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Abstract—Single-photon sources are fundamental building
blocks of quantum communication, quantum computing, and
quantum sensing. Cascade quantum systems driven by short
resonant pulses can, in principle, produce high-quality single
photons in either emission channel. However, practical limitations
such as finite lifetimes, spectral broadening, and re-excitation
significantly reduce the single-photon probability. In this paper,
we explore a deep reinforcement learning (DRL) framework to
optimize the pulse width for maximizing the probability of single-
photon emission in a selected channel while suppressing multi-
photon events. We model a three-level cascade system under a
time-dependent Hamiltonian with decay and define the DRL
agent’s action space as adjustments to the pulse width within
physically realistic constraints. The reward function balances
the single-photon probability against multi-photon probabilities.
Numerical simulations demonstrate that the DRL-based con-
troller discovers the optimal pulse width faster than conventional
optimization methods. This work highlights the potential of DRL
to enable robust and adaptive design of single-photon sources for
scalable quantum networks.

Index Terms—Cascade quantum systems, pulse shaping, quan-
tum communication, quantum control, reinforcement learning,
single-photon sources.

I. INTRODUCTION

Single-photon sources are fundamental building blocks of
quantum technologies, enabling a wide range of protocols in
quantum communication, quantum computing, and quantum
metrology. Their importance lies in the ability to generate
deterministic, indistinguishable single photons that can be
used for secure key distribution and photonic networking.
Depending on the emission mechanism and control techniques,
such sources can realize different classes of quantum states.
The most direct outputs are Fock states [1], [2], particularly
the single-photon state, which provides a fixed photon number
with suppressed multiphoton contributions. Attenuated laser
pulses, although not true single-photon states, generate coher-
ent states [3]. More advanced engineered systems can produce
squeezed states [4], supporting enhanced sensitivity in com-
munication and sensing. Furthermore, tailored emission and
sequential photon release can create multi-photon cluster and
graph states, providing photonic resources for measurement-
based quantum computing [5], [6].

Single-photon sources find wide-ranging applications across
the spectrum of quantum technologies, making them indis-
pensable for both near-term and long-term systems [7]–[9]. In
quantum communication, they underpin quantum key distribu-
tion (QKD) protocols by enabling secure exchange of infor-
mation through indistinguishable single photons, thereby mit-
igating vulnerabilities such as photon-number-splitting attacks
[10], [11]. Beyond QKD, entangled photon pairs generated
from cascade emitters or nonlinear crystals are critical for en-
tanglement distribution and quantum teleportation, forming the
foundation for the quantum internet and repeater-based long-
distance networks [12]. In the domain of quantum metrology,
engineered nonclassical states such as squeezed and multi-
photon states enhance measurement sensitivity and precision
[4]. Moreover, in photonic quantum computing, sequential
emission of photons from quantum dots and trapped atoms
enables the generation of photonic cluster and graph states,
which act as universal resources for measurement-based com-
putation [6]. These diverse applications highlight the versatility
of single-photon sources as the enabling hardware for secure
communication, distributed entanglement, precision sensing,
and scalable quantum information processing.

Multi-level emitters, including biexciton–exciton cascade
systems in quantum dots, are especially attractive because
they can operate either as single-photon sources per moni-
tored decay channel or as entangled photon-pair sources [13],
[14]. In practice, however, achieving near-deterministic single-
photon emission hinges on precise control of the excitation
pulse. If the pulse duration is too long, re-excitation during
decay leads to multi-photon contamination. If the pulse is too
short, spectral broadening can excite unwanted transitions and
degrade photon indistinguishability. Realistic devices further
contend with finite lifetimes, dephasing, spectral diffusion,
and instrumentation constraints that shift the optimal operating
point away from simple analytic prescriptions. These consid-
erations make pulse design a nontrivial optimization problem
where competing effects must be balanced in a device- and
setup-specific manner.

Quantum optimal control (QOC) methods have been widely
investigated to address these challenges. QOC refers to the
systematic design and application of external fields, such as
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Fig. 1. DRL based control of a three-level quantum system. The agent generates a control pulse at to drive the system, which decays via σ1 =
√
γ1 |i⟩ ⟨e|

and σ2 =
√
γ2 |g⟩ ⟨i|. Observations and rewards are fed back to update the policy.

tailored laser pulses, microwave drives, or magnetic fields,
to manipulate the dynamics of quantum systems in a pre-
cise and robust manner. The primary objective is to steer
quantum states or operations toward a desired target despite
the presence of decoherence, noise, and device imperfections,
thereby enabling reliable quantum technologies. Gradient-
based techniques such as gradient ascent pulse engineering
(GRAPE) [15] and basis-expansion methods such as chopped
random-basis (CRAB) [16] can deliver high-quality solutions
when accurate models and gradients are available, but their
performance may degrade under model mismatch, nonsta-
tionary noise, or limited diagnostic access. In contrast, DRL
[17], [18] offers a model-free, data-driven approach that can
optimize control policies directly from observed outcomes.
By formulating pulse parameters as an episodic decision pro-
cess, an reinforcement learning (RL) agent can explore pulse
configurations, adapt to device idiosyncrasies and drift, and
optimize a task-specific objective that directly reflects single-
photon quality metrics. Crucially, the objective can prioritize
single-photon probability while penalizing multi-photon events
and incorporating auxiliary quality measures such as temporal-
mode purity or source brightness.

This work investigates DRL for pulse-width optimization in
three-level quantum system operated as single-photon sources.
We build an RL environment that interfaces with an open-
quantum-system to evaluate single-photon probability. The
agent’s action space adjusts pulse width within experimentally
realistic bounds and the reward balances single-photon yield
against multi-photon penalties. Furthermore, we compare the
DRL based control strategy with results obtained from a
conventional optimization method.

The remainder of this paper is organized as follows. Section
II introduces the system model, while Section III formulates
the DRL framework. Section IV presents the simulation setup
along with baseline methods. Section V discusses the ex-
perimental results, and Section VI concludes the paper with
potential directions for future research.

II. THREE-LEVEL CASCADE QUANTUM SYSTEM

A. System model

We consider a quantum system composed of three energy
levels, which serves as a model for a biexciton cascade in
a quantum dot [13]. The states are the ground state |g⟩, an
intermediate exciton state |i⟩, and an excited biexciton state
|e⟩. In the computational basis, these states are represented as:

|g⟩ =



1
0
0


 , |i⟩ =



0
1
0


 , |e⟩ =



0
0
1


 . (1)

The total Hamiltonian of the system, Hsys, is composed
of a static component also called drift Hamiltonian Hd ,
and a time-dependent interaction component called the control
Hamiltonian Hc(t), describing the coupling to a classical
electric field. This can be written as:

Hsys = Hd +Hc(t). (2)

The drift Hamiltonian defines the energy of the intermediate
state relative to the biexciton binding energy, Eb:

Hd =
Eb

2
|i⟩ ⟨i| . (3)

The control Hamiltonian models a two-photon resonant exci-
tation from the ground state to the excited state, driven by a
laser pulse with a time-dependent electric field E(t):

Hc(t) = Ω(t)(|g⟩ ⟨e|+ |e⟩ ⟨g|). (4)

Here, the effective two-photon Rabi frequency, Ω(t), is given
by:

Ω(t) =
(µE(t))2

Eb
, (5)

where µ is the dipole coupling strength.
The system’s interaction with the environment leads to spon-

taneous decay, which is modeled by two collapse operators
representing the two stages of the photon cascade:

σ1 =
√
γ1 |i⟩ ⟨e| , decay from |e⟩ to |i⟩, (6)

σ2 =
√
γ2 |g⟩ ⟨i| , decay from |i⟩ to |g⟩, (7)
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where γ1 and γ2 are the respective decay rates.
The full dynamics of the system, including both coherent

evolution and incoherent decay, are described by the Lindblad
master equation for the density matrix ρ(t):

dρ(t)

dt
= Lρ = −i[Hc(t), ρ(t)] +

∑
k=1,2

D[σk]ρ(t). (8)

The first term, the commutator, describes the coherent
evolution driven by the laser pulse. The second term describes
the dissipation, with the Lindblad dissipator D for a collapse
operator c defined as:

D[c]ρ = cρc† − 1

2

(
c†cρ+ ρc†c

)
. (9)

B. N -Photon Emission Probabilities
The probability of emitting exactly N photons is obtained

using the conditioned evolution formalism [19]. It can be
obtained by alternating between conditioned evolution and
photon emission events. Starting from ρ(0) = |g⟩ ⟨g|, the
system evolves under the no-jump operator K until an emission
time, where the collapse operator S is applied. This sequence
is repeated N times, after which the system undergoes a final
no-jump evolution. Integrating the resulting joint probability
density over all emission times yields P (N). The N -photon
probability is expressed as

P (N) =

∫ ∞

0

dt1

∫ ∞

0

dt2 · · ·
∫ ∞

0

dtN p(t1, t2, . . . , tN ),

(10)
where p(t1, t2, . . . , tN ) denotes the joint probability density
of photon emissions occurring only at times {t1, t2, . . . , tN}.

Due to the cascade structure of the system, the number
of photons emitted into channels 1 and 2 is always equal.
Without loss of generality, we condition on the emissions from
channel 1 while tracing over channel 2. The corresponding
collapse superoperator is defined as

Sρ = σ1ρσ
†
1, (11)

and the nonunitary (no-emission) evolution generator is given
by

K = L − S, (12)

where L is the full Lindblad generator. The conditional prob-
ability density is then

p(t1, t2, . . . , tN ) = Tr
[
K(∞, tN )SK(tN , tN−1) · · ·

· · · SK(t1, 0)ρ(0)
]
. (13)

Explicitly, the superoperator K takes the form

Kρ = −i[HI(t), ρ]+D[
√
γ2σ2]ρ− 1

2

(
σ†
1σ1ρ+ρσ†

1σ1

)
. (14)

In practice, the recursive relation for evaluating P (N) can
be implemented numerically. At each recursion level, the
system is first propagated with K up to a candidate emission
time ti, after which the collapse operator S is applied. The
recursion continues until all N photon emissions are placed,
at which point the final evolution with K yields the probability
of ending in |g⟩.

C. Problem Formulation for Pulse Optimization
The central problem is to determine the optimal laser pulse

shape that maximizes the probability of emitting a single pho-
ton into a specific channel, while simultaneously suppressing
the probability of emitting multiple photons. We model the
laser pulse with a Gaussian envelope, which is characterized
by its amplitude E0, width (standard deviation) σ, and peak
time t0.

E(t) = E0 exp

(
− (t− t0)

2

2σ2

)
(15)

The key parameters to be optimized are the pulse width σ and
amplitude E0. In our case, we will fix amplitude E0 and focus
on optimizing pulse width σ. We define an objective function
that maximizes the single photon probability while suppress-
ing both vacuum events and multiphoton contributions. Let
P0(σ), P1(σ), P2(σ) denote the probabilities of emitting zero,
one, and two photons, respectively. The objective is expressed
as:

J(σ) = P1(σ)− λ0P0(σ)− λ2P2(σ), (16)

where λ2 ≫ λ0 > 0 are penalty weights. This formulation
ensures that the optimized pulse maximizes single photon
generation efficiency while minimizing undesired outcomes.

III. DRL MODEL FOR PULSE OPTIMIZATION

In this work, the optimization of the pulse width is for-
mulated as a RL problem. The environment exposes a dis-
crete action space of N = 21 candidate widths {wk}Nk=1

uniformly distributed over [Wmin,Wmax] = [0.01, 0.20]. At
each episode, the agent samples an action a ∈ {1, . . . , N},
corresponding to a width parameter σ = wa. The environment
evaluates this choice and returns a scalar reward

r = J(σ), (17)

where J(σ) denotes the objective function quantifying the
system performance under the chosen pulse width.

The policy πθ(a) is parameterized by a feed-forward neural
network with two hidden layers of 32 ReLU-activated units
each, followed by a softmax output over the 21 actions.
Sampling from this categorical distribution ensures stochastic
exploration. The training employs the REINFORCE algorithm,
where the policy gradient update seeks to maximize E[J(σ)].
A moving baseline b is used to reduce the variance of the
gradient estimator, and the advantage is defined as A = r− b.
The overall loss function is expressed as

L(θ) = −A log πθ(a)− βH[πθ] , (18)

where H[πθ] denotes the entropy of the policy and β = 10−3

is the entropy regularization weight. The baseline b is updated
by exponential smoothing with momentum factor α = 0.9.
Policy parameters are optimized using Adam with learning
rate 10−2, over 40 training episodes.

Since the optimization is single-step, no temporal discount-
ing is applied. The framework additionally records (i) the
entropy H[πθ] to monitor exploration, (ii) the KL divergence
DKL(πθt∥πθt−1) to quantify policy shift, and (iii) gradient
norms to assess training stability.
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Fig. 2. Evolution of policy diagnostics during DRL, where entropy decreases
steadily with episodes, while KL divergence remains bounded, indicating
stable policy updates

IV. METHODS

A. Environment Parameters

In the considered system, the decay rates are simplified by
setting 2γ2 = γ1 = γ, with γ normalized to unity. The dipole
coupling strength µ and the biexciton binding energy Eb are
also taken as unity. The excitation pulse is normalized such
that its area is π/ζ2, where ζ = 1 represents the combined
contribution of the dipole coupling strength and the binding
energy.

B. Benchmarking Configuration

For comparison, a population-based black-box optimizer,
the cross-entropy method (CEM), is employed to maximize
J(σ). Unlike REINFORCE, CEM does not rely on gradients,
instead it iteratively refines a sampling distribution over the
continuous search space [Wmin,Wmax]. At each iteration, a
population of M = 12 candidate widths is drawn from a
Gaussian distribution N (µd, τ

2), where µd and τ denote the
mean and standard deviation of the search distribution. Each
candidate σi is then evaluated to obtain the reward J(σi). The
top-performing candidates, known as the “elites” (in this case,
the top 25%), are selected. The mean and standard deviation
of these elite samples are then used to update the search
distribution for the next iteration.

The wall-clock time of both the methods are measured. This
allows a direct comparison of the convergence behavior of
CEM and DRL with respect to runtime.

V. RESULTS

The numerical results highlight the convergence behavior of
the proposed DRL framework, as observed in Fig. 2, the policy
entropy decreases gradually with training episodes, demon-
strating a consistent reduction in exploration, while the KL
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Fig. 3. System dynamics under optimized Gaussian excitation pulse to
generate single photon source.
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Fig. 4. Convergence time comparison between the DRL approach and the
CEM method.

divergence remains bounded, confirming stable policy updates.
Fig. 3 depicts the temporal evolution of the system driven by
optimized Gaussian excitation pulse, where the applied field
successfully transfers population between the intermediate and
excited states, validating the pulse design. The comparative
performance in Fig. 4 shows that both DRL and CEM achieve
near-optimal objective values J(σ). However, DRL converges
more smoothly within the first few seconds of wall-clock time,
whereas CEM exhibits some variability in later iterations.
These results confirm that the DRL approach provides a
robust and stable strategy for optimizing pulse widths in the
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considered quantum system.

VI. CONCLUSION

In this paper, we presented a DRL framework for optimiz-
ing excitation pulse widths in three-level cascade quantum
emitters to maximize single-photon generation probability
while suppressing multi-photon contributions. By framing the
optimization as a RL problem, the proposed method demon-
strated stable convergence and faster adaptation compared to
a conventional optimizer, confirming its robustness for model-
free quantum control. The results highlight the promise of
DRL in addressing challenges that arise from decoherence, re-
excitation, and device-specific imperfections in realistic single-
photon sources. In future work, the DRL paradigm can be
extended beyond simple width optimization to model and
explore more complex pulse shapes, multi-parameter controls,
and adaptive protocols tailored to experimental constraints.
Such advances will further enable the design of intelligent,
high-performance single-photon sources, strengthening the
foundations of scalable quantum communication, computation,
and sensing networks.
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