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Abstract— Passive indoor localization of device-free
individuals is essential for applications like elderly care,
intrusion detection, and smart homes. Current localization
methods mainly fall into machine learning—based and analytical
approaches. In this study, we focus on analytical methods. We
introduce a dynamic Angle of Arrival (AoA) estimation
technique using the Multiple Signal Classification (MUSIC)
algorithm, incorporating filtering for Non-Line-of-Sight
(NLOS) conditions by leveraging Wi-Fi Channel State
Information (CSI). Two scenarios were compared to assess the
impact of reflection on estimation accuracy: one with an
Electromagnetic Shield (EMS) covering the target and another
without shielding (No-EMS). EMS outperformed No-EMS in
accuracy under Line-of-Sight (LOS) conditions, but both
showed performance drops in NLOS scenarios, with EMS
experiencing a greater decline. To mitigate degradation under
NLOS conditions, a filtering method was proposed to detect
NLOS segments from changes in AoA and decreases in the CSI
amplitude of the static path. The detected segments were then
corrected through linear interpolation. The median AoA error
decreased by 14.3%, with average improvements of 15.8%
under EMS and 11.1% under No-EMS, demonstrating that the
proposed approach effectively suppresses outliers and improves
dynamic AoA estimation in reflection-prone environments.
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[. INTRODUCTION

Passive indoor localization of device-free individuals
plays an important role in a wide range of applications such as
elderly care, intrusion detection, and smart homes [1], [2]. In
particular, elderly people often resist the continuous use of
mobile devices or wearable sensors [3], while intruders may
intentionally avoid carrying devices to evade detection. In
these practical scenarios, realizing device-free localization is
indispensable.

Early studies on indoor localization widely employed
methods based on Received Signal Strength Indicator (RSSI)
[4]. However, RSSI provides only power information over the
entire channel, which imposes limitations on accuracy.
Consequently, Channel State Information (CSI) has attracted
increasing attention [5], [6]. CSI provides fine-grained
information, including both amplitude and phase for each
subcarrier, enabling applications such as high-accuracy
localization and activity recognition [7], [8]. With the
widespread use of Multiple Input Multiple Output (MIMO) in
wireless LAN standards, CSI measurement with array
antennas has become feasible, enabling approaches that
exploit spatial resolution such as Angle-of-Arrival (AoA)
estimation. Most conventional AoA-based studies assume that
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the target carries a device and utilize the direct path between
transmitter and receiver [9]. In contrast, device-free
localization relies on reflections from humans [10], and the
key challenge is separating static reflections from walls and
floors and dynamic reflections caused by human movement.
Such dynamic reflections are typically much weaker than
static multipath components, making robust AoA estimation
particularly challenging in real environments.

When a moving object passes near the line-of-sight (LOS)
path between the transmitter and receiver, the direct path—
which should ideally remain a static component—can undergo
noticeable temporal fluctuations. These fluctuations become
mixed with human-induced dynamic reflections, making the
separation between the two substantially more difficult. This
loss of separability mainly occurs when the LOS component
is disturbed by motion, leading to reduced AoA estimation
accuracy.

Approaches to device-free localization can be broadly
categorized into machine learning-based methods and
analytical methods. A representative machine learning
approach is fingerprinting [11], which requires extensive
oftline training and is vulnerable to environmental changes. In
this study, we adopt an analytical approach based on AoA
estimation that leverages dynamic reflection components
contained in CSI.

Existing CSI-based analytical approaches, including
Dynamic-MUSIC [10] and other AoA/ToF (Time of Flight) —
enhanced models, mainly focus on device-free tracking using
high-resolution path separation. These studies also report that
AoA estimation degrades in diagonal receiver placements;
however, they do not address how to suppress this degradation
using AoA information alone. In addition, existing work does
not consider differences in target material properties, and
therefore does not examine how changes in reflection
characteristics affect dynamic AoA estimation.

In this study, we experimentally evaluate dynamic AoA
estimation using a moving human-shaped model both with
and without electromagnetic shielding, and analyze how
shielding modifies human-induced reflections and influences
angle-estimation accuracy. Furthermore, to mitigate the
estimation degradation caused by fluctuations of the static
component during NLOS segments, we propose a NLOS-
filtering approach that combines angular variation and CSI
amplitude to identify and correct unreliable segments.

This study focuses on estimating the angle-of-arrival of a
single device-free target using 5 GHz CSI measured with a
3x3 MIMO transceiver. The scope of this paper is limited to
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dynamic AoA estimation and its error mitigation; position
estimation or multi-person tracking is outside the scope. The
objective of this study is to evaluate how the presence or
absence of electromagnetic shielding on a moving human-
shaped target affects dynamic AoA estimation, and to
investigate methods for reducing angle estimation errors.

The remainder of this paper is organized as follows.
Section II presents the AoA estimation method, Section III
details the measurement environment, Section IV describes
the filtering strategy, and Section V discusses the
experimental results.

II. AOA ESTIMATION METHOD

Fig.1 Antenna array with incidental signal.

Principle of AoA Estimation

AoA is estimated using the MUSIC algorithm. The
estimation is made by utilizing the phase difference of the
incoming signals at the antenna array. As illustrated in Fig. 1,
if the antenna spacing is d, the incident angle is 8, and the
wavelength is A, then the path difference between adjacent
antennas is dsin6, which corresponds to the phase delay

__ 2mdsin6
)

Ap (M

Based on this geometric relationship, the steering vector
for an array with M antennas is expressed as

a(@) = [1,e7/8¢,e=J2b¢ =i(M-DAP]T ?)
At a given time instant #, CSI matrix is denoted by
H(t) € (CTXRXS (3)

where T is the number of transmit antennas, R is the number
of receive antennas and S is the number of subcarriers. Each
column of H(f) represents the channel response across the
antenna array.

By performing eigenvalue decomposition of the
covariance matrix, the signal and noise components can be
separated. The covariance matrix C is defined as follows:

1
C=23N, H®) HD" @
where N is the number of samples. Applying eigenvalue
decomposition to the covariance matrix C, we obtain
C = EAE"Y, 5)

The noise subspace E, is extracted from E as the
eigenvectors correspond to the smallest eigenvalues. Since the
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signal subspace is orthogonal to the noise subspace, the
MUSIC spectrum is defined as

1
a(@)HE EHa(6)

Pyysic(0) = (6)

and the angle that maximizes this spectrum is taken as the
estimated AoA.

Extraction of Dynamic Components and CFO Removal

The raw received CSI contains strong static components
such as the direct path from the signal source and reflections
from walls and floors, and thus the dynamic reflections must
be extracted. For each subcarrier S, let the time-series CSI be
H(?). Its temporal mean

= 1
Hg = ;Z§=1 Hg(t) @)
is regarded as the static component Hg, and the residual
Hy(t) = Hg(t) — H; 3)

is used as the dynamic component Hg(t) [10].

In addition, CSI contains time-varying phase rotations
caused by Carrier Frequency Offset (CFO), which hinder the
extraction of the dynamic components. To mitigate CFO,
conventional studi es have proposed three schemes:
dividing across transmit antennas (Tx-division) [12], dividing
across receive antennas (Rx-division) [13], and conjugate
multiplication between receive antennas (Rx-conjugate
multiplication) [14]. Transmit-antenna division has been
reported as the most effective [12]. CFO appears as a time-
dependent complex phase rotation, and its effect can be
mitigated by dividing CSI values measured at the same time
or by applying complex conjugate multiplication. In transmit-
antenna division, for two transmit antennas i and j, the relation

is given by H/H.

To select appropriate transmit antennas and subcarriers for
this division, the ratio between static and dynamic magnitudes
is evaluated. For each transmit antenna and receive antenna
pair, the mean magnitude of the static component and the
maximum deviation magnitude of the dynamic component are
computed for every subcarrier. The ratio of these magnitudes,
averaged across receive antennas, indicates the dominance of
the static path. The transmit antenna T and subcarrier S that
yield the maximum ratio are used as the denominator, and the
transmit antenna T2 with the second-largest ratio is used as the
numerator. Here, h(p, T, R, S) is denotes the CSI of packet p :
indexes packets within the analysis window. Consequently,
the division

h(p,T? R,S*) / h(p,T*,R,SY) ©))
is applied. h(p, T, R, S1) is the static path and is used as the
reference for the direct wave. After CFO removal, we apply a
high-pass filter with a 1 Hz cutoff to capture moving-induced
variations, and feed its CSI into the MUSIC algorithm for
AO0A estimation.
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(a) Route “N”

(b) Route “Z”

(c) Route “V”

Fig. 2 Moving path of AMR for the measurement.

III. MEASUREMENT

The experiments were conducted in an indoor
environment measuring 11.4 m X 102 m. A 4 m x 4 m
measurement area was defined at the center of the room,
where an autonomous mobile robot (AMR) carried a human-
shaped polypropylene model. The AMR moved along three
predefined trajectories (“N,” “Z,” and “V”) at a maximum
speed of 1.0 m/s. Two target conditions were considered: (i)
with electromagnetic shielding (EM-shielding) applied to the
model, and (ii) without EM-shielding.

The EM-shielding consisted of a copper layer (1138 nm)
and a nickel layer (268 nm), yielding a surface resistance of
0.02 Q/square and a shielding effectiveness of 83 dB at 10
GHz. Although this material does not represent real human
clothing, its high electrical conductivity systematically
increases reflection strength. This design enables controlled
evaluation of how reflection magnitude influences the
separability of static and dynamic components in CSIL
Materials with moderate conductivity—such as metallic-
coated fabrics—can exhibit similar reflection enhancement,
suggesting that the insights obtained here are relevant to
practical indoor deployments.

Wi-Fi CSI was collected using the Linux 802.11n CSI
Tool on the 5 GHz band with a 40 MHz channel bandwidth.
The CSI sampling rate was 1000 Hz. Both the transmitter (Tx)
and receivers (Rx0-Rx2) were equipped with three antennas,
forming a 3x3 MIMO configuration with 2 cm antenna
spacing. AoA estimation was later performed using a 1.0s
window with a 0.1s shift. A LiDAR sensor recorded the
ground-truth of the target, enabling accurate evaluation of
visibility conditions and AoA estimation errors.

The spatial layout is shown in Fig. 2. The transmitter was
placed at the lower-left corner of the measurement area, while
the three receivers were positioned near the other corners: Rx0
(lower-right), Rx1 (upper-left), and Rx2 (upper-right). Due to
this geometry, the extent of Non-Line-of-Sight (NLOS)
exposure differs among the receivers. Based on LIDAR-based
visibility analysis, Rx0 experiences NLOS segments primarily
in the “Z” trajectory, Rx1 encounters NLOS segments in the
“N” trajectory, and Rx2—Ilocated diagonally from the
transmitter—encounters NLOS most frequently across all
trajectories. Although the exact ratios depend on the path, Rx2
typically exhibits the longest cumulative NLOS duration.
Each measurement sequence began with an empty
environment for calibration, after which the AMR entered the
measurement area and followed the designated trajectory.

219

EM-
/ Shielding

= (under cloth)

N W \
’ ‘\\f&“

Human
Shaped
Model

AMR

Fig.3 Human-shaped model and EM-Shielding.

IV. AOA ESTIMATION RESULTS

Figure 4 presents the AoA estimation accuracy for both the
aggregated case (all routes combined) and each individual
route. These results indicate that EM-shielding generally
improves estimation accuracy compared with the No-EM-
Shielding condition. However, for Rx2—which encounters
NLOS regions across all trajectories—the estimation accuracy
significantly degrades under both conditions, and this
degradation becomes more pronounced when EM-shielding is
applied. This behavior occurs because when the moving target
passes near the LOS path and temporarily blocks it, the direct
path— which should act as a time-invariant static
component—begins to fluctuate over time. Once the static
component becomes time-varying, the logic for separating
static and dynamic reflections breaks down, and the MUSIC
input covariance matrix no longer retains the structure needed
for stable AoA estimation. Under EM-shielding, the LOS
blockage to be more pronounced; as a result, the fluctuation of
the static component becomes larger, leading to even greater
degradation in NLOS segments.

Figure 5 shows the time-series AoA estimation results for
the “N” route at Rx1 under both shielding conditions. The “N”
route contains a NLOS segment between the transmitter and
Rx1. Under the EM-shielding condition, the AoA estimation
accuracy sharply deteriorates within the NLOS segment but
remains high in the LOS segment. Under the No-EM-
Shielding condition, the estimation error also increases in
NLOS segments, although the overall estimation accuracy
remains lower than in the shielded case.

Figure 6 plots the time variation in the CSI amplitude of
the static path for the same route and receiver. The NLOS
segments—identified from the LiDAR ground-truth
trajectory—correspond to intervals where the CSI amplitude
drops due to blockage of the direct path. This amplitude drop
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is more evident under EM-shielding because the shielding
material more effectively attenuates the direct path when the
target blocks the LOS region, causing a sharper reduction in
the static-path amplitude.

These observations indicate that large estimation errors
often occur when the static component becomes unstable
during NLOS transitions. Therefore, by detecting such
segments using indicators such as abrupt changes in AoA
estimates and decreases in static-path CSI amplitude, and by
interpolating the corrupted intervals, the overall quality of
dynamic AoA estimation would be improved.

V. FILTERING STRATEGY

As observed in Section IV, large AoA estimation errors
tend to occur when the static component becomes unstable
during LOS-NLOS transitions. To mitigate these effects, we
introduce a filtering strategy that detects unreliable intervals
and corrects them through linear interpolation.

The proposed method identifies such intervals using a
combined score derived from two indicators: the fluctuation
of the estimated angle, and the attenuation of the static-path
CSI amplitude. These indicators correspond to the two
primary factors observed to cause estimation degradation.

15 20

Time [s]
(b) No-EM-Shielding
Fig.6 CSI amplitude of the static path for route N, Rx1
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Filtering Details
1. Scoring Angular Velocity

When the AMR approaches or leaves an NLOS region,
the estimated AoA typically exhibits rapid and irregular
variations due to fluctuations in the static component. To
quantify this behavior, the angular velocity w,, is obtained by
differentiating the estimated angle:

_da
a)n—a

0, (10)
The short-term variability of w, is measured using the
standard deviation of the most recent W-STD samples
0y = Ow—srp(Wy) 1
A shorter window reacts quickly to abrupt changes but
becomes sensitive to noise, whereas a longer window
provides smoother behavior at the cost of responsiveness. A
moderate window length 11 was chosen to balance these
effects.
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Then score is computed:

op—Mming

aﬂ

Here, the function clip constrains the normalized value
within the range of 0 to 2. A larger s,, ,, indicates higher short-
term instability. The upper bound of 2 allows the detection of
fluctuations up to twice the level observed during typical
AMR motion.

%w=dm( (12)

maxs—ming’

2. Scoring CSI Amplitude Decrease

Let max,pm, denote the maximum static-path amplitude
observed so far and ming,,, denote the minimum amplitude
observed so far. To ensure that these values represent the
natural fluctuation range of the static component under LOS-
like conditions, amplitude samples that are already identified
as NLOS candidates (based on the combined score) are
excluded from updating max,,, and mingy,,. As a result,
the upper and lower envelopes maxym,, and mingy,, are
formed primarily from LOS or LOS-like samples.

Using these values, the attenuation score is defined as:

; 0,2)

Scores above 1 correspond to drop in amplitude, indicating
attenuation stronger than what is typically observed during
LOS-like conditions.

maxgmp—Ampn

Snamp = clip (ot (13)

3. NLOS detection and Linear Interpolation
The two scores are integrated into a combined NLOS
confidence measure:

Score, = Wyeight " Snw + Ampweight " Sn Amp (14)

Here, the weighting parameters omega weight and amp
weight were set to 0.4 and 0.6, respectively. Amplitude
decrease was consistently observed as the dominant signature
of NLOS-induced degradation, whereas angular fluctuations
mainly captured rapid transitions around these intervals.
Therefore, the combined score emphasizes amplitude while
retaining angular variation as a supportive factor.

A point is labeled as NLOS when:

1, if score, = threshold
0, otherwise

NLO&,:{ (15)

Because angular and amplitude variations do not perfectly
distinguish LOS from NLOS, the threshold is not intended as
a strict classifier but as a practical indicator of intervals where
the AoA estimates are likely to become unreliable. In this
study, the threshold was fixed at 1.2 which empirically
highlighted segments where estimation errors tend to increase,
even though the underlying propagation state may not be
strictly NLOS. To avoid triggering interpolation due to
momentary fluctuations or noise, correction is applied only
when the threshold is exceeded continuously for at least 1.5
seconds. For each such interval, the AoA estimates are
replaced with a linear interpolation between its endpoints,
suppressing abrupt deviations while preserving continuity
consistent with feasible AMR motion.
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Algorithm: Filtering of AoA Estimates

Input:
Sequence of estimated angles theta = {64, 6., ..., 0y}
Received Dynamic CSI amplitude = {ry, 75, ..., Ty}
Sampling interval At

Output:

Filtered angles Ofjirereq = {61,602, .., On}
#Params
W_STD  // window length for std of angular velocity

THRESH // NLOS candidate threshold

# Step 1: Scoring Angular Velocity
w[n] « (B[n] — 8[n—1]) / 4t
for each estimation n do
0, < std of w over the last W_STD samples
maintain running ming, max, over g,
Snw < clip( (o, —ming) / (maxg —ming ); 0,2) )
end for

# Step 2: Scoring Dynamic CSI amplitude Decrease
for each estimation n do

maintain running minmy, MaxXamp

Sn amp - Clip( (maxAmp - Ampn)/(maxAmp - minAmp): 0, 2) )
end for

# Step 3: Detect NLOS and Linear Interpolate
for each estimation n do
Scoren < Wweight " Snw T Ampweight " Sn Amp
NLOS,, < if score, = THRESH else 0
for each NLOS segment [s,e] do
do linear comp between theta[s-1] and theta[e+1]
end for
end for

VI. RESULTS AND DISCUSSION

Figure 7 shows the AoA estimation results after applying
the proposed filtering method, and Figure 8 illustrates the
linear interpolation applied to detected unreliable segments.
Figure 7(a) summarizes the performance across the three
trajectories (“N”, “Z”, and “V”).

For Rx0 and Rx1, both in predominantly LOS regions, the
median error improved modestly after filtering: from 0.20 to
0.17 rad and from 0.24 to 0.22 rad under EM-Shielding, and
from 0.24 to 0.20 rad and 0.30 to 0.29 rad under No-EM-
Shielding. These results show that the proposed method
provides slight but consistent benefits even in LOS-dominant
settings.

Rx2, positioned diagonally and experiencing frequent
NLOS segments, exhibited much larger pre-filtering errors
(0.64 rad under EM-Shielding and 0.51 rad under No-EM-
Shielding). After filtering, both improved substantially: 0.64
to 0.47 rad (26.6% reduction) and 0.51 to 0.42 rad (17.1%
reduction). This confirms that although shielding intensifies
NLOS degradation by attenuating the direct path, the
proposed method effectively mitigates such errors by
correcting unstable intervals.

Aggregating all routes and receivers, the median AoA
error improved from 0.35 rad to 0.30 rad (14.3%). Since the
scoring-based detection is not a strict LOS/NLOS classifier,
these gains arise from identifying periods where the MUSIC
covariance matrix becomes unstable and smoothing them in
accordance with feasible AMR motion.
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Fig. 7 CDF of AoA estimation results for each route after filtering

VII. CONCLUSION

This study examined the effect of electromagnetic
shielding on dynamic AoA estimation using Wi-Fi CSI across
three trajectories and three receivers with different
LOS/NLOS characteristics. EM-Shielding improved accuracy
in LOS-dominant regions (Rx0, Rxl) but degraded
performance in NLOS-dominant regions (Rx2) due to
stronger attenuation of the direct path.

To mitigate NLOS-induced degradation, we proposed a
filtering method that combines angular fluctuation and static-
path amplitude decrease to identify unreliable intervals,
followed by linear interpolation. Rather than strictly
classifying propagation states, the method targets periods
where the MUSIC covariance structure becomes unstable.
Across all trajectories, it improved the median AoA error by
14.3%, with larger gains in highly NLOS-dominant cases.

Although EM-Shielding was used as a controlled means to
vary reflection strength, the results provide insight into
practical device-free localization, where similar effects may
arise with conductive clothing or objects. Future work
includes parameter-sensitivity analysis, extension to multi-
person scenarios, and evaluation for online implementations.
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