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Abstract—Nowadays, thanks to advances in machine learning
(ML), deep learning (DL), and deep reinforcement learning
(DRL), intelligent resource allocation has become an active area
of research. However, these techniques are task-specific, requir-
ing model retraining whenever the communication environment
changes. To address this issue, large language models (LLMs)
have emerged as a promising solution. LLMs, pre-trained on a
large amount of data, possesses a significant background knowl-
edge and high generalization cabability. This allows LLM-based
resource allocation approaches to generate reasonable outputs
without the need for task-specific model design or retraining.
However, the use of LLMs still present challenges such as high
latency, battery life, scarce bandwidth, and security, necessitating
research on techniques that can address these issues. In order to
enable practical deployment of LLM-based resource allocation
methods, careful consideration of aforementioned challenges is
needed. To provide insight into the use of LLMs for wireless
resource allocation, this paper presents the fundamentals of
LLM, recent research trends, challenges, and future research
directions.

Index Terms—Large language models (LLMs), resource allo-
cation, LLM deployment.

I. INTRODUCTION

Recent advances in artificial intelligence (AI) have driven
extensive research on intelligent management of wireless com-
munication systems. To this end, studies applying machine
learning (ML) [1], [2], deep learning (DL) [3], [4], and
deep reinforcement learning (DRL) [5], [6] to tasks such as
resource allocation, beamforming, and channel estimation have
been widely investigated. However, these approaches typically
require task-specific model design, extensive training, and
frequent re-engineering when network objectives, constraints,
or environments change.

To handle this problem, large language models (LLMs)
can be utilized due to their outstanding capability in natural
language understanding and generation [7]. Since LLMs are
pre-trained on massive amounts of data, they possess rich
background knowledge that strengthens their generalization
and reasoning abilities. This enables LLMs to interpret opti-
mization goals, system descriptions, and constraints expressed
purely in natural language. As a result, valid decisions can
be generated without redesigning model architectures or re-
training for every communication scenario. Leveraging this
capability, LLMs can serve as a general problem solver
for wireless communication problems, capable of producing

meaningful resource allocation strategies directly from textual
prompts.

In this paper, to provide valuable insights into the LLMs
for telecommunications, we investigate recent research on
LLM-based resource allocation in wireless communication,
challenges, and future works.

II. LLM FUNDAMENTALS

This section introduces architecture of LLM and the way
LLMs can be deployed in the wireless networks.

A. LLM Architecture

Most LLMs are based on the transformer architecture,
which generally consists of an encoder and a decoder. Unlike
recurrent neural networks (RNNs), transformer architecture
leverages self-attention mechanism to capture long range re-
lationships accross tokens [8]. The operation of transformer
can be summarized as follows. Transformers process inputs
by first converting text into tokens and embedding them
into vector representations that include positional information.
These vectors are fed through stacked layers composed of self-
attention, feed-forward networks, and normalization, enabling
the model to learn contextual relationships among tokens. The
self-attention operation is formulated as

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (1)

where Q, K, and V are the query, key, and value matrices,
respectively, and dk is the dimensionality of the key.

The encoder generates context-aware hidden states, while
the decoder produces outputs based on both the encoded rep-
resentation and previously generated tokens [9]. During gener-
ation, new tokens are produced autoregressively and appended
to the input sequence. To improve efficiency, key–value caches
store intermediate attention states so that past computations do
not need to be repeated in later steps.

B. LLM Deployment in Wireless Networks

Fig. 1 illustrates the deployment scenario of LLMs in wire-
less communications. Deploying LLMs in wireless systems
requires careful consideration of model size, computational
capability, and storage availability. Depending on these con-
straints, LLMs may be hosted in the cloud, placed at network-
edge infrastructures, or executed directly on end devices [7].
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Fig. 1. LLM deployment scenarios in wireless communications [7].

1) Cloud Deployment: Cloud servers offer abundant com-
putational resources and storage capacity, which makes them
well-suited for running large LLMs and executing intensive
inference workloads. However, user requests and model out-
puts must be transferred over the backhaul, resulting in non-
negligible communication and processing delay. This latency
overhead can limit the applicability of cloud-only deployment
for time-critical wireless services.

2) Network Edge Deployment: Edge servers are located
closer to the end users, which reduces backhaul latency and
yields faster responses. Although edge nodes typically have
fewer resources than the cloud, model compression, quantiza-
tion, and parameter-efficient tuning techniques can make LLM
inference feasible at the network edge.

3) On-Device Deployment: Running LLMs directly on user
devices eliminates network transmission delay and enables
fully localized inference. However, on-device deployment re-
quires compact models or specialized acceleration techniques
due to restricted memory and power budgets. Recent ad-
vancements in lightweight architectures (e.g., Llama 2 and
Gemini Nano) and model optimization have begun to make
such deployment practical.

III. LLM-BASED RESOURCE ALLOCATION

In this section, various LLM-based resource allocation tech-
niques are reviewed. In [10], the authors proposed prompt-
based LLM tuning for the resource allocation optimizer (LLM-
RAO) that can handle complex resource allocation problem.
They formulated the mixed-integer nonlinear programming
(MINLP) problem, considering resource allocation constraints,
queuing model, and QoS constraints. The formulated problem
aims to maximize data rate and proportional fairness of users.
LLM-RAO begins by generating an initial meta-prompt, which
serves as a guideline for the LLM server and summarizes
objective functions, constraints, and network specifications.
This meta prompt is used to generate solutions to maximize
objective functions in LLM server. If the generated solution
does not meet any constraints, the feedback is transmitted to
LLM server for fine-tuning. This process is iterated until all
constraints are satisfied.

In [11], the authors presents LLM-xApp framework to
address the resource management in open radio access network
(O-RAN). Their work focused on addressing the challenge of
dynamically allocating limited physical resource blocks across
network slices with heterogeneous QoS requirements which
is also mixed integer optimization problem. The proposed
method starts with the LLM agent observing the state: data rate
for each slice and requested data rate. Then, the agent outputs
proportional allocation decisions, which are mapped to phys-
ical resource assignments. The agent’s evaluation function is
designed to ensure fair and reliable resource distribution while
prioritizing slices with stricter QoS demands. The proposed
framework leverages a prompt-based optimization process
(OPRO), where the system translates historical performance,
slice demands, and utility evaluations into structured meta-
prompts.

Authors in [12] designed a joint task offloading and resource
allocation scheme for multi-satellite mobile edge computing
networks to minimize the average latency of IoT terminals.
The system includes multiple LEO satellites and sparsely
distributed terrestrial IoT terminals, where each terminal can
either compute locally or offload tasks to a satellite using
multiple sub-channels and power levels. To solve non-convex
problem, the problem is decomposed into two sub-problems:
1) satellite computation resource allocation problem and 2)
joint task offloading, power allocation, and sub-channel allo-
cation problem. LLM is applied to solve the second problem
which involves discrete decisions and interference-coupled rate
expressions. The authors proposed LLM–based iterative opti-
mizer that uses structured prompts, examples, and extracted
feedback to generate updated solutions. Through iterative
LLM reasoning, violations are corrected, and better solutions
replace earlier ones until convergence.

The work [13] explores the feasibility of applying LLMs
for resource allocation in wireless communication systems,
motivated by the limitations of analytical optimization and
task specific deep learning approaches. The authors formulate
a simple but representative problem involving two interfering
transmitter–receiver pairs sharing the same channel. The goal
is to determine transmit power levels that maximize either
spectral efficiency or energy efficiency. To solve this, the
authors proposed an LLM-based resource allocation scheme.
Instead of building or training a neural network, the method
uses a few-shot learning strategy. Pre-processed channel gains
and their optimal power decisions are presented as examples
within the prompt, and LLM infers the transmit powers for
new channel conditions. Since LLM outputs can be unreliable
or incorrect, authors also proposed a hybrid method that
combines the LLM decision with a conventional resource
allocation scheme.

The work [14] proposed LLM-OptiRA, a novel LLM-
driven optimization framework designed to solve non-convex
resource allocation problems in wireless communication sys-
tems. LLM-OptiRA offers a fully automated pipeline that
allows an LLM to identify non-convex components, convert
them into convex formulations, generate executable code, and
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verify solution feasibility without human intervention. The
LLM-OptiRA method consists of several key stages. First,
the framework parses a natural-language problem description
and constructs a corresponding mathematical optimization
model, identifying variables, objective functions, and con-
straints through named entity recognition. Next, the LLM
performs automatic convexification, converting non-convex
objective terms and constraints via methods such as successive
convex approximation (SCA), semidefinite relaxation (SDR),
or Lagrangian relaxation. It then generates executable Python
code using solvers such as CVXPY or Gurobi. To refine the
solution, LLM-OptiRA employs an error correction loop to
resolve code-generation or execution failures, and a feasibility
domain correction module to adjust solutions that violate the
original constraints after convexification.

IV. CHALLENGES AND FUTURE WORKS

While LLMs show strong potential for optimizing wireless
resource allocation, several practical challenges need to be
addressed before they are widely deployed in real networks.

A. Latency and Battery Limitations

Since LLMs generally contain billions of parameters, they
require substantial computational resources for inference. Con-
sequently, when executed on cloud or edge servers, frequent
offloading of requests and model responses introduces ad-
ditional communication delay. Such latency is unacceptable
for delay-sensitive applications, including vehicular networks
and ultra-reliable low-latency communications [15]. On-device
LLMs can reduce round-trip delay, but running large models
on resource-limited hardware leads to rapid battery depletion
and thermal constraints [16]. Therefore, lightweight models,
on-device quantization, and acceleration techniques are neces-
sary to enable practical real-time inference.

B. Bandwidth Scarcity

As diverse applications continue to emerge in wireless
systems, multimodal data such as user context, image, video,
and sensor information are increasingly generated at the net-
work edge. Repetitive transmission of these data imposes a
heavy burden on the backhaul [17]. In bandwidth limited
environments, this can significantly reduce the network ef-
ficiency. Compression strategies, sparse feature transmission,
or semantic communication techniques are needed to reduce
signaling overhead while preserving decision accuracy.

C. Hallucination

Similar to other generative models, LLMs are suscepti-
ble to hallucination [13]. If the model produces logically
plausible but incorrect optimization decisions, the resulting
resource allocation may degrade network performance rather
than improve it. This issue becomes critical in mission-critical
wireless systems. Thus, hybrid approaches or multi-LLM
cross-verification techniques are needed to detect and correct
hallucinated outputs before applying them to the network.

D. Security and Privacy

To perform LLM training and inference, user-side infor-
mation is sent to the LLM, which raises concerns related
to privacy leakage, data confidentiality, and potential model
inversion attacks. These risks are amplified when operating in
shared cloud infrastructure. To handle this problem, federated
learning and privacy-preserving techniques are promising di-
rections to enable LLM-based optimization without exposing
sensitive network or user data.

V. CONCLUSION

Recently, LLMs have emerged as a promising solution to
overcome the limitations of traditional task-specific models
that need to be redesigned whenever network conditions
change. LLMs can parse textual descriptions of objectives and
constraints and directly generate feasible allocation strategies,
enabling a general-purpose optimization framework. This work
reviewed recent LLM-based resource allocation approaches
such as O-RAN scheduling, proportional slice allocation,
interference-aware power control, and satellite edge com-
puting. However, several challenges remain when deploying
LLMs in communication systems, including latency and bat-
tery limitations, bandwidth scarcity, hallucination, and privacy
concerns. Future works such as semantic communication and
hybrid LLM-verification mechanisms are expected to acceler-
ate the adoption of LLM-assisted resource allocation in future
5G/6G networks.
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