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Abstract— Passive indoor localization of device-free 
individuals is essential for applications like elderly care, 
intrusion detection, and smart homes. Current localization 
methods mainly fall into machine learning–based and analytical 
approaches. In this study, we focus on analytical methods. We 
introduce a dynamic Angle of Arrival (AoA) estimation 
technique using the Multiple Signal Classification (MUSIC) 
algorithm, incorporating filtering for Non-Line-of-Sight 
(NLOS) conditions by leveraging Wi-Fi Channel State 
Information (CSI). Two scenarios were compared to assess the 
impact of reflection on estimation accuracy: one with an 
Electromagnetic Shield (EMS) covering the target and another 
without shielding (No-EMS). EMS outperformed No-EMS in 
accuracy under Line-of-Sight (LOS) conditions, but both 
showed performance drops in NLOS scenarios, with EMS 
experiencing a greater decline. To mitigate degradation under 
NLOS conditions, a filtering method was proposed to detect 
NLOS segments from changes in AoA and decreases in the CSI 
amplitude of the static path. The detected segments were then 
corrected through linear interpolation. The median AoA error 
decreased by 14.3%, with average improvements of 15.8% 
under EMS and 11.1% under No-EMS, demonstrating that the 
proposed approach effectively suppresses outliers and improves 
dynamic AoA estimation in reflection-prone environments. 
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I. INTRODUCTION 
Passive indoor localization of device-free individuals 

plays an important role in a wide range of applications such as 
elderly care, intrusion detection, and smart homes [1], [2]. In 
particular, elderly people often resist the continuous use of 
mobile devices or wearable sensors [3], while intruders may 
intentionally avoid carrying devices to evade detection. In 
these practical scenarios, realizing device-free localization is 
indispensable. 

Early studies on indoor localization widely employed 
methods based on Received Signal Strength Indicator (RSSI) 
[4]. However, RSSI provides only power information over the 
entire channel, which imposes limitations on accuracy. 
Consequently, Channel State Information (CSI) has attracted 
increasing attention [5], [6]. CSI provides fine-grained 
information, including both amplitude and phase for each 
subcarrier, enabling applications such as high-accuracy 
localization and activity recognition [7], [8]. With the 
widespread use of Multiple Input Multiple Output (MIMO) in 
wireless LAN standards, CSI measurement with array 
antennas has become feasible, enabling approaches that 
exploit spatial resolution such as Angle-of-Arrival (AoA) 
estimation. Most conventional AoA-based studies assume that 

the target carries a device and utilize the direct path between 
transmitter and receiver [9]. In contrast, device-free 
localization relies on reflections from humans [10], and the 
key challenge is separating static reflections from walls and 
floors and dynamic reflections caused by human movement. 
Such dynamic reflections are typically much weaker than 
static multipath components, making robust AoA estimation 
particularly challenging in real environments. 

When a moving object passes near the line-of-sight (LOS) 
path between the transmitter and receiver, the direct path—
which should ideally remain a static component—can undergo 
noticeable temporal fluctuations. These fluctuations become 
mixed with human-induced dynamic reflections, making the 
separation between the two substantially more difficult. This 
loss of separability mainly occurs when the LOS component 
is disturbed by motion, leading to reduced AoA estimation 
accuracy. 

Approaches to device-free localization can be broadly 
categorized into machine learning–based methods and 
analytical methods. A representative machine learning 
approach is fingerprinting [11], which requires extensive 
offline training and is vulnerable to environmental changes. In 
this study, we adopt an analytical approach based on AoA 
estimation that leverages dynamic reflection components 
contained in CSI. 

Existing CSI-based analytical approaches, including 
Dynamic-MUSIC [10] and other AoA/ToF (Time of Flight) –
enhanced models, mainly focus on device-free tracking using 
high-resolution path separation. These studies also report that 
AoA estimation degrades in diagonal receiver placements; 
however, they do not address how to suppress this degradation 
using AoA information alone. In addition, existing work does 
not consider differences in target material properties, and 
therefore does not examine how changes in reflection 
characteristics affect dynamic AoA estimation. 

In this study, we experimentally evaluate dynamic AoA 
estimation using a moving human-shaped model both with 
and without electromagnetic shielding, and analyze how 
shielding modifies human-induced reflections and influences 
angle-estimation accuracy. Furthermore, to mitigate the 
estimation degradation caused by fluctuations of the static 
component during NLOS segments, we propose a NLOS-
filtering approach that combines angular variation and CSI 
amplitude to identify and correct unreliable segments. 

This study focuses on estimating the angle-of-arrival of a 
single device-free target using 5 GHz CSI measured with a 
3×3 MIMO transceiver. The scope of this paper is limited to 
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dynamic AoA estimation and its error mitigation; position 
estimation or multi-person tracking is outside the scope. The 
objective of this study is to evaluate how the presence or 
absence of electromagnetic shielding on a moving human-
shaped target affects dynamic AoA estimation, and to 
investigate methods for reducing angle estimation errors. 

The remainder of this paper is organized as follows. 
Section II presents the AoA estimation method, Section III 
details the measurement environment, Section IV describes 
the filtering strategy, and Section V discusses the 
experimental results. 

II. AOA ESTIMATION METHOD 

Principle of AoA Estimation 
AoA is estimated using the MUSIC algorithm. The 

estimation is made by utilizing the phase difference of the 
incoming signals at the antenna array. As illustrated in Fig. 1, 
if the antenna spacing is 𝑑𝑑, the incident angle is 𝜃𝜃, and the 
wavelength is 𝜆𝜆, then the path difference between adjacent 
antennas is 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃, which corresponds to the phase delay 

 ∆𝜑𝜑 = 2𝜋𝜋𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝜃𝜃
𝜆𝜆  () 

Based on this geometric relationship, the steering vector 
for an array with M antennas is expressed as 

 𝑎𝑎(𝜃𝜃) = [1, 𝑒𝑒−𝑗𝑗∆𝜑𝜑, 𝑒𝑒−𝑗𝑗2∆𝜑𝜑, … , 𝑒𝑒−𝑗𝑗(𝑀𝑀−1)∆𝜑𝜑]𝑇𝑇 () 

At a given time instant t, CSI matrix is denoted by  

 𝐻𝐻(𝑡𝑡) ∈ ℂ𝑇𝑇×𝑅𝑅×𝑆𝑆 () 

where T is the number of transmit antennas, R is the number 
of receive antennas and S is the number of subcarriers. Each 
column of H(t) represents the channel response across the 
antenna array.  

 By performing eigenvalue decomposition of the 
covariance matrix, the signal and noise components can be 
separated. The covariance matrix C is defined as follows: 

 𝐶𝐶 = 1
𝑁𝑁 ∑ 𝐻𝐻(𝑡𝑡) ∙ 𝐻𝐻(𝑡𝑡)𝐻𝐻𝑁𝑁

𝑡𝑡=1  () 

where N is the number of samples. Applying eigenvalue 
decomposition to the covariance matrix C, we obtain 

 𝐶𝐶 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐻𝐻 () 

The noise subspace En is extracted from E as the 
eigenvectors correspond to the smallest eigenvalues. Since the 

signal subspace is orthogonal to the noise subspace, the 
MUSIC spectrum is defined as 

 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 (𝜃𝜃) = 1
𝑎𝑎(𝜃𝜃)𝐻𝐻𝐸𝐸𝑛𝑛𝐸𝐸𝑛𝑛𝐻𝐻𝑎𝑎(𝜃𝜃) () 

and the angle that maximizes this spectrum is taken as the 
estimated AoA. 

 

Extraction of Dynamic Components and CFO Removal 

The raw received CSI contains strong static components 
such as the direct path from the signal source and reflections 
from walls and floors, and thus the dynamic reflections must 
be extracted. For each subcarrier S, let the time-series CSI be 
Hs(t). Its temporal mean 

 𝐻𝐻𝑆𝑆 = 1
𝑡𝑡

∑ 𝐻𝐻𝑆𝑆(𝑡𝑡)𝑡𝑡
𝑡𝑡=1  () 

is regarded as the static component 𝐻𝐻𝑆𝑆, and the residual 

 𝐻𝐻𝑆𝑆(𝑡𝑡) = 𝐻𝐻𝑆𝑆(𝑡𝑡) − 𝐻𝐻𝑆𝑆 () 

is used as the dynamic component 𝐻𝐻𝑆𝑆(𝑡𝑡) [10]. 

In addition, CSI contains time-varying phase rotations 
caused by Carrier Frequency Offset (CFO), which hinder the 
extraction of the dynamic components. To mitigate CFO, 
conventional studi es have proposed three schemes: 
dividing across transmit antennas (Tx-division) [12], dividing 
across receive antennas (Rx-division) [13], and conjugate 
multiplication between receive antennas (Rx-conjugate 
multiplication) [14]. Transmit-antenna division has been 
reported as the most effective [12]. CFO appears as a time-
dependent complex phase rotation, and its effect can be 
mitigated by dividing CSI values measured at the same time 
or by applying complex conjugate multiplication. In transmit-
antenna division, for two transmit antennas i and j, the relation 
is given by 𝐻𝐻𝑆𝑆

𝑖𝑖 /𝐻𝐻𝑆𝑆
𝑗𝑗 .  

To select appropriate transmit antennas and subcarriers for 
this division, the ratio between static and dynamic magnitudes 
is evaluated. For each transmit antenna and receive antenna 
pair, the mean magnitude of the static component and the 
maximum deviation magnitude of the dynamic component are 
computed for every subcarrier. The ratio of these magnitudes, 
averaged across receive antennas, indicates the dominance of 
the static path. The transmit antenna 𝑇𝑇1 and subcarrier 𝑆𝑆1 that 
yield the maximum ratio are used as the denominator, and the 
transmit antenna 𝑇𝑇2 with the second-largest ratio is used as the 
numerator. Here, ℎ(𝑝𝑝, 𝑇𝑇, 𝑅𝑅, 𝑆𝑆) is denotes the CSI of packet 𝑝𝑝 : 
indexes packets within the analysis window. Consequently, 
the division 

 ℎ(𝑝𝑝, 𝑇𝑇2, 𝑅𝑅, 𝑆𝑆1) / ℎ(𝑝𝑝, 𝑇𝑇1, 𝑅𝑅, 𝑆𝑆1) () 

is applied. ℎ(𝑝𝑝, 𝑇𝑇1, 𝑅𝑅, 𝑆𝑆1) is the static path and is used as the 
reference for the direct wave. After CFO removal, we apply a 
high-pass filter with a 1 Hz cutoff to capture moving-induced 
variations, and feed its CSI into the MUSIC algorithm for 
AoA estimation. 

 
Fig.1 Antenna array with incidental signal. 
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III. MEASUREMENT 
The experiments were conducted in an indoor 

environment measuring 11.4 m × 10.2 m. A 4 m × 4 m 
measurement area was defined at the center of the room, 
where an autonomous mobile robot (AMR) carried a human-
shaped polypropylene model. The AMR moved along three 
predefined trajectories (“N,” “Z,” and “V”) at a maximum 
speed of 1.0 m/s. Two target conditions were considered: (i) 
with electromagnetic shielding (EM-shielding) applied to the 
model, and (ii) without EM-shielding. 

The EM-shielding consisted of a copper layer (1138 nm) 
and a nickel layer (268 nm), yielding a surface resistance of 
0.02 Ω/square and a shielding effectiveness of 83 dB at 10 
GHz. Although this material does not represent real human 
clothing, its high electrical conductivity systematically 
increases reflection strength. This design enables controlled 
evaluation of how reflection magnitude influences the 
separability of static and dynamic components in CSI. 
Materials with moderate conductivity—such as metallic-
coated fabrics—can exhibit similar reflection enhancement, 
suggesting that the insights obtained here are relevant to 
practical indoor deployments. 

Wi-Fi CSI was collected using the Linux 802.11n CSI 
Tool on the 5 GHz band with a 40 MHz channel bandwidth. 
The CSI sampling rate was 1000 Hz. Both the transmitter (Tx) 
and receivers (Rx0–Rx2) were equipped with three antennas, 
forming a 3×3 MIMO configuration with 2 cm antenna 
spacing. AoA estimation was later performed using a 1.0s 
window with a 0.1s shift. A LiDAR sensor recorded the 
ground-truth of the target, enabling accurate evaluation of 
visibility conditions and AoA estimation errors. 

The spatial layout is shown in Fig. 2. The transmitter was 
placed at the lower-left corner of the measurement area, while 
the three receivers were positioned near the other corners: Rx0 
(lower-right), Rx1 (upper-left), and Rx2 (upper-right). Due to 
this geometry, the extent of Non-Line-of-Sight (NLOS) 
exposure differs among the receivers. Based on LiDAR-based 
visibility analysis, Rx0 experiences NLOS segments primarily 
in the “Z” trajectory, Rx1 encounters NLOS segments in the 
“N” trajectory, and Rx2—located diagonally from the 
transmitter—encounters NLOS most frequently across all 
trajectories. Although the exact ratios depend on the path, Rx2 
typically exhibits the longest cumulative NLOS duration. 
Each measurement sequence began with an empty 
environment for calibration, after which the AMR entered the 
measurement area and followed the designated trajectory.  

IV. AOA ESTIMATION RESULTS 
Figure 4 presents the AoA estimation accuracy for both the 

aggregated case (all routes combined) and each individual 
route. These results indicate that EM-shielding generally 
improves estimation accuracy compared with the No-EM-
Shielding condition. However, for Rx2—which encounters 
NLOS regions across all trajectories—the estimation accuracy 
significantly degrades under both conditions, and this 
degradation becomes more pronounced when EM-shielding is 
applied. This behavior occurs because when the moving target 
passes near the LOS path and temporarily blocks it, the direct 
path— which should act as a time-invariant static 
component—begins to fluctuate over time. Once the static 
component becomes time-varying, the logic for separating 
static and dynamic reflections breaks down, and the MUSIC 
input covariance matrix no longer retains the structure needed 
for stable AoA estimation. Under EM-shielding, the LOS 
blockage to be more pronounced; as a result, the fluctuation of 
the static component becomes larger, leading to even greater 
degradation in NLOS segments.  

Figure 5 shows the time-series AoA estimation results for 
the “N” route at Rx1 under both shielding conditions. The “N” 
route contains a NLOS segment between the transmitter and 
Rx1. Under the EM-shielding condition, the AoA estimation 
accuracy sharply deteriorates within the NLOS segment but 
remains high in the LOS segment. Under the No-EM-
Shielding condition, the estimation error also increases in 
NLOS segments, although the overall estimation accuracy 
remains lower than in the shielded case. 

Figure 6 plots the time variation in the CSI amplitude of 
the static path for the same route and receiver. The NLOS 
segments—identified from the LiDAR ground-truth 
trajectory—correspond to intervals where the CSI amplitude 
drops due to blockage of the direct path. This amplitude drop 

 
 (a) Route “N”              (b) Route “Z”      (c) Route “V” 

 

Fig. 2 Moving path of AMR for the measurement. 

     

        

  

    

    

     

      

     

      

               

 
Fig.3 Human-shaped model and EM-Shielding. 
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is more evident under EM-shielding because the shielding 
material more effectively attenuates the direct path when the 
target blocks the LOS region, causing a sharper reduction in 
the static-path amplitude. 

These observations indicate that large estimation errors 
often occur when the static component becomes unstable 
during NLOS transitions. Therefore, by detecting such 
segments using indicators such as abrupt changes in AoA 
estimates and decreases in static-path CSI amplitude, and by 
interpolating the corrupted intervals, the overall quality of 
dynamic AoA estimation would be improved. 

V. FILTERING STRATEGY 
As observed in Section IV, large AoA estimation errors 

tend to occur when the static component becomes unstable 
during LOS–NLOS transitions. To mitigate these effects, we 
introduce a filtering strategy that detects unreliable intervals 
and corrects them through linear interpolation. 

The proposed method identifies such intervals using a 
combined score derived from two indicators: the fluctuation 
of the estimated angle, and the attenuation of the static-path 
CSI amplitude. These indicators correspond to the two 
primary factors observed to cause estimation degradation. 

Filtering Details 
1. Scoring Angular Velocity 

When the AMR approaches or leaves an NLOS region, 
the estimated AoA typically exhibits rapid and irregular 
variations due to fluctuations in the static component. To 
quantify this behavior, the angular velocity 𝜔𝜔𝑛𝑛 is obtained by 
differentiating the estimated angle: 

𝜔𝜔𝑛𝑛 =
𝑑𝑑
𝑑𝑑𝑑𝑑 𝜃𝜃𝑛𝑛            () 

The short-term variability of 𝜔𝜔𝑛𝑛  is measured using the 
standard deviation of the most recent W-STD samples 

𝜎𝜎𝑛𝑛 = 𝜎𝜎𝑊𝑊−𝑆𝑆𝑆𝑆𝑆𝑆(𝜔𝜔𝑛𝑛)              () 

A shorter window reacts quickly to abrupt changes but 
becomes sensitive to noise, whereas a longer window 
provides smoother behavior at the cost of responsiveness. A 
moderate window length 11 was chosen to balance these 
effects.  

(a) CDF of AoA estimation results over all routes
 

(b) CDF of AoA estimation results for "N" route 

 
(c) CDF of AoA estimation results for "Z" route  

(d) CDF of AoA estimation results for "V" route 
Fig. 4 CDF of AoA estimation results for each route.. 

 
(a) EM-Shielding 

 
(b) No-EM-Shielding 

Fig.5 AoA Estimation for route N, Rx1 

 
(a) EM-Shielding 

 
(b) No-EM-Shielding 

Fig.6 CSI amplitude of the static path for route N, Rx1 
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Then score is computed: 

𝑠𝑠𝑛𝑛 𝜔𝜔 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ( 𝜎𝜎𝑛𝑛−𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎
𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎−𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎

;  0, 2)                 () 

Here, the function 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  constrains the normalized value 
within the range of 0 to 2. A larger 𝑠𝑠𝑛𝑛 𝜔𝜔 indicates higher short-
term instability. The upper bound of 2 allows the detection of 
fluctuations up to twice the level observed during typical 
AMR motion.    

2. Scoring CSI Amplitude Decrease 
Let 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴 denote the maximum static-path amplitude 

observed so far and 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴 denote the minimum amplitude 
observed so far. To ensure that these values represent the 
natural fluctuation range of the static component under LOS-
like conditions, amplitude samples that are already identified 
as NLOS candidates (based on the combined score) are 
excluded from updating 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴  and 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴 . As a result, 
the upper and lower envelopes 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴  and  𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴  are 
formed primarily from LOS or LOS-like samples. 

Using these values, the attenuation score is defined as: 

 𝑠𝑠𝑛𝑛 𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ( 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴−𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛
𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴−𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴

;  0, 2) () 

Scores above 1 correspond to drop in amplitude, indicating 
attenuation stronger than what is typically observed during 
LOS-like conditions. 

3. NLOS detection and Linear Interpolation 
The two scores are integrated into a combined NLOS 

confidence measure: 

 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 = 𝜔𝜔𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 ∙ 𝑠𝑠𝑛𝑛 𝜔𝜔 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 ∙ 𝑠𝑠𝑛𝑛 𝐴𝐴𝐴𝐴𝐴𝐴 () 

Here, the weighting parameters omega weight and amp 
weight were set to 0.4 and 0.6, respectively. Amplitude 
decrease was consistently observed as the dominant signature 
of NLOS-induced degradation, whereas angular fluctuations 
mainly captured rapid transitions around these intervals. 
Therefore, the combined score emphasizes amplitude while 
retaining angular variation as a supportive factor. 

A point is labeled as NLOS when: 

 𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 = { 1, 𝑖𝑖𝑖𝑖 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 ≥ 𝑡𝑡ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑜𝑜𝑜𝑜𝑜𝑜
    0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  () 

Because angular and amplitude variations do not perfectly 
distinguish LOS from NLOS, the threshold is not intended as 
a strict classifier but as a practical indicator of intervals where 
the AoA estimates are likely to become unreliable. In this 
study, the threshold was fixed at 1.2 which empirically 
highlighted segments where estimation errors tend to increase, 
even though the underlying propagation state may not be 
strictly NLOS. To avoid triggering interpolation due to 
momentary fluctuations or noise, correction is applied only 
when the threshold is exceeded continuously for at least 1.5 
seconds. For each such interval, the AoA estimates are 
replaced with a linear interpolation between its endpoints, 
suppressing abrupt deviations while preserving continuity 
consistent with feasible AMR motion. 

VI. RESULTS AND DISCUSSION 
Figure 7 shows the AoA estimation results after applying 

the proposed filtering method, and Figure 8 illustrates the 
linear interpolation applied to detected unreliable segments. 
Figure 7(a) summarizes the performance across the three 
trajectories (“N”, “Z”, and “V”). 

For Rx0 and Rx1, both in predominantly LOS regions, the 
median error improved modestly after filtering: from 0.20 to 
0.17 rad and from 0.24 to 0.22 rad under EM-Shielding, and 
from 0.24 to 0.20 rad and 0.30 to 0.29 rad under No-EM-
Shielding. These results show that the proposed method 
provides slight but consistent benefits even in LOS-dominant 
settings. 

Rx2, positioned diagonally and experiencing frequent 
NLOS segments, exhibited much larger pre-filtering errors 
(0.64 rad under EM-Shielding and 0.51 rad under No-EM-
Shielding). After filtering, both improved substantially: 0.64 
to 0.47 rad (26.6% reduction) and 0.51 to 0.42 rad (17.1% 
reduction). This confirms that although shielding intensifies 
NLOS degradation by attenuating the direct path, the 
proposed method effectively mitigates such errors by 
correcting unstable intervals. 

Aggregating all routes and receivers, the median AoA 
error improved from 0.35 rad to 0.30 rad (14.3%). Since the 
scoring-based detection is not a strict LOS/NLOS classifier, 
these gains arise from identifying periods where the MUSIC 
covariance matrix becomes unstable and smoothing them in 
accordance with feasible AMR motion. 

Algorithm: Filtering of AoA Estimates  
Input: 
    Sequence of estimated angles 𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = {𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝑁𝑁}

Received Dynamic CSI amplitude = {𝑟𝑟1, 𝑟𝑟2, … , 𝑟𝑟𝑁𝑁} 
    Sampling interval 𝛥𝛥𝛥𝛥 
Output: 
    Filtered angles 𝜃𝜃𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = {𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝑁𝑁} 
 
#Params  
W_STD       // window length for std of angular velocity 
THRESH    // NLOS candidate threshold 
 
# Step 1: Scoring Angular Velocity 
𝜔𝜔[𝑛𝑛] ←  (𝜃𝜃[𝑛𝑛]  −  𝜃𝜃[𝑛𝑛 − 1]) / 𝛥𝛥𝛥𝛥 
for each estimation n do 
   𝜎𝜎𝑛𝑛 ← std of 𝜔𝜔 over the last W_STD samples 
   maintain running 𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎, 𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎 over 𝜎𝜎𝑛𝑛 
   𝑠𝑠𝑛𝑛 𝜔𝜔 ← clip( (𝜎𝜎𝑛𝑛 − 𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎) / ( 𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎 − 𝑚𝑚𝑚𝑚𝑚𝑚𝜎𝜎 );  0, 2) ) 
end for 
 
# Step 2: Scoring Dynamic CSI amplitude Decrease 
for each estimation n do 
   maintain running 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴, 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴 
    𝑠𝑠𝑛𝑛 𝐴𝐴𝐴𝐴𝐴𝐴 ← clip( (𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐴𝐴𝐴𝐴𝐴𝐴𝑛𝑛)/(𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴);   0, 2) ) 
end for 
 
# Step 3: Detect NLOS and Linear Interpolate 
for each estimation n do 

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 ← 𝜔𝜔𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 ∙ 𝑠𝑠𝑛𝑛 𝜔𝜔 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 ∙ 𝑠𝑠𝑛𝑛 𝐴𝐴𝐴𝐴𝐴𝐴 
    𝑁𝑁𝐿𝐿𝐿𝐿𝐿𝐿𝑛𝑛 ←  if 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑛𝑛 ≥ THRESH else 0 
    for each NLOS segment [s,e] do 
        do linear comp between

end for 
end for 
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VII. CONCLUSION 
This study examined the effect of electromagnetic 

shielding on dynamic AoA estimation using Wi-Fi CSI across 
three trajectories and three receivers with different 
LOS/NLOS characteristics. EM-Shielding improved accuracy 
in LOS-dominant regions (Rx0, Rx1) but degraded 
performance in NLOS-dominant regions (Rx2) due to 
stronger attenuation of the direct path. 

To mitigate NLOS-induced degradation, we proposed a 
filtering method that combines angular fluctuation and static-
path amplitude decrease to identify unreliable intervals, 
followed by linear interpolation. Rather than strictly 
classifying propagation states, the method targets periods 
where the MUSIC covariance structure becomes unstable. 
Across all trajectories, it improved the median AoA error by 
14.3%, with larger gains in highly NLOS-dominant cases. 

Although EM-Shielding was used as a controlled means to 
vary reflection strength, the results provide insight into 
practical device-free localization, where similar effects may 
arise with conductive clothing or objects. Future work 
includes parameter-sensitivity analysis, extension to multi-
person scenarios, and evaluation for online implementations. 
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(a) CDF of AoA estimation results over all routes 
 

(b) CDF of AoA estimation results for "N" route 

 
(c) CDF of AoA estimation results for "Z" route 

 
(d) CDF of AoA estimation results for "V" route 

Fig. 7 CDF of AoA estimation results for each route after filtering 

 

 
Fig.8 Linear interpolation process in filtering. 
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