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Abstract— This paper proposes a novel high-speed 
offloading control technique enabled by direct cooperation 
between a data center (DC) controller and an all-photonic 
network controller, eliminating the need for a central 
orchestrator. We design new architecture, control sequence 
flowchart, and resource selection algorithm to minimize 
offloading latency. Simulation results demonstrate that the 
proposed method reduces total processing time to 124 ms— 
about twenty times faster than conventional techniques. The 
effectiveness of a squeezing approach for optimizing DC and 
server allocation is also confirmed. These results indicate strong 
potential for application in time-critical services such as 
telesurgery. 

Keywords—Offloading, Cloud computing, Distributed data 
center, All-photonic network, Inter-controller cooperative 
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I. INTRODUCTION 
In recent years, cloud/edge computing—which allows 

users to remotely access computing resources via 
communication networks—has been rapidly spreading [1]. 
This technology, in which a portion of the tasks performed on 
user devices is offloaded to remote computing resources, is 
referred to as “offloading”. Fig 1 illustrates the offloading 
technology in conventional communication networks. From 
the user equipment (UE) N, (1) a portion of the tasks required 
for artificial intelligence (AI) development or high-resolution 
video processing is transmitted as offloaded data to high levels 
of performance graphics processing units (GPUs) or other 
processing units installed in the service provider’s data center 
(DC). (2) The computing resources such as GPUs in the DC 
then perform offload processing, and (3) the DC sends offload 
processing results back to the UE N. In this way, since the UE 
can delegate advanced tasks to remote computing resources, it 
has the advantage of not requiring high levels of performance 
GPUs or similar hardware locally. However, in conventional 

communication networks, multiple routers are installed 
between the UE and the DC to handle tasks such as switching 
communication paths and avoiding data collisions. Since 
traditional routers temporarily store communication data in 
memory to perform collision avoidance control, when the 
volume of offloaded data is large or the number of UEs is high, 
congestion due to offload concentration may occur at the 
routers or a specific DC. This results in latency, leading to 
prolonged processing times for offloaded tasks. 

 In light of the above background, this paper proposes a 
novel high-speed offloading control technique in which the 
control unit of the all-photonic network (APN) and the 
centralized control unit of the distributed DCs are tightly 
coordinated to reduce offloading latency and shorten 
processing time for offloading tasks. The remainder of this 
paper is organized as follows. Section II reviews related work 
on offloading control and network congestion. Section III 
details the proposed technique: Section III.A provides an 
overview of the approach, Section III.B describes the 
sequence chart illustrating inter-controller cooperative 
operations, and Section III.C explains the algorithm for 
selecting appropriate DCs. Section IV outlines the 
performance evaluation conditions. Section V presents and 
analyzes the simulation-based evaluation results, 
demonstrating the effectiveness of the proposed method. 
Finally, Section VI concludes the paper.  

 

II. RELATED WORKS 

A. Edge Computing 
As a means to avoid congestion in routers during 

offloading and to achieve low latency, the use of edge 
 

Fig. 1. Schematic view of a conventional offloading 
process in cloud computing  

 
Fig. 2. Schematic view of an APN and distributed data 
centers in suburban areas for advanced cloud computing 
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computing, including mobile edge computing,  has become 
increasingly widespread in recent years. Edge computing 
performs offloading processing by utilizing computational 
resources located at the edge of the network (i.e., closer to the 
UEs) rather than in centralized cloud DCs. This shorter 
distance between UEs and edge resources, compared to 
traditional cloud computing, eliminates the need to transmit 
offloaded data to the core of the cloud network. As a result, it 
can reduce network load (congestion) and latency in 
offloading processing. Due to these characteristics, edge 
computing is applied in various time-critical services 
requiring real-time control, such as factory production line 
control systems and control systems in autonomous vehicles. 
However, edge computing faces the following challenges: 
Since it requires the use of computing resources within DCs 
located near UEs, offloading processing through edge 
computing is not feasible in regions without nearby DCs. In 
particular, hyper-scale DCs tend to be concentrated in urban 
areas in recent years [2], making it difficult for UEs in 
suburban or rural areas to utilize edge computing. In Japan, 
the Watt-Bit Collaboration initiative promotes the regional 
decentralization of DCs to address urban power constraints 
and support carbon neutrality [3]. As part of this effort, APNs 
are expected to play a key role by providing ultra-high-
capacity, low-latency optical connections not only between 
distributed DCs but also between UEs and these centers. Even 
when the DCs are physically located far from UEs, the high-
speed and low-latency characteristics of APNs minimize the 
impact of geographical distance. This enables efficient and 
low-latency offloading of computational tasks, facilitating a 
more resilient and flexible digital infrastructure.  

 

B. Offloading Control Technique 
Various offloading control techniques have been proposed 

to reduce the latency of offloading processes in cloud and edge 
computing environments [1, 4]. However, most of these 
studies focus on offloading algorithms or network 
architectures designed to reduce latency in mobile edge 
computing or hybrid edge–cloud computing systems, 
assuming the use of existing network and DC infrastructures. 
To the best of the authors' knowledge, there have been no prior 
studies that specifically investigate low-latency offloading in 
environments based on APNs and geographically distributed 
DCs, as described in the previous section. 

 

III. PROPOSED OFFLOADING CONTROL TECHNIQUE 
Fig. 2 illustrates the schematic view of advanced 

offloading technology in an APN with DCs distributed across 
suburban areas. In the APN, each UE is assigned a dedicated 
wavelength (1-x), establishing a direct optical path between 
the UE and one of the multiple distributed DCs via optical 
nodes (optical routers and/or switches) that perform only 
optical path switching. Because each UE is allocated a unique 
wavelength, an end-to-end virtual dedicated optical link is 
provided for each UE.  Since the optical nodes (ONs) do not 
perform optical-electrical  and electrical-optical conversions 
or temporary data buffering in memory, there is no processing 
delay or congestion associated with such operations, enabling 
the realization of ultra-high-speed data transmission with low 
latency.  

A. Proposed Network Architecture for High-Speed 
Offloading Technique 
Based on the networks illustrated in Figs. 1 and 2, Fig. 3 

shows (a) the conventional network architecture and (b) the 
proposed network architecture, respectively. In Fig. 3(a), the 
network controller (NW-C) is responsible for managing and 
controlling multiple UEs and nodes (e.g., routers) under its 
domain, while the DC controller (DC-C) manages and 
controls multiple DCs in metropolitan areas. The orchestrator 
is a network element positioned at a higher hierarchical level 
than both the NW-C and the DC-C, enabling coordination 
between the two controllers through the orchestrator. An 
offloading request transmitted from a UE is sent to the 
orchestrator via the NW-C. At this time, the DC allocation 
control function within the orchestrator selects the optimal DC 
from a list of DCs with low offloading load, which is 
periodically provided by the DC-C. The selected DC is then 
notified to both the NW-C and the UE as the offloading 
destination. Upon receiving this notification, the NW-C 
determines the communication path between the selected DC 
and the UE, and accordingly configures the routing paths on 
the nodes along the determined route. Once the routing is 
configured, the UE promptly transmits the offloading data to 
the designated DC. At this time, if the number of offloading 

 
(a) 

 

 
(b) 

 
Fig. 3. (a) Conventional architecture for cooperation of 
network and DC controllers for offloading via an 
orchestrator, (b) Proposed architecture for inter-
controller cooperative operation for high-speed 
offloading  
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requests from UEs is high, or if there is heavy background 
traffic on the network path between UEs and DCs 
concentrated in urban areas, significant delays may occur due 
to congestion at intermediate nodes or within specific DCs. 
This can result in prolonged processing times for offloading, 
posing a critical challenge. Furthermore, it is known that 
processing time for coordination between two controllers via 
the orchestrator generally takes a few seconds [5, 6]. 
Therefore, under the current typical network architecture as 
shown in Figs 1 and 3(a), achieving low-latency offloading 
processing cannot be practical.  

On the other hand, in the proposed architecture shown in 
Fig. 3(b), the network infrastructure is replaced by the APN, 
and the APN Controller (APN-C) is responsible for managing 
and controlling multiple UEs and ONs under its domain. In 
addition, the DC-C manages and controls multiple DCs 
distributed across suburban areas. Here, the differences from 
the conventional architecture shown in Fig. 3(a) are explained. 
First, the DC allocation control function, which was 
conventionally placed in the orchestrator, is relocated to the 
DC-C. Furthermore, by introducing a new interface between 
the APN-C and the DC-C, offloading can be performed 
without going through the orchestrator. As a result, faster 
offloading processing can be expected. The detailed operation 
procedure of the proposed architecture shown in Fig. 3(b) is 
described in the next section (III.B).  

 

B. Proposed Sequece Chart for High-Speed Offloading 
Technique 
This section describes the DC/server selection procedure 

in the proposed fast offloading control technique. Fig. 4 
illustrates the sequence chart tailored for our proposal. As a 
prerequisite of this method, the Local DC-C periodically 
collects the utilization status of each resource (CPU, GPU, and 
storage) in the servers under its management (as indicated by 
the dashed box in Fig. 4). (i) The Local DC-C sends a resource 
utilization request to each server under its control. (ii) Upon 

receiving this request, each server acquires the utilization 
information of its internal resources. (iii) Each server then 
replies to the Local DC-C with the collected resource 
utilization information. Then, the Local DC-C stores the 
received utilization data in its internal database. By 
periodically storing and updating this information, the Local 
DC-C ensures that up-to-date resource utilization data is 
always available. This enables rapid and correct selection of 
DCs and resources when an offloading request is received 
from a UE.  

Based on the above prerequisite, the following describes 
the procedural flow illustrated in the sequence chart in Fig. 4. 
(1) The APN-C opens a request window, a configurable time 
period during which it accepts multiple offloading requests 
from UEs. During this window, the APN-C remains in a 
standby state awaiting requests from UEs. (2) When a UE has 
processing tasks to be offloaded, it sends an offloading request 
to the APN-C. This request includes three key pieces of 
information: UE identifier (ID), data type, and offloading data 
size. In this study, we define four types of offloadable data for 
the data type field, ranked in descending order of priority: (a) 
AI inference, (b) video processing, (c) general computing, and 
(d) data storage. Note that while Fig. 4 illustrates the sequence 
flow for a single UE for simplicity, the proposed scheme is 
designed to support requests from multiple UEs. (3) The APN-
C extracts the priority level from each request received during 
the request window and sorts the requests in descending order 
of priority. In the case of multiple requests with the same 
priority, they are processed on a first-come, first-served basis. 
(4) The APN-C sequentially sends DC/server allocation 
requests to the DC-C, starting from the request with the 
highest priority determined in step (3). (4-1) Upon receiving 
each request, the DC allocation control function within the 
DC-C maps the specified data type to the appropriate types 
and quantities of resources required by the processing. (4-2) 
The DC-C then sends a DC/server allocation request to each 
Local DC-C, requesting information about available DCs and 
resources that can fulfill the offloading request. This request 

 
 

Fig. 4. Proposed sequence chart of high-speed offloading control technique utilizing inter-controller cooperation 
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includes the required resource quantities as calculated in (4-1). 
(4-3) Each Local DC-C calculates the sum of the utilization 
rates of all resources for the servers in the list (Step (iii)) and 
sorts them in ascending order. Note that the sorting is 
performed after being squeezed to the top 1% or 0.1%, aiming 
to reduce the processing time. (4-4) Each Local DC-C returns 
a list of candidate servers and associated resource utilization 
rates within its DC to the DC-C. (4-5) The DC-C aggregates 
the candidate information received from all Local DC-Cs and 
selects the most suitable DC and servers for the offloading 
request. To reduce processing latency, it limits the candidate 
pool to the top ten responses received in order of arrival. (5) 
The DC-C replies to the APN-C with the selected DC and 
server allocation information. (6) Immediately after step (5), 
the DC-C sends a request to the relevant Local DC-C to 
reserve the selected server and prepare for offloading. (6-1) 
The designated Local DC-C instructs the corresponding server 
to reserve the required resources and enter a standby state. (6-
2) The server reserves the specified resources and transitions 
to a wait state. (6-3) The server sends a confirmation response 
to the Local DC-C, indicating successful reservation. (6-4) 
Upon receiving this response, the Local DC-C performs 
internal path configuration within the DC. (6-5) The Local 
DC-C then sends a confirmation response to the DC-C 
indicating that the reservation has been successfully 
completed. (6-6) The DC-C forwards this confirmation to the 
APN-C, notifying that the offloading destination is now in a 
ready state. (7) Upon receiving the allocation information 
from the DC-C, the APN-C immediately performs path 
computation within the APN and determines the route to the 
selected DC. (8) Based on the computed path, the APN-C 
sends path control commands to multiple ONs along the route. 
(8-1) Each ON configures its input/output ports based on the 
received command. (8-2) Each ON sends a path setup 
confirmation back to the APN-C. (9) After receiving both the 
DC/server reservation confirmation (Step (6-6)) and the path 
setup confirmations (Step (8-2)), the APN-C notifies the UE 
to initiate the offloading process to the selected DC and 
resources. (10) The UE begins transmitting the offloading data 
to the designated DC and resources. (11) Upon receiving the 
data, the server in the selected DC performs the offloading 
task using the reserved server and resources. (12) Once the 
offloading task is complete, the server promptly returns the 

processing results to the UE. The above outlines the procedure 
of the proposed high-speed offloading control scheme. Note 
that, for the sake of simplicity, post-processing steps 
following offloading completion are omitted from the above 
description.  

 

C. DC/Servers Allocation Algorithm 
This section explains the DC/server allocation algorithm, 

which corresponds to step (4-5) in Section III. B, in the 
proposed fast offloading control technique. Algorithm 1 
shows the proposed algorithm to allocate the optimal DC and 
server based on requested computational resources (CPU, 
GPU) and storage. The algorithm begins by setting the storage 
weight ws based on s_req (line 1) and calculating the total 
number of logical cores tc (line 2). Depending on the value of 
tc, the CPU and GPU weights (wc and wg) are computed 
accordingly (lines 3–8). Subsequently, the algorithm iterates 
through all DCs and their servers (lines 10–17), computes the 
score sc for each server (line 12), and selects the one with the 
lowest score (lines 13–15). The result res is then returned (line 
18).   

The key feature of this algorithm lies in its ability to select 
a well-balanced server by dynamically weighting the 
importance of CPU, GPU, and storage resources based on the 
UE's specific requirements. Instead of treating all resource 
types equally, the algorithm adjusts the influence of each 
resource type in the scoring process, allowing it to favor 
servers that best match the demand profile. This ensures that 
the selected server is neither over-provisioned nor 
underutilized in any particular dimension, leading to more 
efficient and context-aware resource allocation. 

 

IV. PERFORMANCE EVALUATION 
This section describes the various conditions and 

verification environment used for the performance evaluation. 
The emulated functions of APN-C, multiple UEs, ONs, DC-
C, Local DC-Cs, individual DCs, and intra-DC servers were 
distributed across two computers. The APN-C, UEs, and ON 
emulators were implemented on a computer with an Intel Core 
i5-1155G7 processor (2.50 GHz, 4 cores / 8 threads), 16 GB 
of memory, and Windows 11 OS. The DC-C and emulators of 

Algorithm 1: sel_dc
Input: c_req, g_req, s_req
Output: res

01.  Set ws based on s_req thresholds  
02.  tc ← c_req + g_req
03.  If tc > 0 then
04.      wc ← (c_req / tc) × (1 − ws)  
05.      wg ← (g_req / tc) × (1 − ws)  
06.  else
07.      wc ← 0, wg ← 0  
08.  end if
09.  best ← ∞, res ← {dc: "def", id: − 1}  
10.  For each dc in dc_list:  
11.      For each sv in dc.svrs:  
12.          sc ← wc×sv.cpu + wg×sv.gpu + ws×sv.sto
13.          If sc < best then 
14.              best ← sc, res ← {dc: dc.nm, id: sv.id}  
15.          end if 
16.      end for
17.  end for
18.  Return res

TABLE I.  PARAMETERS FOR NUMERICAL ANALYSIS 

Simulation Parameter Value  

Number of DCs 200 
Number of servers in each 
DC 10,000 

Number/Size of 
CPUs/GPUs/Storages in 
each server 

CPU: 64-128 cores 
GPU: 64-128 x 103 cores 
Storage: 10-100 TB 

Data types of offloading 

(a) AI inference 
(b) Video processing 
(c) General computing 
(d) Data storage 

Max. required number/size 
of resources (CPU/GPU 
and Storage) for offloading 

(a) 32/48 x 103 cores and 10% of data size 
(b) 16/48 x 103 cores and 10% of data size 
(c) 48/0 cores and 10% of data size 
(d) 16/0 cores and 200 GB 

Data size of offloading 1 MB - 200 GB 
Max. distance between UE 
and DC 500 km 
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Local DC-Cs, DCs, and servers were implemented on another 
computer with an Intel Core i7-8700K processor (4.70 GHz, 
6 cores / 12 threads), 24 GB of memory, and Windows 11 OS. 
For the APN-C, we newly developed C/C++ programs to 
execute its main steps—(1) Request window, (3) Request 
sorting, and (7) APN route calculation—as described in 
Section III.B and Fig. 4, as well as the signal transmission and 
reception processes with UEs, ONs, and the DC-C. Similarly, 
the DC-C was implemented with newly developed C/C++ 
programs to perform its core functions — (4-1) Mapping from 
data types to resource types and (4-5) DC/server allocation—
along with communication with the Local DC-Cs and APN-C. 
To further reduce the overall processing time for resource 
allocation, Step (4-3) Sorting utilization with squeezing was 
also implemented within the Local DC-Cs.  

The two computers described above were connected via a 
1 Gigabit Ethernet link, and communication between them 
was conducted using socket-based messaging. While APN-C 
and DC-C are originally intended to be deployed at physically 
separated locations—a few hundred kilometers apart or 
more—the initial evaluation in this study was conducted 
within a simplified test environment on the same local area 
network (LAN). Table 1 summarizes the parameters used in 
numerical analysis. In this analysis, we assumed that all DCs 
are geographically distributed across Japan and considered as 
candidate destinations for offloading. In line with current 
domestic deployment trends, we set the number of DCs to 200 
and the number of servers per DC to 10,000 [7]. Accordingly, 
the maximum transmission distance between a UE and a DC 
for offloading purposes was set to 500 km, based on the 
approximate distance between Tokyo and Osaka. Each server 
was assumed to be equipped with three types of resources: 
CPU, GPU, and storage. For each server, the number of 
resources implemented for each type is defined within a 
range—64–128 cores for CPU, 64–128 × 10³ cores for GPU, 
and 10–100 TB for storage devices—and is randomly 
assigned within that range. As described in section III. B, we 
considered four types of offloading data: (a) AI inference, (b) 
video processing, (c) general computing, and (d) data storage. 
The maximum required resources for each type were defined 
as follows: (a) and (b) require both CPU and GPU resources—
32 CPU cores and 48 x 103 GPU cores in maximum for (a), 
and 16 CPU cores and 48 x 103 GPU cores for (b). (c) requires 
only 48 CPU cores, while (d) requires 16 CPU cores and 200 
GB of storage. The actual number and size of resource 
allocations are randomly assigned for each offloaded data item, 
with the aforementioned maximum value serving as the upper 
bound. Note that (a), (b), and (c) require storage equal to 10% 
of the size of the offloaded data, which ranges from 1 MB to 
200 GB. This storage is used for the temporary buffering of 
data during the offloading process.  

 

V. RESULTS AND DISCUSSION 
This section presents the simulation results for verifying 

the proposed technique, as well as the discussion based on 
these results. Fig. 5 shows the verification results of the 
DC/server allocation algorithm proposed in Section III.C. Fig. 
5 (a) illustrates the list of DC/server candidates received by 
the DC-C from the Local DC-Cs, corresponding to step (4-4) 
in Fig. 4. For explanatory purposes, the number of DCs and 
servers per DC in this list are simplified to three DCs and two 
servers, respectively; however, in the actual list, the variables 
defined in Table I were used. Figure 5 (b) shows the terminal 

screen of the APN-C. The upper part displays the content of 
the offloading request sent to the DC-C (Step (4)), while the 
lower part presents the response received from the DC-C 
indicating the selected destination DC and server (Step (5)). 
Since the offloading request corresponds to data type (a) AI 
inference, which requires the largest number of CPU and GPU 
cores as shown in Table I, it was confirmed that the DC 
allocation algorithm successfully selected the server 
(Server_ID = 1 in DC_000) with the lowest combined 
utilization rate of GPU and CPU resources. The algorithm, 
which assigns weights to each resource according to the data 
type, proved effective. Instead of merely selecting another 
server (Server_ID = 0 in DC_001) with the lowest GPU 
utilization, it achieved a selection that also takes CPU 
utilization into account.  

Table II shows the simulated results of processing times 
for each step related to DC/server allocation, which is the most 
critical component in our proposed method. In the DC/server 
allocation process, each server within every DC is sorted in 
ascending order based on utilization, creating a list (dc_list). 
Then, in Step (4-5) DC/server allocation, the target DC/server 
for offloading is determined based on Algorithm 1 using this 
list. If the utilization rates of all servers across all domestic 
DCs are included in the list, the number of entries can reach 
up to two million, leading to significant processing delays. 
Therefore, in Step (4-3) Sorting utilization with squeezing, we 
limited the sorting to only the top 1% or 0.1% of servers in 
each DC (corresponding to 1,000 and 100 servers, 
respectively). As shown in Table II, the sorting process took 
963 ms without squeezing, whereas it was dramatically 
reduced to 5.6 ms for the top 1% and 1.3 ms for the top 0.1%. 
This substantial reduction in sorting time was achieved by 
performing a partial sort—sorting only the top 1% or 0.1% of 
the list, while leaving the rest unsorted—thus greatly reducing 
computation time. Moreover, we confirmed that this 
squeezing also contributed to reducing the processing time in 
the subsequent step, Step (4-4) Utilization response. As shown 
in Table II, the processing time was 1,798 ms without 
squeezing but was significantly reduced to 91.0 ms for the top 
1% and 5.0 ms for the top 0.1%. This improvement is 
attributed to the fact that the utilization response signals sent 
from the 200 local DC-Cs to the DC-C become smaller in data 

 
Fig. 5. (a) List of DC/server candidates, (b) Terminal 
screen of the APN-C.  
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size when the list contains fewer elements, thereby shortening 
the total time required for all 200 responses to be received. As 
a result of significantly reducing the number of elements in the 
list in advance, the processing time for Step (4-5) DC/server 
allocation was as short as 0.021 ms (top 1% squeezing) and 
0.008 ms (top 0.1% squeezing), which is less than 0.5% of the 
time required without squeezing (4.2 ms). Finally, as shown 
in Table II, the total processing time for all steps related to 
DC/server allocation was 2,765.2 ms without squeezing. In 
contrast, it was reduced to 96.6 ms with top 1% squeezing and 
further to 6.3 ms with top 0.1% squeezing, demonstrating the 
significant overall effectiveness of the squeezing technique. 

This subsection discusses the total processing time of the 
proposed scheme. Based on the APN-C simulation, the 
processing time related to Step (1) Request window (window 
size = 10 ms), Step (3) Request sorting, and Step (7) APN 
route calculation was 28 ms in total when two UEs were 
involved. In addition, Step (8-1) Routing assumes an optical 
switch port switching delay of less than 50 ms [8]. For Steps 
(10) and (12), corresponding to the transmission and reception 
of offloaded data, a delay of 7 ms (round-trip distance of 1,000 
km) was adopted, referring to reported results from APN 
transmission experiments [9]. In the simulation environment, 
APN-C and DC-C, each with their respective subordinate 
elements (UEs, ONs, and DCs) implemented, were connected 
back-to-back within the same LAN. Therefore, the delay 
associated with multiple exchanges of control signals among 
controllers/elements that would be physically separated by 
more than 100 km—such as those in Steps (2), (4), (5), (6), 
and others—could not be directly evaluated. To account for 
this, it was assumed that APN is also utilized for transmitting 
these control signals, and the total delay was estimated to be 
33 ms (3.67 ms per 500 km for one-way, and 33 ms for nine-
way) [9]. The processing time of Steps (6-1)–(6-4) within the 
Local DC-C and servers was assumed to be negligibly small. 
By adding 6 ms for the DC/server allocation process presented 
in Table II, the total processing time associated with the 
proposed mechanism was estimated to be 124 ms, excluding 
Step (11) Processing offloaded data.  

 If the proposed inter-controller cooperation mechanism is 
not employed, the coordination between APN-C and DC-C 
via the orchestrator would take a few seconds [5, 6]. This 
result indicates that the proposed method can reduce the 
processing time required for offloading to less than one-
twentieth of that without inter-controller cooperation. Thus, 
the proposed technique can provide high-speed offloading 
processing to a remote DC located hundreds of kilometers 
away from the UE. For instance, in remote surgery 
applications where the end-to-end latency requirement is less 

than 320 ms [10], the proposed method can be applied if the 
offloaded tasks can be completed within 196 ms, indicating its 
high practicality and effectiveness. Further evaluations with 
an increased number of UEs are left for future work , and some 
parameters were set to assumed values whose refinement will 
also be addressed in future studies. 

 

VI. CONCLUSION 
Assuming a future infrastructure composed of distributed 

DCs and APNs, we newly proposed a control technique that 
enables high-speed offloading by allowing controllers at each 
site to communicate directly without relying on a central 
orchestrator. In this paper, we designed a new architecture, 
sequence chart, and DC/server selection algorithm to realize 
this technique and conducted simulation-based validation. 
The results revealed that, compared to conventional 
technologies, the proposed method can accelerate offloading 
processes by up to twenty times. In particular, the 
effectiveness of the squeezing approach in reducing 
computation time for DC/server allocation was clearly 
demonstrated. Our proposed technique suggests high 
applicability to time-critical services such as telesurgery. 
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TABLE II.  SIMULATED RESULTS OF PROCESSING TIMES OF 
DC/RESOURCE ALLOCATION 

Process 
(Step) 

w/o Squeezing 
 (ms) 

w/ Squeezing 
(ms) 

Top 1% Top 0.1% 

Sorting utilization 
(4-3) 963.0 5.6 1.3 

Utilization response 
 (4-4) 1,798.0 91.0 5.0 

DC/Server 
allocation (4-5) 4.2 0.021 0.008 

Total 2,765.2 96.6 6.3 
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