Novel High-Speed Offloading Control Technique
Enabled by Inter-Controller Cooperative Operation
Towards Advanced Cloud Computing

Kota Asaka
Faculty of Informatics
Tokyo City University
Yokohama, Japan
asaka@tcu.ac.jp

Abstract— This paper proposes a novel high-speed
offloading control technique enabled by direct cooperation
between a data center (DC) controller and an all-photonic
network controller, eliminating the need for a central
orchestrator. We design new architecture, control sequence
flowchart, and resource selection algorithm to minimize
offloading latency. Simulation results demonstrate that the
proposed method reduces total processing time to 124 ms—
about twenty times faster than conventional techniques. The
effectiveness of a squeezing approach for optimizing DC and
server allocation is also confirmed. These results indicate strong
potential for application in time-critical services such as
telesurgery.

Keywords—Offloading, Cloud computing, Distributed data
center, All-photonic network, Inter-controller cooperative
operation

L.

In recent years, cloud/edge computing—which allows
users to remotely access computing resources via
communication networks—has been rapidly spreading [1].
This technology, in which a portion of the tasks performed on
user devices is offloaded to remote computing resources, is
referred to as “offloading”. Fig 1 illustrates the offloading
technology in conventional communication networks. From
the user equipment (UE) N, (1) a portion of the tasks required
for artificial intelligence (AI) development or high-resolution
video processing is transmitted as offloaded data to high levels
of performance graphics processing units (GPUs) or other
processing units installed in the service provider’s data center
(DC). (2) The computing resources such as GPUs in the DC
then perform offload processing, and (3) the DC sends offload
processing results back to the UE N. In this way, since the UE
can delegate advanced tasks to remote computing resources, it
has the advantage of not requiring high levels of performance
GPUs or similar hardware locally. However, in conventional

INTRODUCTION

UE: User equipment
4P Congestion

(2) Offloading processing

¥

Specific data center
in metropolitan area

Conventional network

< 30 km

Fig. 1. Schematic view of a conventional offloading
process in cloud computing

979-8-3315-7896-1/26/$31.00 ©2026 IEEE

Sota Natori
Faculty of Informatics
Tokyo City University

Yokohama, Japan

123

Yu Saruwatari
Faculty of Informatics
Tokyo City University

Yokohama, Japan

Distributed DCs
The double-headed arrow indicates in suburban areas
the flow of the ofﬂoadmg process.

||>\ E!!
T/ i
- node(s), [DC M

DC: Data center

> 100 km

Fig. 2. Schematic view of an APN and distributed data
centers in suburban areas for advanced cloud computing

communication networks, multiple routers are installed
between the UE and the DC to handle tasks such as switching
communication paths and avoiding data collisions. Since
traditional routers temporarily store communication data in
memory to perform collision avoidance control, when the
volume of offloaded data is large or the number of UEs is high,
congestion due to offload concentration may occur at the
routers or a specific DC. This results in latency, leading to
prolonged processing times for offloaded tasks.

In light of the above background, this paper proposes a
novel high-speed offloading control technique in which the
control unit of the all-photonic network (APN) and the
centralized control unit of the distributed DCs are tightly
coordinated to reduce offloading latency and shorten
processing time for offloading tasks. The remainder of this
paper is organized as follows. Section II reviews related work
on offloading control and network congestion. Section III
details the proposed technique: Section III.A provides an
overview of the approach, Section III.LB describes the
sequence chart illustrating inter-controller cooperative
operations, and Section III.C explains the algorithm for
selecting appropriate DCs. Section IV outlines the
performance evaluation conditions. Section V presents and
analyzes the simulation-based evaluation results,
demonstrating the effectiveness of the proposed method.
Finally, Section VI concludes the paper.

II. RELATED WORKS

A. Edge Computing

As a means to avoid congestion in routers during
offloading and to achieve low latency, the use of edge

ICOIN 2026

computing, including mobile edge computing, has become
increasingly widespread in recent years. Edge computing
performs offloading processing by utilizing computational
resources located at the edge of the network (i.e., closer to the
UEs) rather than in centralized cloud DCs. This shorter
distance between UEs and edge resources, compared to
traditional cloud computing, eliminates the need to transmit
offloaded data to the core of the cloud network. As a result, it
can reduce network load (congestion) and latency in
offloading processing. Due to these characteristics, edge
computing is applied in various time-critical services
requiring real-time control, such as factory production line
control systems and control systems in autonomous vehicles.
However, edge computing faces the following challenges:
Since it requires the use of computing resources within DCs
located near UEs, offloading processing through edge
computing is not feasible in regions without nearby DCs. In
particular, hyper-scale DCs tend to be concentrated in urban
areas in recent years [2], making it difficult for UEs in
suburban or rural areas to utilize edge computing. In Japan,
the Watt-Bit Collaboration initiative promotes the regional
decentralization of DCs to address urban power constraints
and support carbon neutrality [3]. As part of this effort, APNs
are expected to play a key role by providing ultra-high-
capacity, low-latency optical connections not only between
distributed DCs but also between UEs and these centers. Even
when the DCs are physically located far from UEs, the high-
speed and low-latency characteristics of APNs minimize the
impact of geographical distance. This enables efficient and
low-latency offloading of computational tasks, facilitating a
more resilient and flexible digital infrastructure.

B. Offloading Control Technique

Various offloading control techniques have been proposed
to reduce the latency of offloading processes in cloud and edge
computing environments [1, 4]. However, most of these
studies focus on offloading algorithms or network
architectures designed to reduce latency in mobile edge
computing or hybrid edge—cloud computing systems,
assuming the use of existing network and DC infrastructures.
To the best of the authors' knowledge, there have been no prior
studies that specifically investigate low-latency offloading in
environments based on APNs and geographically distributed
DCs, as described in the previous section.

III. PROPOSED OFFLOADING CONTROL TECHNIQUE

Fig. 2 illustrates the schematic view of advanced
offloading technology in an APN with DCs distributed across
suburban areas. In the APN, each UE is assigned a dedicated
wavelength (A1-x), establishing a direct optical path between
the UE and one of the multiple distributed DCs via optical
nodes (optical routers and/or switches) that perform only
optical path switching. Because each UE is allocated a unique
wavelength, an end-to-end virtual dedicated optical link is
provided for each UE. Since the optical nodes (ONs) do not
perform optical-electrical and electrical-optical conversions
or temporary data buffering in memory, there is no processing
delay or congestion associated with such operations, enabling
the realization of ultra-high-speed data transmission with low
latency.

124

Orchestrator

‘ DC allocation control ‘

Conventional interfaces ———

for cooperation
NW-C DC-C

| UE Nl bC
=

Conventional network S

DC: Data center Server
DC-C: DC controller
N: Node -CPU GPU [[Istoragq
NW-C: Network controller
UE: User equipment
(a)
‘ Orchestrator ‘
New interface for
direct cooperation DC-C
/
APN-C D E— DC allocation
control

%

DC

Server

| ue on [
}‘____A_P'_“____'

APN : All-Photonic network
APN-C: APN controller
ON: Optical node

(b)

Fig. 3. (a) Conventional architecture for cooperation of
network and DC controllers for offloading via an
orchestrator, (b) Proposed architecture for inter-
controller cooperative operation for high-speed
offloading

A. Proposed Network Architecture for High-Speed
Offloading Technique

Based on the networks illustrated in Figs. 1 and 2, Fig. 3
shows (a) the conventional network architecture and (b) the
proposed network architecture, respectively. In Fig. 3(a), the
network controller (NW-C) is responsible for managing and
controlling multiple UEs and nodes (e.g., routers) under its
domain, while the DC controller (DC-C) manages and
controls multiple DCs in metropolitan areas. The orchestrator
is a network element positioned at a higher hierarchical level
than both the NW-C and the DC-C, enabling coordination
between the two controllers through the orchestrator. An
offloading request transmitted from a UE is sent to the
orchestrator via the NW-C. At this time, the DC allocation
control function within the orchestrator selects the optimal DC
from a list of DCs with low offloading load, which is
periodically provided by the DC-C. The selected DC is then
notified to both the NW-C and the UE as the offloading
destination. Upon receiving this notification, the NW-C
determines the communication path between the selected DC
and the UE, and accordingly configures the routing paths on
the nodes along the determined route. Once the routing is
configured, the UE promptly transmits the offloading data to
the designated DC. At this time, if the number of offloading

[APN-C |

ey (av]

DC-C |

bC

(2) Offloading request

window

A

sorting

(1) Request

(3) Request

(4) DC/server

(5) Allocated

allocation request

DC/server response

) Routing initiation
ZI (8-1) Routing
|-(8-2)Routing ack, 3|

(9) Offioading inifia

Z|(7) APN route calc.

6-6) DC/server
reservation ack.

10) Offloading data

transmission

| Local DOCl Server
(i) Resource utilizatiaQ]
request (ii) Resource
utilization
Je i) Resource acquisition
utilization list
(4-1) Mapping Perio'd'ic
from data types to repetition
resource types
(4-2) DC/server
allocation request (4-3
Sorting utilization
(4-4) with squeezing
glilization response
(4-5) DC/server
allocation
6) DC/server |
reservation (6-1)Server/resource
reservation (6-2)
Resource
-3) Reservation ack. reservation
(6-4) Intra-DC
path config.
(6:5) DC/server
reservation ack.
(11)
:I Processing
(12) Processed data J&— ffioaded data
VY transmission Y

Fig. 4. Proposed sequence chart of high-speed offloading control technique utilizing inter-controller cooperation

requests from UEs is high, or if there is heavy background
traffic on the network path between UEs and DCs
concentrated in urban areas, significant delays may occur due
to congestion at intermediate nodes or within specific DCs.
This can result in prolonged processing times for offloading,
posing a critical challenge. Furthermore, it is known that
processing time for coordination between two controllers via
the orchestrator generally takes a few seconds [5, 6].
Therefore, under the current typical network architecture as
shown in Figs 1 and 3(a), achieving low-latency offloading
processing cannot be practical.

On the other hand, in the proposed architecture shown in
Fig. 3(b), the network infrastructure is replaced by the APN,
and the APN Controller (APN-C) is responsible for managing
and controlling multiple UEs and ONs under its domain. In
addition, the DC-C manages and controls multiple DCs
distributed across suburban areas. Here, the differences from
the conventional architecture shown in Fig. 3(a) are explained.
First, the DC allocation control function, which was
conventionally placed in the orchestrator, is relocated to the
DC-C. Furthermore, by introducing a new interface between
the APN-C and the DC-C, offloading can be performed
without going through the orchestrator. As a result, faster
offloading processing can be expected. The detailed operation
procedure of the proposed architecture shown in Fig. 3(b) is
described in the next section (II1.B).

B. Proposed Sequece Chart for High-Speed Offloading
Technique

This section describes the DC/server selection procedure
in the proposed fast offloading control technique. Fig. 4
illustrates the sequence chart tailored for our proposal. As a
prerequisite of this method, the Local DC-C periodically
collects the utilization status of each resource (CPU, GPU, and
storage) in the servers under its management (as indicated by
the dashed box in Fig. 4). (i) The Local DC-C sends a resource
utilization request to each server under its control. (i) Upon

125

receiving this request, each server acquires the utilization
information of its internal resources. (iii) Each server then
replies to the Local DC-C with the collected resource
utilization information. Then, the Local DC-C stores the
received utilization data in its internal database. By
periodically storing and updating this information, the Local
DC-C ensures that up-to-date resource utilization data is
always available. This enables rapid and correct selection of
DCs and resources when an offloading request is received
from a UE.

Based on the above prerequisite, the following describes
the procedural flow illustrated in the sequence chart in Fig. 4.
(1) The APN-C opens a request window, a configurable time
period during which it accepts multiple offloading requests
from UEs. During this window, the APN-C remains in a
standby state awaiting requests from UEs. (2) When a UE has
processing tasks to be offloaded, it sends an offloading request
to the APN-C. This request includes three key pieces of
information: UE identifier (ID), data type, and offloading data
size. In this study, we define four types of offloadable data for
the data type field, ranked in descending order of priority: (a)
Al inference, (b) video processing, (c¢) general computing, and
(d) data storage. Note that while Fig. 4 illustrates the sequence
flow for a single UE for simplicity, the proposed scheme is
designed to support requests from multiple UEs. (3) The APN-
C extracts the priority level from each request received during
the request window and sorts the requests in descending order
of priority. In the case of multiple requests with the same
priority, they are processed on a first-come, first-served basis.
(4) The APN-C sequentially sends DC/server allocation
requests to the DC-C, starting from the request with the
highest priority determined in step (3). (4-1) Upon receiving
each request, the DC allocation control function within the
DC-C maps the specified data type to the appropriate types
and quantities of resources required by the processing. (4-2)
The DC-C then sends a DC/server allocation request to each
Local DC-C, requesting information about available DCs and
resources that can fulfill the offloading request. This request

Algorithm 1: sel_dc
Input: ¢_req, g_req, s_req
Output: res

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Set ws based on s_req thresholds
tc<—c req+g req
If tc > 0 then
we «— (c_req / tc) X (1 —ws)
wg «— (g _req /tc) X (1 —ws)
else
we «— 0, wg«—0
end if
best «— o, res «— {dc: "def", id: — 1}
For each dc in dc_list:
For each sv in dc.svrs:
sc «<— we Xsv.epu + wg Xsv.gpu + ws X sv.sto
If sc < best then
best < sc, res «— {dc: dc.nm, id: sv.id}
end if
end for
end for
Return res

includes the required resource quantities as calculated in (4-1).
(4-3) Each Local DC-C calculates the sum of the utilization
rates of all resources for the servers in the list (Step (iii)) and
sorts them in ascending order. Note that the sorting is
performed after being squeezed to the top 1% or 0.1%, aiming
to reduce the processing time. (4-4) Each Local DC-C returns
a list of candidate servers and associated resource utilization
rates within its DC to the DC-C. (4-5) The DC-C aggregates
the candidate information received from all Local DC-Cs and
selects the most suitable DC and servers for the offloading
request. To reduce processing latency, it limits the candidate
pool to the top ten responses received in order of arrival. (5)
The DC-C replies to the APN-C with the selected DC and
server allocation information. (6) Immediately after step (5),
the DC-C sends a request to the relevant Local DC-C to
reserve the selected server and prepare for offloading. (6-1)
The designated Local DC-C instructs the corresponding server
to reserve the required resources and enter a standby state. (6-
2) The server reserves the specified resources and transitions
to a wait state. (6-3) The server sends a confirmation response
to the Local DC-C, indicating successful reservation. (6-4)
Upon receiving this response, the Local DC-C performs
internal path configuration within the DC. (6-5) The Local
DC-C then sends a confirmation response to the DC-C
indicating that the reservation has been successfully
completed. (6-6) The DC-C forwards this confirmation to the
APN-C, notifying that the offloading destination is now in a
ready state. (7) Upon receiving the allocation information
from the DC-C, the APN-C immediately performs path
computation within the APN and determines the route to the
selected DC. (8) Based on the computed path, the APN-C
sends path control commands to multiple ONs along the route.
(8-1) Each ON configures its input/output ports based on the
received command. (8-2) Each ON sends a path setup
confirmation back to the APN-C. (9) After receiving both the
DC/server reservation confirmation (Step (6-6)) and the path
setup confirmations (Step (8-2)), the APN-C notifies the UE
to initiate the offloading process to the selected DC and
resources. (10) The UE begins transmitting the offloading data
to the designated DC and resources. (11) Upon receiving the
data, the server in the selected DC performs the offloading
task using the reserved server and resources. (12) Once the
offloading task is complete, the server promptly returns the

126

processing results to the UE. The above outlines the procedure
of the proposed high-speed offloading control scheme. Note
that, for the sake of simplicity, post-processing steps
following offloading completion are omitted from the above
description.

C. DC/Servers Allocation Algorithm

This section explains the DC/server allocation algorithm,
which corresponds to step (4-5) in Section III. B, in the
proposed fast offloading control technique. Algorithm 1
shows the proposed algorithm to allocate the optimal DC and
server based on requested computational resources (CPU,
GPU) and storage. The algorithm begins by setting the storage
weight ws based on s_reg (line 1) and calculating the total
number of logical cores fc (line 2). Depending on the value of
tc, the CPU and GPU weights (wc and wg) are computed
accordingly (lines 3-8). Subsequently, the algorithm iterates
through all DCs and their servers (lines 10—17), computes the
score sc for each server (line 12), and selects the one with the
lowest score (lines 13—15). The result res is then returned (line
18).

The key feature of this algorithm lies in its ability to select
a well-balanced server by dynamically weighting the
importance of CPU, GPU, and storage resources based on the
UE's specific requirements. Instead of treating all resource
types equally, the algorithm adjusts the influence of each
resource type in the scoring process, allowing it to favor
servers that best match the demand profile. This ensures that
the selected server is neither over-provisioned nor
underutilized in any particular dimension, leading to more
efficient and context-aware resource allocation.

IV. PERFORMANCE EVALUATION

This section describes the various conditions and
verification environment used for the performance evaluation.
The emulated functions of APN-C, multiple UEs, ONs, DC-
C, Local DC-Cs, individual DCs, and intra-DC servers were
distributed across two computers. The APN-C, UEs, and ON
emulators were implemented on a computer with an Intel Core
15-1155G7 processor (2.50 GHz, 4 cores / 8 threads), 16 GB
of memory, and Windows 11 OS. The DC-C and emulators of

TABLE L. PARAMETERS FOR NUMERICAL ANALYSIS
Simulation Parameter Value
Number of DCs 200
Number of servers in each 10,000

DC

Number/Size of
CPUs/GPUs/Storages in
each server

CPU: 64-128 cores
GPU: 64-128 x 10° cores
Storage: 10-100 TB

(a) Al inference

(b) Video processing
(c) General computing
(d) Data storage

Data types of offloading

(a) 32/48 x 10° cores and 10% of data size
(b) 16/48 x 10° cores and 10% of data size
(c) 48/0 cores and 10% of data size

(d) 16/0 cores and 200 GB

Max. required number/size
of resources (CPU/GPU
and Storage) for offloading

Data size of offloading 1 MB - 200 GB

Max. distance between UE

and DC 500 km

Local DC-Cs, DCs, and servers were implemented on another
computer with an Intel Core i7-8700K processor (4.70 GHz,
6 cores / 12 threads), 24 GB of memory, and Windows 11 OS.
For the APN-C, we newly developed C/C++ programs to
execute its main steps—(1) Request window, (3) Request
sorting, and (7) APN route calculation—as described in
Section III.B and Fig. 4, as well as the signal transmission and
reception processes with UEs, ONs, and the DC-C. Similarly,
the DC-C was implemented with newly developed C/C++
programs to perform its core functions — (4-1) Mapping from
data types to resource types and (4-5) DC/server allocation—
along with communication with the Local DC-Cs and APN-C.
To further reduce the overall processing time for resource
allocation, Step (4-3) Sorting utilization with squeezing was
also implemented within the Local DC-Cs.

The two computers described above were connected via a
1 Gigabit Ethernet link, and communication between them
was conducted using socket-based messaging. While APN-C
and DC-C are originally intended to be deployed at physically
separated locations—a few hundred kilometers apart or
more—the initial evaluation in this study was conducted
within a simplified test environment on the same local area
network (LAN). Table 1 summarizes the parameters used in
numerical analysis. In this analysis, we assumed that all DCs
are geographically distributed across Japan and considered as
candidate destinations for offloading. In line with current
domestic deployment trends, we set the number of DCs to 200
and the number of servers per DC to 10,000 [7]. Accordingly,
the maximum transmission distance between a UE and a DC
for offloading purposes was set to 500 km, based on the
approximate distance between Tokyo and Osaka. Each server
was assumed to be equipped with three types of resources:
CPU, GPU, and storage. For each server, the number of
resources implemented for each type is defined within a
range—64—128 cores for CPU, 64-128 x 10° cores for GPU,
and 10-100 TB for storage devices—and is randomly
assigned within that range. As described in section III. B, we
considered four types of offloading data: (a) Al inference, (b)
video processing, (c¢) general computing, and (d) data storage.
The maximum required resources for each type were defined
as follows: (a) and (b) require both CPU and GPU resources—
32 CPU cores and 48 x 10° GPU cores in maximum for (a),
and 16 CPU cores and 48 x 10° GPU cores for (b). (c) requires
only 48 CPU cores, while (d) requires 16 CPU cores and 200
GB of storage. The actual number and size of resource
allocations are randomly assigned for each offloaded data item,
with the aforementioned maximum value serving as the upper
bound. Note that (a), (b), and (c) require storage equal to 10%
of the size of the offloaded data, which ranges from 1 MB to
200 GB. This storage is used for the temporary buffering of
data during the offloading process.

V. RESULTS AND DISCUSSION

This section presents the simulation results for verifying
the proposed technique, as well as the discussion based on
these results. Fig. 5 shows the verification results of the
DC/server allocation algorithm proposed in Section III.C. Fig.
5 (a) illustrates the list of DC/server candidates received by
the DC-C from the Local DC-Cs, corresponding to step (4-4)
in Fig. 4. For explanatory purposes, the number of DCs and
servers per DC in this list are simplified to three DCs and two
servers, respectively; however, in the actual list, the variables
defined in Table I were used. Figure 5 (b) shows the terminal

127

Step (4-4) Server ID CPU
0 10%
1 8%
0 15%
1 18%
0 5%
1 8%
Step (4) [Network-Mock] Sending offload request:
UE ID: uel3105
Type: AI_INFERENCE
Data Size: 200000 MB
Step (5) [Network-Mock] Received DC selection response:

"success”

Status:
Selected DC:
ID: 1
Server Resource Utilization:

CPU: 8%

GPU: 7%

Storage: 65%

"DC_000"
Server

(W)

Fig. 5. (a) List of DC/server candidates, (b) Terminal
screen of the APN-C.

screen of the APN-C. The upper part displays the content of
the offloading request sent to the DC-C (Step (4)), while the
lower part presents the response received from the DC-C
indicating the selected destination DC and server (Step (5)).
Since the offloading request corresponds to data type (a) Al
inference, which requires the largest number of CPU and GPU
cores as shown in Table I, it was confirmed that the DC
allocation algorithm successfully selected the server
(Server ID = 1 in DC 000) with the lowest combined
utilization rate of GPU and CPU resources. The algorithm,
which assigns weights to each resource according to the data
type, proved effective. Instead of merely selecting another
server (Server ID = 0 in DC 001) with the lowest GPU
utilization, it achieved a selection that also takes CPU
utilization into account.

Table IT shows the simulated results of processing times
for each step related to DC/server allocation, which is the most
critical component in our proposed method. In the DC/server
allocation process, each server within every DC is sorted in
ascending order based on utilization, creating a list (dc_list).
Then, in Step (4-5) DC/server allocation, the target DC/server
for offloading is determined based on Algorithm 1 using this
list. If the utilization rates of all servers across all domestic
DCs are included in the list, the number of entries can reach
up to two million, leading to significant processing delays.
Therefore, in Step (4-3) Sorting utilization with squeezing, we
limited the sorting to only the top 1% or 0.1% of servers in
each DC (corresponding to 1,000 and 100 servers,
respectively). As shown in Table II, the sorting process took
963 ms without squeezing, whereas it was dramatically
reduced to 5.6 ms for the top 1% and 1.3 ms for the top 0.1%.
This substantial reduction in sorting time was achieved by
performing a partial sort—sorting only the top 1% or 0.1% of
the list, while leaving the rest unsorted—thus greatly reducing
computation time. Moreover, we confirmed that this
squeezing also contributed to reducing the processing time in
the subsequent step, Step (4-4) Utilization response. As shown
in Table II, the processing time was 1,798 ms without
squeezing but was significantly reduced to 91.0 ms for the top
1% and 5.0 ms for the top 0.1%. This improvement is
attributed to the fact that the utilization response signals sent
from the 200 local DC-Cs to the DC-C become smaller in data

TABLE II. SIMULATED RESULTS OF PROCESSING TIMES OF
DC/RESOURCE ALLOCATION
w/ Squeezing
Process w/o Squeezing (ms)
(Step) (ms) Top 1% Top 0.1%

Sorting utilization
(4-3) 963.0 5.6 1.3
Utilization response
(4-4) 1,798.0 91.0 5.0
DC/Server
allocation (4-5) 4.2 0.021 0.008
Total 2,765.2 96.6 6.3

size when the list contains fewer elements, thereby shortening
the total time required for all 200 responses to be received. As
aresult of significantly reducing the number of elements in the
list in advance, the processing time for Step (4-5) DC/server
allocation was as short as 0.021 ms (top 1% squeezing) and
0.008 ms (top 0.1% squeezing), which is less than 0.5% of the
time required without squeezing (4.2 ms). Finally, as shown
in Table II, the total processing time for all steps related to
DC/server allocation was 2,765.2 ms without squeezing. In
contrast, it was reduced to 96.6 ms with top 1% squeezing and
further to 6.3 ms with top 0.1% squeezing, demonstrating the
significant overall effectiveness of the squeezing technique.

This subsection discusses the total processing time of the
proposed scheme. Based on the APN-C simulation, the
processing time related to Step (1) Request window (window
size = 10 ms), Step (3) Request sorting, and Step (7) APN
route calculation was 28 ms in total when two UEs were
involved. In addition, Step (8-1) Routing assumes an optical
switch port switching delay of less than 50 ms [8]. For Steps
(10) and (12), corresponding to the transmission and reception
of offloaded data, a delay of 7 ms (round-trip distance of 1,000
km) was adopted, referring to reported results from APN
transmission experiments [9]. In the simulation environment,
APN-C and DC-C, each with their respective subordinate
elements (UEs, ONs, and DCs) implemented, were connected
back-to-back within the same LAN. Therefore, the delay
associated with multiple exchanges of control signals among
controllers/elements that would be physically separated by
more than 100 km—such as those in Steps (2), (4), (5), (6),
and others—could not be directly evaluated. To account for
this, it was assumed that APN is also utilized for transmitting
these control signals, and the total delay was estimated to be
33 ms (3.67 ms per 500 km for one-way, and 33 ms for nine-
way) [9]. The processing time of Steps (6-1)—(6-4) within the
Local DC-C and servers was assumed to be negligibly small.
By adding 6 ms for the DC/server allocation process presented
in Table II, the total processing time associated with the
proposed mechanism was estimated to be 124 ms, excluding
Step (11) Processing offloaded data.

If the proposed inter-controller cooperation mechanism is
not employed, the coordination between APN-C and DC-C
via the orchestrator would take a few seconds [5, 6]. This
result indicates that the proposed method can reduce the
processing time required for offloading to less than one-
twentieth of that without inter-controller cooperation. Thus,
the proposed technique can provide high-speed offloading
processing to a remote DC located hundreds of kilometers
away from the UE. For instance, in remote surgery
applications where the end-to-end latency requirement is less

128

than 320 ms [10], the proposed method can be applied if the
offloaded tasks can be completed within 196 ms, indicating its
high practicality and effectiveness. Further evaluations with
an increased number of UEs are left for future work , and some
parameters were set to assumed values whose refinement will
also be addressed in future studies.

VI. CONCLUSION

Assuming a future infrastructure composed of distributed
DCs and APNs, we newly proposed a control technique that
enables high-speed offloading by allowing controllers at each
site to communicate directly without relying on a central
orchestrator. In this paper, we designed a new architecture,
sequence chart, and DC/server selection algorithm to realize
this technique and conducted simulation-based validation.
The results revealed that, compared to conventional
technologies, the proposed method can accelerate offloading
processes by up to twenty times. In particular, the
effectiveness of the squeezing approach in reducing
computation time for DC/server allocation was clearly
demonstrated. Our proposed technique suggests high
applicability to time-critical services such as telesurgery.

ACKNOWLEDGMENT

The research work was supported by JSPS KAKENHI
Grant Number 24K23871.

REFERENCES

C, Jiang, X. Cheng, H. Gao, X. Zhou, and J. Wan, “Toward
computation offloading in edge computing: A survey,” IEEE Access,
vol. 7, pp. 131543— 131558, 2019.

T. P. Fang and S. Greenstein. "Where the cloud rests: The cconomic
geography of data centers," Harvard Business School Working Paper,
No. 21-042, September 2020. (Revised August 2025.)

Minitstry of Econoy, Trade and Industiry of Japan, “Reportl.0 of the
public-private advisory council on Watt-Bit collaboration published,”,
News release, June 12, 2025.

Y. Toyoshima, T. Hatano, T. Shimada, and T. Yoshida, "Dynamic
hardware accelerator Sslection achieving optimal utilization of
resources," in IEICE Communications Express, vol. 13, no. 12, pp.
504-508, December 2024.

E. Kosmatos, C. Matrakidis, D. Uzunidis, A. Stavdas, S. Horlitz, and
T. Pfeiffer, "Real-time orchestration of QoS-aware end-to-end slices
across a converged metro and access network exploiting burst-mode
technology," Journal of Optical Communications and Networking, vol.
15, no. 1, pp. 1-15, January 2023.

H. Ou, K. Asaka, T.Shimada, and T. Yoshida, “A real-time optical path
control scheme across optical and wireless network domains toward
latency-critical services,” IEICE Transactions on Communications, in
press.

(1

(2]

(3]

[4]

(5]

(6]

(7]

Impress Research Institute, Data center research report 2025 (in
Japanese), Impress Corporation, 2025.

[8] Specification sheet, Huber+Suhner Polatis 6000 Series, Single mode
optical switch up to 192x192 ports,
https://www.redhelix.com/products/hubersuhner-polatis-6000-
series/?utm_source=chatgpt.com

NTT Corporation, “Demonstration shows IOWN APN's low-latency
capability can be used for real-time diagnosis and treatment on a remote
server to realize world's first cloud endoscopy system”, News release,
Nov. 19, 2024.

Y. Wang, Q. Ai, T. Shi, Y. Gao, B. Jiang, W. Zhao et al., “Influence of
network latency and bandwidth on robot-assisted laparoscopic
telesurgery: A pre-clinical experiment,” Chinese Medical Journal, Vol.
138, No. 3, pp. 325-331, 2025

[9]

[10]

