compute the expectation value of the Svetlichny
operator as it decays with increasing noise probability. The
corresponding critical noise levels are identified, marking the
transition between genuine quantum entanglement and cor-
relations explainable by partially local models. These results
highlight the trade-off between multipartite system size, noise
resilience, and the possibility of observing violations of the
Svetlichny inequality in realistic settings.

II. PRELIMINARIES
A. Quantum states

We now introduce quantum states and their corresponding
basis representations. A d-dimensional quantum state in the
computational basis is written as a linear combination of its
elementary basis |i) € H<:

) =D Aili), )

with ); as complex coefficients and its sum >, [\;[> = 1.
The statistical description is denoted using the density operator
3 € D(H), which is a Hermitian operator with unit trace. A
pure state |¢) is then described as |¢)(¢|, while the general
mixed state is given as

2= i)l 2)
i

with >, p; = 1 represent the probability of each state [¢);).
The descriptions of two or more quantum systems is referred
to as the composite system. A composite system can be written
in the ket form as

) ® 19}, 3)
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where both of this state are separable. However, an important
composite state that is of our interest is that of entanglement
class, in particular the maximally entangled states of M -partite
GHZ states defined as:

1
ghe = a1) = o (J0° = )@

where its density operator form |ghz — M)(ghz — M| can be
written as follows:
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This particular state is called entangled as they cannot be
written in the form of tensor product of their individual
systems. They exhibit a form of correlation that is non-local,
as proven by their violation of the Bell inequality [7].

B. Quantum Channel

In addition, we consider a quantum channel as a linear
completely positive trace-preserving (CPTP) map which takes
an input density operator ® € D(H?) to another density
operator N'(©) € D(HY). The depolarizing and dephasing
channels are of particular interest, as they represent realistic
noisy processes encountered in actual quantum systems [8],
[9]. These two noise models are specific instances of the
more general Pauli channel. Before introducing the channel,
we begin by introducing important unitary operators, namely
the pauli matrices as:

ox = [0) (1] + [1){0]
o, = 0)(0] — [1)(1]
oy = ([1)]0) = [0)(1]), (6)

where o, can also be expressed as .o o ,. Then the dephasing
noise is described by the following map:

Nz(©)=(1-¢)0O +q(6,00,), (7

where ¢ € [0, 1]. The dephasing noise randomly applies the
pauli-z operation with probability ¢ into the input state. The
depolarizing noise is described by the following map:

Np(©) = (1—¢q)® + %Ig

—(1-qe+1 > ololeciol, ®
k,le{0,1}

where I/2 € D(H?) is the maximally mixed state, represent-
ing a complete loss of information. So the depolarizing noise
cause the input state to completely loss its information with
probability q.

C. Svetlichny Inequality

The Svetlichny inequality is a family of multipartite Bell
inequality for a dichotomous observables and dimension d =
2. For M-partite system, where each particle i € Z}, =
{1,2,---, M}, has two dichotomous observables choice of

Al(-k), k € {0, 1}, the Svetlichny polynomial can be defined in
the recursive form of [3]:

Sy =S AN F S5 AY, )

where S = 1. Each observables Agk) is defined using its
vector form as Agk) = (@ - &), with |@; x> = 1, and
o& + oyf + 0,2 is the pauli vector. The optimal
measurement angles for the GHZ state is defined in the z-
y plane and hence we can parameterized each observable as
Al-k) = c0s(¢i,k)ox+sin(¢; i )oy. For M = 2, the Svetlichny
inequality gives the original CHSH inequality and its variant:

O_::

S = ADAD A MY A0 AP — AP,
Sy = AVAY + AV AP 4+ A0 AL — AP AN, (10)

The Svetlichny inequality has a property to differentiate
between genuine multipartite and partial nonlocality, both for
quantum or general nonlocality. For example, a tree-partite
quantum state can be a mixture of entangled states described
by

Y= Zpi,jzgl’z) ® 253)

(]

Y

which consist of bipartite entanglement between the first two
party but act locally with the third party. In more general
settings, this bipartite entanglement is a specific case of a
general correlation, i.e., suppose first and second party are
allowed to communicate their measurement results and their
observable choice, but act locally with the third party.

Based on the maximum violation of the inequality, the
genuine M-partite entanglement has the bound of |(S3;)| <
2M=1,/9 which is saturated by the GHZ-type states and for
other partial nonlocality, it can only reach [(S3;)| < 2M~1.
For example, in tripartite settings, a mixture of bipartite
entanglement cannot achieve expectation value of 41/2. Even
when we allow more general correlation between two parties,
it still cannot achieve the maximal bound. Hence maximum
violation indicates the existence of a genuine multipartite
entanglement.

III. Noisy GHZ UNDER 1.1.D. CHANNEL

The parallel i.i.d. channels acting on the GHZ state is
described using the notation N5 M@,) as:

LSS iy ane +

i€{0,1}

> Naelld) (DM
1.7€{0,1},i%]
(12)

In this noise setting, each subsystem undergoes the same noise
independently, which captures the behavior of multipartite en-
tanglement distribution in practical quantum network. Then for
each quantum channel, we have the following two propositions
as follows.
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Proposition 1: For M-partite GHZ state distributed under
the i.i.d. dephasing channels with parameter ¢, we have the
noisy state as:

Yo et

i€{0,1}

+ 77]\4 Z

i,5€{0,1} 1545

NZM(On) = % (

/i) <j®M>, (13)

with n = (1 — 2¢g).

Proof: For diagonal case (i = j), the dephasing noise
leaves the population intact and hence it is simply an identity
map. For off-diagonal case (i # j), we have the single partite
map as:

Nz(|i) () = (L = q) [é) (i — q1d) (il = (1 — 2q)

i)l
(14)

and the M -partite case is simply the tensor products for M-
times. O

Proposition 2: For an M -partite GHZ state distributed under
the i.i.d. depolarizing channels with parameter g, we have the
noisy state as:

> (vlnal+ i)™
1€{0,1}
My

1,5€{0,1},i#j

1
NEM(©y) = 2(
/i) <j®M>, (15)

where v = (1 — q).
Proof: For single-partite case, we have the map as:

N q k
g+ d Y o

ke{0,1}

PRAVRVIEA Ko

1€{0,1}

(16)

where for off-diagonal case (i # j), the left sum become zero
and we have

No([i)(l) =~ 19l (17)

and the M -partite case is simply the tensor product for M-
times. For diagonal case, o |i) (i| oL = |i)(i|, and since the
sum is over whole basis, we have:

Np(li) () = 1) (il + 5 D ok i) (i o
ke{0,1}

= i) (i| + glz, (18)

and hence the M -partite case is also the tensor product for
M -times. 0

IV. SVETLICHNY OPERATOR EXPECTATION VALUE

After deriving the noisy GHZ state, we derive the expecta-
tion value of the Svetlichny operator as follows. Since the all
observables Agk) is in the z-y plane, for a single system, we
have the following relations:

(0l A 0y =0

(O] A7 1) = 10

<1|A§k) 0) = etPik

(1AM 1) =0, (19)

which indicates that the expectation value only depends on the
off-diagonal components. To analyze the local measurement by
local observable on each subsystem, we consider the following
combined observable

AM:A1®A2"'®AM,

as the M -partite observables, each with their own parameter
¢;, for i € ZJI[I. The expectation values of this observable
using the GHZ states is

(20)

(Anr)

— N | —

> G A )M

,5€{0,1}

=5 (e +e7'?) = cos(9), 1)

where ¢ = ). ezt ¢;. Since the elementary maps of the ex-
pectation value depends only on the off-diagonal components,
then the expectation value given pure GHZ also depends only
on the off-diagonal components. For noisy GHZ state, we have
the expectation value of the Svetlichny operator (Si;) as:

(Si7) = tr (S50 (Nx))
= (SHO5™ Wa)) +tr (SHO5T (V) ), @)
since the diagonal expectation value is zero for the elementary
mapping, then its expectation values is also zero. Then the
noisy off-diagonal component is simply multiplied by constant

factor depending on the noise. The expectation value of the
for both noise model can be expressed as:

<SIZ\E[>(NZ) = nM<S]\:5>ghza
(SiY WD) = 7™ (837 ghes

where (Sﬁ)ghz is the expectation value given pure GHZ. By
choosing the parameters as [3]:

(h1,0,P2,0, - da0) = (£7/4,0,---0)

(23)

(¢1,17 ¢2,17 e (ZSM,l) - (:l:ﬂ—/4 + ’/T/277T/2, o 7/2) 9 (24)
we have that <8Ai4> ehz = 2M-1,/9 | and hence we have
(Sar)Nz) = pM2M 1V,
(Si)Np) = yM2M=1/2, (25)

The expectation values for dephasing noise is reduced as a
factor of (1 — 2q) as compared with depolarizing noise with

240



6 [ .|
5
To
)
o A
]
<
k=]
< G
*g 3
¥
%
=
2
- === Depolarizing
—— Dephasing
s Locality bound
| | |
0.00 0.05 0.10 0.15 0.20

Noise parameter ¢

Fig. 1. Svetlichny operator S5~ expectation value given noisy GHZ state under
dephasing noise N3 (@) and under depolarizing noise NS (@ ).
The nonlocality bound is the maximum value of the expectation value that
can be achieved without multipartite entanglement.

(1—g) factor. This can be explained from the derivations, that
is, the main contributions to the inequality violation is due
to the off-diagonal component. When the inequality approach
2M—=1"we can no longer distinguish whether the state is a
genuine entanglement or only partially entangled. Thus the
critical noise threshold is defined as the noise parameter g,
where the expectation value is equal to 2* — 1. For dephasing
noise, it is

1— 2—1/(2M)
4cNz) = — (26)
and for depolarizing noise, we have
Ge(Np) = 1271/ 27)

V. NUMERICAL RESULT

We perform numerical calculation of the expectation value
of the Svetlichny operator for the case of M = 3. The
GHZ undergoes the i.i.d. noise for dephasing and depolarizing
channel each. For the operator, we choose S;” and denote the
expectation value of observable AY) ®A§] ) ®A§’“) as E(i, 7, k).
The explicit form of the operator can be described as:

E(0,0,0) + E(1,0,0) + E(0,1,0) + E(0,0,1)

_E(1a170)_E(Loal)_E(Oalvl)_E(LLl)a (28)
and the observable for the first parameter is:
ox— O ox+o
A= —-%, Ay = —=—%, 29
1,0 NG 1,1 NG (29)
and for the remaining parameter, they are:
Az = A3 =0y,
Ay = A3 1 =oy. (30)
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Then given the noisy GHZ as described in previous sections,
we have the plot of its expected values as a function of noise
parameter g in figure 1. Both of the expected value goes down
as ¢ increases, suggesting that both noise destroy the nonlo-
cality. The critical noise threshold is obtained numerically as
q:(Nz) = 0.055 and q.(Np) = 0.109.

VI. CONCLUSIONS

We have analyzed the robustness of genuine multipartite
nonlocality in GHZ states under i.i.d. depolarizing and dephas-
ing noise channels. Starting from the noisy density operator,
we derived analytical expressions for the expectation value of
the Svetlichny operator for an arbitrary number of parties. This
general derivation provides a framework to study the decay of
nonlocal correlations under noise.

Focusing on the tripartite case, we presented explicit numer-
ical results illustrating how both depolarizing and dephasing
channels reduce the maximal violation of the Svetlichny
inequality. The critical noise thresholds, above which genuine
multipartite nonlocality is lost, were identified. These results
allow a clear distinction between full multipartite nonlocality
and partial correlations that can be explained by hybrid local
models.
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