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Abstract—Bistatic backscatter communication is a promising
technology for low-power Internet of Things (IoT) applications.
However, its broadcast nature poses significant security risks.
Covert communication aims to mitigate these risks by concealing
the very existence of a transmission. This paper provides an
overview of the evolution of covert communication schemes in
bistatic backscatter systems, from classical analytical models
to modern adversarial AI frameworks. We first review the
foundational approach, where system parameters are optimized
against a simple, model-based warden. We then detail the
paradigm shift required to counter an intelligent warden that
employs machine learning (ML) for detection. We propose a
framework based on Generative Adversarial Networks (GANs)
and Reinforcement Learning (RL), where a legitimate RL agent
learns to generate signal characteristics that are indistinguishable
to an advanced, data-driven warden. By surveying key literature,
we compare these approaches, highlighting the necessity of AI-
driven strategies for ensuring robust covertness in future wireless
networks.

Index Terms—Bistatic Backscatter, Covert Communication,
Reinforcement Learning, Generative Adversarial Network
(GAN), Physical Layer Security.

I. INTRODUCTION

Bistatic backscatter communication is a cornerstone tech-
nology for energy-efficient Internet of Things (IoT) networks
by enabling passive tags to transmit data by reflecting signals
from a dedicated carrier emitter [1]. While effective, this
paradigm’s broadcast nature creates a significant vulnerability:
an adversarial warden can perform traffic analysis to detect
ongoing transmissions, compromising user privacy and secu-
rity. To address this, covert communication seeks to hide the
very existence of a transmission, making the signal statistically
indistinguishable from ambient noise to a warden [3].

The design of such covert schemes has undergone a signif-
icant evolution, moving from predictable analytical models to
adaptive AI frameworks. Foundational works approached the
problem by assuming a classical warden that uses a simple
power detector (radiometer). Within this model, system param-
eters like transmit power and a tag’s reflection coefficient could
be analytically optimized to maximize the warden’s detection
error [1]. However, this approach is not robust against a mod-
ern, intelligent adversary that employs machine learning (ML)
for detection [2]. Countering this advanced threat requires a
paradigm shift to an adversarial framework, naturally modeled
by Generative Adversarial Networks (GANs) [9]. In this new

paradigm of this paper, the legitimate system is framed as
a Reinforcement Learning (RL) agent that learns a policy to
create covert signal waveforms that can fool the warden’s ML-
based classifier. This paper provides a structured overview of
this critical evolution, comparing the classical and adversarial
AI paradigms and outlining future research directions.

II. CLASSICAL MODEL-BASED APPROACH TO
COVERTNESS

The foundational work in covert bistatic backscatter sys-
tems relies on precise mathematical modeling and analytical
optimization. This approach provides fundamental insights and
performance bounds under specific assumptions.

A. System Model and Warden’s Detection

The foundational model for covert bistatic backscatter com-
munication, as established in [1], comprises four key entities: a
dedicated Carrier Emitter (CE), a passive information-bearing
Tag, a legitimate Reader, and an adversarial Warden. The
system model is illustrated in Fig. 1. The communication
process is initiated by the CE, which transmits a carrier signal,
potentially embedded with artificial noise (AN), to create
channel uncertainty. The passive Tag leverages this incident
energy to transmit its own information by modulating its
reflection coefficient. The Reader is tasked with decoding this
modulated, backscattered signal while canceling the interfer-
ence from the CE.

Concurrent to this legitimate communication, the Warden’s
objective is to determine whether the Tag is active. This task
is framed as a binary hypothesis testing problem, where the
Warden must decide between two possible states:

H0 : The Tag is silent (signal is absorbed). (1)
H1 : The Tag is active (signal is reflected). (2)

The fundamental challenge for the legitimate system is to
ensure the Warden cannot reliably distinguish H1 from H0.

AS Warden’s perspective, To minimize detection error, it
utilizes a Likelihood Ratio Test (LRT). Under the standard
assumption that the channel noise and artificial noise follow
Gaussian distributions, this LRT simplifies mathematically
to an energy detection strategy. Consequently, the classical
warden is modeled as a radiometer that compares the average
received signal power against a fixed threshold τ .
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Fig. 1. System model for classical covert bistatic backscatter communication,
adapted from [1]. The Warden attempts to detect the transmission from the
Tag to the Reader.

In this classical setting, we assume:
• The Warden has perfect knowledge of the channel statis-

tics (e.g., noise variance, average channel gain).
• The Warden does not know the instantaneous realization

of the artificial noise generated by the CE.
• The environment is static, meaning channel statistics do

not change during the detection window.
This reliance on fixed statistical models makes the radiometer
analytically tractable but vulnerable to manipulation if the
signal statistics deviate from the Warden’s expectations.

B. Analytical Performance Optimization

The core of the classical approach is to leverage the well-
defined system model to analytically optimize for energy
efficiency while satisfying strict security and reliability re-
quirements. This is achieved by first deriving closed-form
expressions for the system’s key performance indicators (KPIs)
and then formulating a constrained optimization problem.

The two primary KPIs are defined from the perspectives of
the adversary and the legitimate users, respectively:

• Covertness Metric: The effectiveness of the covert
scheme is quantified by the Warden’s minimum sum of
error probabilities, ξ∗, which represents the highest level
of uncertainty the legitimate system can induce at the
Warden. As derived in [1], by exploiting the channel
uncertainty introduced by the CE’s artificial noise, a
closed-form expression for ξ∗ can be obtained. The goal
is to forcing it as close as possible to the point of random
guessing (ξ∗ → 0.5 for equal priors).

• Reliability Metric: The quality of the legitimate commu-
nication link is measured by the outage probability at
the Reader, denoted as Pout. This metric captures the
likelihood that the received signal-to-interference-plus-
noise ratio (SINR) falls below the threshold required for
successful decoding.

With these analytical metrics established, an optimization
problem is formulated to achieve an energy-efficient design.
The primary objective is to minimize the CE’s transmit power,
P , which is the main source of energy consumption in the
system. The optimization variables are the CE’s transmit
power P and the Tag’s reflection coefficient β. The problem
is formally stated as:

min
P,β

P (3)

subject to ξ∗(P, β) ≥ 1− ϵ, (4)
Pout(P, β) ≤ δ, (5)
0 ≤ P ≤ Pmax, 0 ≤ β ≤ 1. (6)

Here, (4) represents the covertness constraint, where ϵ is
the maximum tolerable detection probability by the Warden.
Constraint (5) ensures the reliability of the legitimate link,
where δ is the maximum allowable outage probability. Finally,
(6) defines the physical constraints on the system variables.
By solving this problem, one can find the optimal static
operating point (P ∗, β∗) that guarantees covert and reliable
communication with minimal energy expenditure under the
assumed classical warden model.

C. Limitations

Despite its analytical elegance, the classical approach is
constrained by several fundamental limitations that curtail its
applicability in realistic scenarios. Its primary drawback lies
in the assumption of a simplistic and predictable adversary. By
modeling the warden as a static, model-based power detector,
the framework fails to account for intelligent adversaries that
can leverage machine learning to learn and adapt their detec-
tion strategies from observed data. Furthermore, the model is
inherently static, neglecting the impact of dynamic channel
conditions, mobility, and other real-world environmental fac-
tors. This, coupled with its analytical complexity, renders the
approach intractable for large-scale IoT scenarios involving
multiple heterogeneous wardens or numerous communicating
tags. These constraints collectively underscore the need for a
new paradigm—one that is adaptive, scalable, and resilient
enough to counter intelligent threats in dynamic wireless
networks.

III. ADVERSARIAL AI FRAMEWORK FOR ENHANCED
COVERTNESS

The classical model’s reliance on a predictable, non-learning
warden creates a significant vulnerability. A modern, sophis-
ticated adversary will not use a simple, static power detector
but will instead employ data-driven Machine Learning (ML)
techniques to identify subtle statistical patterns in the electro-
magnetic spectrum, rendering analytical covertness schemes
ineffective [2]. To counter this intelligent threat, the legitimate
system must also become intelligent, shifting the paradigm
from a static optimization problem to a dynamic, adversarial
game. This section details a framework for achieving robust
covertness based on the principles of Generative Adversarial
Networks (GANs) and Reinforcement Learning (RL).
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A. The Intelligent Warden as a Deep Learning Discriminator

In the adversarial AI framework, the threat model evolves
significantly. The warden is no longer a simple radiometer
constrained by fixed statistical assumptions. Instead, it acts as
a Deep Learning (DL) classifier (Discriminator) capable of ex-
tracting complex features from the raw I/Q signal samples. Its
objective is to analyze the raw received signal and distinguish a
covert transmission (H1) from ambient noise (H0), as identical
to the discriminator in a GAN [9]. The warden’s intelligence
is embodied in a Deep Neural Network (DNN), typically a
1D Convolutional Neural Network (CNN) optimized for time-
series analysis, as conceptually illustrated in Fig. 2.

Fig. 2. Conceptual architecture of the intelligent Warden’s DNN. The network
processes the raw I/Q signal through feature extraction (CNN layers) and
classification (dense layers) to produce a probabilistic detection score.

The warden’s decision-making process can be deconstructed
into several key stages, as shown in the figure:

1) Input Signal: The process begins with the raw, high-
dimensional I/Q signal received at the warden’s antenna.
This complex waveform contains both the potential
covert signal and environmental noise, making simple
energy-based distinctions unreliable.

2) Feature Extraction: The signal is first passed through a
series of convolutional layers. This is the core of the war-
den’s discriminative power. Unlike a classical radiometer
which only measures aggregate power, the CNN au-
tomatically learns to extract subtle, high-level features
and patterns—such as faint modulation traces, specific
spectral signatures, or temporal correlations—that are
characteristic of the legitimate user’s transmission.

3) Classification: After the relevant features have been
extracted and condensed, they are ”flattened” into a
vector and fed into a set of dense, fully-connected layers.
This classifier stage weighs the extracted features to
make a final judgment.

4) Probabilistic Output: The network’s output is not a
hard binary decision, but a probabilistic score (e.g., 0.91)
representing its confidence that the input contained a
covert signal. This continuous output is crucial, as it
provides a granular feedback signal that the legitimate

RL agent can use to calculate its reward and incremen-
tally improve its own policy.

This sophisticated, multi-stage architecture empowers the
warden to transcend simple energy detection and learn the
specific statistical fingerprint of the transmitter, making it a
far more formidable adversary. Specifically, we assume an
advanced threat model where the warden possesses data-driven
learning capabilities, utilizing access to labeled historical or
synthetic signal datasets to train its neural network. Unlike a
classical radiometer, this feature extraction process employs
CNNs to identify subtle temporal or spectral correlations that
distinguish the backscatter signal from noise. Furthermore, the
warden operates in a model-free manner, learning decision
boundaries directly from data without requiring prior knowl-
edge of specific channel parameters. The challenge is further
amplified in realistic scenarios with multiple, heterogeneous
wardens [2], where each adversary may possess distinct chan-
nel conditions, hardware capabilities, and classifier architec-
tures. This collective intelligence represents a ”worst-case”
scenario for the legitimate user, as the adversary is capable
of adapting to simple obfuscation techniques, thereby neces-
sitating the employment of the adversarial training dynamic
described below.

B. The Legitimate System as an RL Agent

To navigate this adversarial environment, the legitimate
system is modeled as a Deep Reinforcement Learning (DRL)
agent. Unlike static optimization, this agent interacts with the
environment to learn a dynamic policy π that maps states to
actions. The formulation is defined as follows:

• State Space (S): The state vector st encapsulates the
agent’s environmental awareness at time t. It typically
comprises the estimated Channel State Information (CSI)
of the forward and backscatter links, the residual energy
level of the tag (if battery-powered), and the historical
decoding feedback (ACK/NACK) from the Reader.

• Action Space (A): To allow for fine-grained control, the
agent operates in a continuous action space. The action
vector at = [Pt, βt] consists of the Carrier Emitter’s
transmit power Pt and the Tag’s reflection coefficient βt.
Continuous control algorithms, such as Deep Determin-
istic Policy Gradient (DDPG), are essential here.

• Reward Design (R): The reward function is the critical
driver of behavior, balancing three competing objectives:
reliability, covertness, and energy efficiency. The imme-
diate reward rt is formulated as:

rt = w1 log2(1 + γR)︸ ︷︷ ︸
Reliability (Rate)

+w2 log(1−D(yw))︸ ︷︷ ︸
Covertness (GAN Loss)

−w3Pt︸ ︷︷ ︸
Energy

(7)
where γR is the SINR at the Reader, and D(yw) ∈ [0, 1]
is the Warden’s estimated probability that the signal
yw contains information. The first term encourages high
data rates. The second term rewards the agent when
the Warden misclassifies the transmission as noise (i.e.,
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D(yw) → 0). The third term penalizes energy consump-
tion.

C. Adversarial Training Loop and Stability Considerations

The core of the proposed framework is the minimax adver-
sarial training loop, which embodies the dynamics of a Gen-
erative Adversarial Network (GAN) and establishes a com-
petitive interplay between the legitimate reinforcement learn-
ing (RL) agent (Generator) and the machine learning–based
Warden (Discriminator), as depicted in Fig. 3. The training
progresses in an alternating manner. First, the Warden’s deep
neural network is trained on labeled data comprising genuine
noise samples (H0) and signal samples produced by the current
policy (H1), optimizing binary cross-entropy loss to maximize
classification accuracy. Subsequently, the Warden’s parameters
are frozen, and the RL agent updates its policy network to
maximize the expected cumulative reward rt, which integrates
both communication performance and covertness objectives.
The covertness component is informed by the gradient feed-
back from the Warden’s discriminator, effectively guiding
the agent toward generating signal constellations that induce
maximum uncertainty in the Warden’s detection process.

Fig. 3. Conceptual illustration of the adversarial training loop. The RL
Agent (Generator) learns to produce signals that deceive the Warden’s DNN
(Discriminator), which, in turn, continuously improves its detection capability.

This alternating optimization constitutes a two-player, zero-
sum game, wherein the Generator endeavors to minimize
the Discriminator’s classification accuracy, while the Dis-
criminator simultaneously seeks to maximize it. Theoretical
convergence is achieved when the system reaches a Nash
equilibrium, corresponding to an operational state in which
the Generator’s outputs become statistically indistinguishable
from background noise. In this equilibrium, the Warden’s per-
formance approaches random guessing, and the detection error
probability converges to its upper bound, representing perfect
covertness. Through this adversarial dynamic, the RL agent
evolves beyond naive noise injection strategies, discovering
non-trivial, statistically grounded signal generation policies
that optimize covert communication robustness.

Despite its capability, adversarial training is inherently un-
stable and susceptible to phenomena such as mode collapse,
wherein the agent’s policy converges to a restricted subset
of signal patterns. To enhance training stability and ensure
reliable convergence, the framework incorporates two critical
mechanisms. First, experience replay is employed, wherein
transitions (st,at, rt, st+1) are stored in a replay buffer and
randomly sampled to decorrelate training data, thus stabilizing
gradient updates. Second, target networks are utilized as
slowly updated copies of the actor and critic models to com-
pute target values, mitigating oscillations induced by rapidly
changing network parameters and promoting convergence in
continuous state–action spaces.

These stability components render the proposed framework
both scalable and extensible to more sophisticated covert
communication paradigms. In particular, multi-discriminator
architectures have been demonstrated to further strengthen
covert resilience by enabling a single Generator to simulta-
neously deceive multiple heterogeneous Warden models [2].
Such extensions highlight the adaptability of the GAN-inspired
training paradigm, which has been effectively applied to
diverse physical-layer security challenges, including intelligent
jamming for UAV-assisted satellite communications [4] and
secure transmission design in cooperative cognitive radio
networks [6].

IV. COMPARATIVE ANALYSIS AND DISCUSSION

The transition from a classical, analytical framework to an
adversarial AI-driven approach marks a fundamental evolution
in designing secure communication systems. This section
provides a comparative analysis of the two paradigms, high-
lighting the distinct advantages and trade-offs inherent in each
methodology. A direct comparison is summarized in Table I.

The classical approach offers mathematical elegance and
provides theoretical performance bounds, but its real-world ap-
plicability is constrained by its rigid assumptions. Its primary
strength lies in establishing a fundamental understanding of
the problem under idealized conditions, defining the baseline
against which more advanced systems can be measured.

In stark contrast, the adversarial AI framework sacrifices
analytical tractability for a profound increase in robustness,
adaptability, and scalability. By learning directly from data and
interaction, it makes no strong assumptions about the warden’s
internal strategy, other than its ability to learn. This model-free
nature allows it to discover novel and complex covert signaling
strategies that would be impossible to derive analytically. For
instance, instead of merely optimizing power levels, the RL
agent can learn to craft specific waveform shapes or artificial
noise structures that exploit the learned ”blind spots” of the
warden’s DNN classifier.

Furthermore, the AI approach is inherently better suited for
the complexities of modern wireless environments. The frame-
work presented in [2] demonstrates that a single generator
can learn to be covert against a swarm of diverse, intelligent
wardens—a scenario that is analytically intractable but is a
natural extension of the multi-discriminator GAN architecture.

229



TABLE I
COMPARATIVE ANALYSIS OF COVERT COMMUNICATION FRAMEWORKS

Feature Classical Analytical Approach [1] Adversarial AI Approach [2]

Warden Model Assumes a simple, static power detector (LRT-based radiometer).
The warden’s strategy is fixed, predictable, and reliant on perfect
channel knowledge.

Models an intelligent, adaptive Deep Learning classifier (Discrimi-
nator). The warden’s strategy is data-driven, evolving, and capable
of learning from observed signals.

Methodology Relies on deriving closed-form mathematical expressions for error
probabilities and solving a constrained optimization problem.

Employs an adversarial training loop (GAN/RL) where the agent
learns an optimal policy through continuous interaction and feed-
back (trial-and-error).

Solution Form A set of optimal static parameters, typically the carrier emitter’s
transmit power (P ∗) and the tag’s reflection coefficient (β∗).

A trained neural network policy that dynamically generates op-
timal signal waveforms and power levels based on the current
system state.

Adaptability Low. The solution is fixed to the initial system assumptions. It
is brittle and fails if the environment changes or if the warden
adopts a new strategy.

High. The agent can continuously adapt its policy online to counter
new warden strategies, mobility, and changing channel conditions
via Meta-Learning.

Scalability Poor. The analytical complexity becomes mathematically in-
tractable when considering multiple tags or a swarm of hetero-
geneous wardens.

High. The framework naturally scales to multiple adversaries
by incorporating them as additional discriminators in the multi-
discriminator GAN architecture.

This scalability is crucial for securing large-scale IoT deploy-
ments where multiple potential adversaries may be present.
While the AI framework introduces its own challenges, such
as training complexity and the need for sufficient data (either
real or simulated), its ability to address the core limitations
of the classical model makes it the definitive path forward
for achieving practical and resilient covert communications in
contested environments.

V. FUTURE RESEARCH DIRECTIONS

The adversarial AI framework represents a significant leap
forward in achieving robust covert communications. However,
as adversaries evolve and network demands grow, several
cutting-edge research directions emerge. This section outlines
key frontiers that will shape the future of intelligent and secure
backscatter systems.

A. Meta-Learning for Rapid Adversarial Adaptation

The current adversarial training paradigm produces an RL
agent optimized against a specific set of warden classifiers. A
critical limitation is the agent’s inability to adapt quickly if
the warden drastically changes its detection strategy or if the
channel environment shifts unexpectedly. Extensive retraining
in real-time is often infeasible. A highly promising solution
lies in Meta-Reinforcement Learning, as explored in [8]. The
goal is to train an agent not merely to master one specific
covert policy, but to ”learn how to learn.” By training across
a wide distribution of simulated warden types and channel
models, a meta-trained agent can rapidly adapt its transmission
policy to a novel, unseen adversary with only a handful of
interactions. This capability transforms the legitimate system
from a reactive entity into a proactive one, capable of main-
taining covertness in a highly dynamic arms race.

B. Resource-Efficient AI for Edge Deployment

A primary challenge in transitioning these advanced AI
frameworks from theory to practice is their implementation on

resource-constrained hardware. The computationally intensive
nature of DNNs and RL algorithms is fundamentally at odds
with the low-power design philosophy of backscatter tags.
The initial goal of energy efficiency [1] must be revisited
in the AI context. Future work must focus on develop-
ing resource-efficient AI solutions, such as distributed and
adaptive communication frameworks designed specifically for
heterogeneous IoT environments [17]. This includes research
into lightweight neural architectures and model compression
techniques to reduce the computational footprint. Furthermore,
drawing inspiration from federated learning (FL) security [5],
a federated adversarial learning approach could be explored. In
such a system, multiple legitimate tags could collaboratively
train a powerful global covert policy using energy-efficient,
DDPG-based algorithms, similar to those developed for mod-
ern federated IoT networks [16].

C. Multi-Agent Systems for Cooperative Covertness
Real-world networks are rarely single-user systems. Future

research must extend the framework to complex multi-agent
environments to leverage cooperative dynamics. As demon-
strated in cognitive radio [6] and D2D systems [11], friendly
jammers or relays can significantly enhance covertness. To
manage this complexity, Multi-Agent Reinforcement Learning
(MARL) is essential. A prime example of this is seen in
autonomous systems where multiple agents learn to cooperate
to achieve a common goal, such as reliable surveillance [13].
In the context of covertness, a MARL framework would enable
agents (tags, CEs, and jammers) to learn optimal cooperative
strategies, deciding not only on their individual transmission
policies but also on how to best assist their peers through
intelligent jamming or relaying, potentially managed by robust
auction mechanisms [12].

D. Joint Trajectory and Signal Optimization
Finally, the agent’s action space can be dramatically ex-

panded beyond signal modulation. In mobile scenarios in-
volving UAVs acting as CEs or tags [4], the RL agent
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could learn to jointly optimize its physical trajectory and its
signal characteristics . This allows the agent to physically
maneuver to locations that are simultaneously advantageous
for communication with the reader and disadvantageous for the
warden’s detection. This concept, which has been successfully
demonstrated in learning-based cooperative mobility control
for autonomous drones [14], adds a physical dimension to
the adversarial game, forcing the warden to contend with
both a changing signal and a changing physical environment.
Finally, as surveyed in [3], a GAI-powered agent could learn
to transmit a signal that is semantically valid and decodable by
the warden but contains innocuous information, while the true,
secret message is embedded in subtle, goal-oriented features
only decodable by the intended reader. This would render
traditional signal detection-based wardens entirely obsolete.

VI. CONCLUSION

This paper has surveyed the progression of security tech-
niques for covert communications in bistatic backscatter sys-
tems. We began with the classical, model-based optimization
approach, which provides valuable theoretical insights but is
brittle against intelligent adversaries. We then detailed the
necessary evolution to an adversarial AI framework, where
a legitimate RL agent learns to generate covert signals against
one or more ML-powered wardens. This GAN-inspired ap-
proach transforms the problem from a static optimization to
a dynamic, adaptive arms race. By leveraging the power of
generative models, this framework provides a scalable and
robust path toward securing the next generation of low-power
IoT networks.
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