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Abstract—This paper presents analytical models for character-
izing Wi-Fi connection behavior and evaluating Quality of Service
(QoS) performance in Multi-Link Operation (MLO) schemes
for Wi-Fi 7 networks. The models estimate the probability
distribution of Wi-Fi link visits and derive three key QoS metrics:
expected download failure volume, deadline miss ratio, and
QoS satisfaction probability. Their accuracy is validated against
custom-developed simulations, demonstrating close alignment
with empirical results. To assess the feasibility of the proposed
models, we compare three MLO schemes—MLSR, MLMR-dual,
and MLMR-triple—with a baseline Multipath Offloading (MO)
scheme proposed in prior work. Numerical results show that
the MLMR-triple-link configuration consistently outperforms the
MO baseline, reducing download failures and deadline misses by
up to 90% and 68%, respectively. The proposed framework lays
a solid analytical foundation for next-generation wireless access
strategies, supporting intelligent and adaptive MLO design poten-
tially guided by AI-driven link aggregation and QoS optimization
in future Wi-Fi 7 deployments.

Index Terms—Wi-Fi 7, Multi-Link Operation (MLO), Analyt-
ical Modeling, QoS Performance, Wireless Networks

I. INTRODUCTION

Wi-Fi (WiFi) has become a ubiquitous communication
medium in both home and institutional environments, serving
as the backbone for accessing media streaming, cloud services,
and interactive applications [1]. The growing demand for these
services places increasing pressure on wireless networks to
meet stringent Quality of Service (QoS) requirements [2].
To address this, one prominent solution is Multipath TCP
(MPTCP), a standard proposed by the Internet Engineering
Task Force (IETF), which enables simultaneous data trans-
mission across multiple interfaces [3]. This technique, often
referred to as Multipath Offloading (MO), enhances bandwidth
aggregation and provides greater resilience to delay, particu-
larly in heterogeneous network environments.

Prior studies have examined MO in WiFi 5 (IEEE 802.11ac)
and WiFi 6 (IEEE 802.11ax) environments. Bhooanusas and
Sou [4] applied a Markov chain model [5] to capture the
stochastic behavior of WiFi links under MO, comparing of-
fload volume and deadline miss ratio with the earlier work
by Sou and Peng [6] to show closer alignment with real-
world conditions. Zhuo, Gao, Cao, and Hua [7] proposed
an auction-based incentive framework to encourage delay-
tolerant cellular users to allocate their bandwidth to WiFi
hotspots in exchange for greater WiFi access, while Pisupati
and Ramaiyan [8] simulated WiFi link dynamics focusing on
signal quality and noise aggregation. However, these standards
are limited to single-radio interfaces, which often degrade QoS
under congestion and fluctuating link conditions [9], [10].

WiFi 7 (IEEE 802.11be) introduces Multi-Link Operation
(MLO), which enables simultaneous transmissions across mul-
tiple radio channels [10]–[12]. This architectural advance-
ment offers significant improvements in QoS metrics such
as throughput, latency, and reliability, making it especially
beneficial in high-demand and dynamic environments. More
importantly, MLO supports emerging applications with inten-
sive bandwidth requirements (e.g., real-time gaming and etc.).
In response, recent research has increasingly focused on opti-
mizing MLO mechanisms to fully leverage these capabilities.

Zhang et al. [12] proposed a two-stage algorithm involv-
ing AP-STA pairing, WiFi Access Point (AP) identifies the
most suitable stations based on current link conditions, and
dynamic radio interface selection, with the aim of improv-
ing network throughput under heterogeneous station capabil-
ities. Simulation results showed significant gains over single-
link operation. Complementing this, Korolev, Levitsky and
Khorov [11] developed an analytical model that extended
Bianchi’s model [13] to analyze Simultaneous Transmit-and-
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Receive (STR) and non-STR MLO modes, revealing signifi-
cant throughput gains for STR. In addition, Lian, Tong, and
Fu [14] proposed an unsupervised learning framework that
formulates the task as a Multi-Armed Bandit (MAB) problem.
The scheme first identified the most promising arm and then
applied Monte Carlo Tree Search to find the best channel.
The simulation results showed that their proposed method
outperformed the standard baselines in both throughput and
selection accuracy.

In this paper, we propose analytical models to characterize
the stochastic process of MLO to address QoS issues in WiFi
7 networks. Our objective is to utilize these models to assess
QoS performance, which has received limited attention in the
existing literature. The state of the WiFi connection during a
user session time is modeled using a Markov chain framework.
To validate the precision of the proposed models, we compare
the theoretical distribution of the number of WiFi visits per
selected link with the simulation results. Furthermore, we
assess the effectiveness of the proposed approach by evalu-
ating three key QoS metrics (e.g., average download failure
volume E[VF ], deadline miss ratio Pmiss, and QoS satisfaction
PQoS) under various network conditions. These results are
compared across the Multi-Link Single-Radio (MLSR), Multi-
Link Multi-Radio (MLMR) dual-link, and triple-link schemes,
as well as the baseline MO model presented in [6].

The rest of this paper is organized as follows. Section II
presents the system model and analytical framework. Sec-
tion III validates the model via simulation. Section IV provides
QoS evaluations under various configurations. Section V con-
cludes and outlines future research directions.

(a) MLSR.

(b) MLMR with Dual Band.

(c) MLMR with Triple Band.

Fig. 1: An illustration of MLO in WiFi 7.

II. SYSTEM MODEL

WiFi 7 introduces the MLO feature to mitigate QoS degra-
dation by enabling mobile users to aggregate multiple radio

links concurrently during transmission sessions [10]. When
multiple radios are used, the mode is called MLMR. If only
one radio is active, it is known as MLSR. The WiFi 7 AP
controller dynamically switches between these modes based on
network conditions and device capabilities. This section will
present an overview of MLO, a stochastic model for WiFi link
visits, and derived QoS metrics under the proposed framework.

A. Multi-link operation in WiFi 7 networks

Fig. 1 illustrates various types of MLO supported in WiFi
7. In the MLSR mode, the WiFi AP controller allocates only
one of the three available frequency bands (2.4 GHz, 5 GHz,
or 6 GHz) to the STA, as shown in Fig. 1a. When the STA
resides in an area where multiple channels are available, the
AP can instead operate in the MLMR mode, selecting two or
all three bands (see Figs. 1b and 1c).

In MLMR, the AP can assign transmission (Tx) and recep-
tion (Rx) functions across different radio links. For example,
the primary link may be designated for Tx, while secondary
links handle both Tx and Rx. When these operations are
performed simultaneously, the mode is referred to as STR.
Conversely, in the non-STR mode, the AP cannot perform Tx
and Rx at the same time during a session.

In this paper, we focus on evaluating the downlink QoS per-
formance where the user device leverages the MLO capability
for data reception. Therefore, we consider the Tx-side behavior
under the non-STR scenario. Since WiFi 7 radio links operate
independently, we model the stochastic behavior of WiFi link
usage during a download session on a per-link basis, which
will be detailed in the next section.

B. Stochastic Modeling of WiFi Link Visits

Fig. 2: Timing diagram for the distribution of WiFi connection
time tw where X(t0) = 1 and X(t0 + ts) = 1.

As illustrated in Fig. 2, each WiFi radio interface alternates
between connected and disconnected states over time.
These state transitions are modeled using two random vari-
ables: Tc, representing the duration of a connected period, and
T0, representing the duration of a disconnected period.

To formally describe the link state over time, we define
a stochastic process {X(t), t ≥ 0}, where the state variable
X(t) is given by:

X(t) =

{
0, the session is in the Disconnected state
1, the session is in the Connected state

(1)
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C. Derivation of WiFi visit distribution

Fig. 3: A state space of X(t).

We consider that a user initiates a download session at
time t0 and ends at t0 + ts, where the session duration is
denoted as ts. We assume X(t0) = 1 and X(t0 + ts) = 1,
indicating that the session begins while the User Equipment
(UE) is in a connected state and also ends the same state.
To generalize possible connection patterns during the session,
we classify the connection state transitions between t0 and
t0 + ts into the following four scenarios:
Condition 1: X(t0) ≥ 1 and X(t0 + ts) ≥ 1
Condition 2: X(t0) ≥ 1 and X(t0 + ts) = 0.
Condition 3: X(t0) = 0 and X(t0 + ts) ≥ 1.
Condition 4: X(t0) = 0 and X(t0 + ts) = 0.

During such an activity, the UE intermittently connects
to the WiFi network a total of n times. We first formulate
a discrete-time Markov chain Yn (DTMC) with the state
space {0, 1, T} (see Fig. 3), where each state represents
disconnected, connected, and terminate, respec-
tively.

To derive the distribution of the number of WiFi visits
before termination, we apply the Markov chain framework [5],
which requires the initial probability of the WiFi starting in
state i, denoted Pi, and the m-step transition probabilities be-
fore absorption into the terminating state T , denoted Pij−1,ij ,
where j = 1, 2, . . . ,m. Let k be the index of a specific
connection pattern, and let m be the number of state changes.
Then, the probability of observing the k-th connection pattern
involving n visits to the connected state can be written as:

Pk(n) = Pi ·
m�
j=1

Pij−1,ij · Pim,T (2)

To illustrate this formula, consider the case where the user
connects to the WiFi exactly n = 2 times before termination.
Let k = 2 represent a specific connection pattern (Condition
2). In this setting, the WiFi session starts in the connected
state and switches between states 0 and 1 three times before
reaching termination. Referring to (2), we have m = 3, and
the corresponding pattern probability, denoted P2(2), is given
by:

P2(2) = P1 · P10 · P01 · P10 · P0T (3)

It can be seen that the distribution of visiting 2 times can
be rewritten as:

P2(2) = P1 · (P10)
2 · P01 · P0T (4)

In addition, the probability of WiFi visit of the connection
pattern P2(n) can be generalized as:

P2(n) = P1 · (P10)
n · (P01)

n−1 · P0T (5)

The probabilities of Pk(n) for all values of k (representing
different connection start/end patterns) with n WiFi visits can
be defined in a similar fashion, summarized as:



P1(n) = (P1) (P10 · P 01)
n−1

(P1T )

P2(n) = (P1) (P10)
n
(P01)

n−1
(P0T )

P3(n) = (P0) (P01)
n
(P10)

n−1
(P1T )

P4(n) = (P0) (P01 · P10)
n
(P0T )

(6)

Let N1 be the total number of times that WiFi visits the
connected state. The probability of exactly n visits, denoted
by Pr[N1 = n], can be computed by summing the probabilities
across all four patterns. Thus, we have:

Pr[N1 = n] = P (n) =
4�

k=1

Pk(n)

= P1(n) + P2(n) + P3(n) + P4(n)

(7)

Referring to Fig. 2, the connected time Tc and disconnected
time T0 have an exponential distribution with rate λc and λ0,
respectively. Meanwhile, the user session time ts also utilizes
an exponential distribution with rate µ. Hence, the expected
values for each duration can be defined as follows.

E[Tc] =
1

λc
, E[T0] =

1

λ0
, E[ts] =

1

µ
(8)

To formulate the DTMC for each transition probability, we
refer to Fig. 3. When the state of disconnected is visted,
after T0, there are two ways that the disconnected will go
next including those of connected and terminate. By
this way, the transition probability that the disconnected
state shifts to that of connected, denoted by P01. can be
derived as:

P01 =
E[Tc]

E[Tc] + E[ts]

=
1
λc

1
λc

+ 1
µ

=
µ

λc + µ

(9)

We use the same concept to define other transition probabil-
ity derivations, and accordingly the total transition probability
can be summarized as

P01 =
µ

λc + µ
, P0T =

λc

λc + µ
, PT,T = 1

P10 =
µ

λ0 + µ
, P1T =

λ0

λ0 + µ

(10)

For the initial probability, we apply the renewal theory [5] in
which the user will start the session with the WiFi connection
by X(t0) ≥ 1, defined as:

P1 =
E[Tc]

E[T0] + E[Tc]
=

1/λc

(1/λc) + (1/λ0)
=

λ0

λ0 + λc

P0 = (1− P1) =
λc

λ0 + λc
(11)
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Therefore, (6) can be rewritten by substituting those in (10)
and (11) and then we have



P1(n) =

�
λ0

λ0 + λc

��
µ

(λ0 + µ)(λc + µ)

�n−1 �
λ0

λ0 + µ

�

P2(n) =

�
λ0

λ0 + λc

��
µ

λ0 + µ

�n �
µ

λc + µ

�n−1 �
λc

λc + µ

�

P3(n) =

�
λc

λ0 + λc

��
µ

λc + µ

�n �
µ

λ0 + µ

�n−1 �
λ0

λ0 + µ

�

P4(n) =

�
λc

λ0 + λc

��
µ

(λ0 + µ)(λc + µ)

�n �
λc

λc + µ

�

(12)

D. Applying the Distribution of Total WiFi Time tw

To support the evaluation of key QoS metrics in this study,
we incorporate the cumulative distribution function (CDF) of
the total WiFi connection time, tw, which was derived in our
earlier work [4], [6]. While the closed-form expression of
FW (t) remains unchanged, it is now used in conjunction with
the newly revised connection probabilities, Pk(n) given in (7)
and (12). This integration enables the analysis of session-level
performance under the WiFi 7 MLO scenario.

For completeness, the CDF expression is recalled below:

FW (t) =
∞�

n=1

n−1�
j=1

e−(λc+µ)t [(λc + µ)t]j

j!
P (n) (13)

E. Deriving the total WiFi data rate, B(t)

As shown in Fig. 1, the three radio channels in WiFi 7 can
operate independently and concurrently during the download
session period. During this period, multi-link connections are
simultaneously established, and enable the aggregation of WiFi
data rates from all available links. Let Xi(t) be the connection
state space of WiFi channel i. The aggregated WiFi bandwidth,
B(t), can be then computed as:

B(t) = b1(t)X1(t) + b2(t)X2(t) + b3(t)X3(t) (14)

Where B(t) represents the total achievable WiFi data rate at
time t, while bi(t) is the individual link data rate from channel
i. Referring to (1), Xi(t) ∈ {0, 1} reflects whether channel i
is actively connected.

F. Deriving the volume of downloading failure, VF

In this paper, we derive the three important QoS metrics
including the download failure volume VF , the deadline miss
ratio Pmiss, and the QoS satisfaction PQoS.

During the download session period ts, the user initiates the
session at t = T0 and ends it at t = T0+ts. Thus, the amount of
downloaded data depends on the aggregated bandwidth B(t).

As described in previous subsections, let fs(ts) be the
density function of ts. Since the session time follows an
exponential distribution with rate µ, we have

fs(ts) = µe−µts (15)

Hence, the session duration ts is a random variable drawn
from this exponential distribution, while the aggregated WiFi

bandwidth B(t) depends on the connectivity states Xi(t) of
the WiFi channels.

The volume of successfully downloaded data, denoted by
VD, can then be computed by:

VD =

� ∞

ts=0

� T0+ts

t=T0

B(t)fs(ts)dtdts (16)

Accordingly, the download failure volume VF , defined as the
portion of data not successfully delivered during the session,
is calculated by:

VF = F − VD (17)

where F is the original file size or content volume to be
delivered.

G. Deriving the deadline miss ratio, Pmiss

At the end session, if VD < F , it means that a user fails
to complete the required volume within the user session time.
The deadline miss ratio, denoted as Pmiss, is defined as the
probability that the accumulated downloaded volume, VD, falls
short of the target volume F . That is,

Pmiss = Pr

�� T0+ts

T0

B(t)dt < F

�
(18)

This expression captures the probability that the total delivered
data, governed by the time-varying aggregated WiFi bandwidth
B(t), is insufficient over the session period ts.

To account for the stochastic nature of ts, we reformulate
(18) by integrating over all possible session durations. Using
the exponential density function, the probability becomes:

Pmiss =

� ∞

t=0

Pr

�� T0+t

T0

B(u)du < F

�
fs(t)dt (19)

This deadline miss ratio, Pmiss, serves as a fundamental QoS
metric for performance evaluation under the WiFi 7 MLO
environment, where multi-radio transmissions and dynamic
bandwidth fluctuations significantly influence session-level re-
liability.

H. Deriving the QoS satisfaction, PQoS

To evaluate the QoS satisfaction, PQoS, we first define
the average throughput achieved during the session period,
denoted by B̄. In WiFi 7 with multi-link operation, the
instantaneous available bandwidth B(t) fluctuates with link
connectivity. The session-average throughput can therefore be
expressed as:

B̄ = E

�
1

ts

� T0+ts

t=T0

B(t)

�
dt (20)

This metric represents the mean download rate that a user
experiences throughout the session. To determine whether a
session meets the QoS requirements, we compare B̄ to a
predefined minimum throughput threshold Bmin. Accordingly,
the QoS satisfaction indicator is defined by:

PQoS =

�
1, B̄ ≥ Bmin

0, Otherwise
(21)
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(c) QoS Satisfaction.

Fig. 4: The output metrics against user session time, ts

Here, PQoS = 1 indicates that the session satisfies the QoS
requirement, while PQoS = 0 indicates that the QoS guarantee
is not met.

III. MODEL EVALUATION

In this section, we validate the proposed analytical models
by comparing them with simulation results obtained by means
of a self-written program in the Go programming language.
The theoretical distribution of WiFi link visits is computed
using (7)–(12) and is compared against simulation outcomes,
which estimate the probability that the WiFi connection is
visited n times, denoted by Pr[N1 = n]. The network is
configured with average durations: E[Tc] = 400 seconds,
E[T0] = 200 seconds, and E[ts] = 250 seconds, assuming
exponential distributions for all time intervals. The simulation
runs over 100,000 iterations.

TABLE I: Comparison of simulation and analytical results
where E[ts] = 250, E[T0] = 200 and E[Tc] = 2E[T0]

Pr[N1 = n] Simulation Analysis Diff %

0 0.12885 0.12821 0.4967%
1 0.63247 0.63336 0.1407%
2 0.17311 0.17323 0.0693%
3 0.04739 0.04738 0.0211%
4 0.01329 0.01296 2.4830%
5 0.00344 0.00354 2.9069%
6 0.00097 0.00099 2.0618%
7 0.00026 0.00027 3.8461%
8 0.00006 0.00007 16.6667%

Table I shows that the analytical models align closely with
simulation results for the distribution of WiFi link visits
per session. The peak occurs at Pr[N1 = 1] ≈ 0.63 in
both methods, as longer connection periods (E[Tc] = 400)
relative to disconnection (E[T0] = 200) reduce the chance of
multiple transitions. As n increases, probabilities drop sharply
(e.g., Pr[N1 = 3] ≈ 0.0474, Pr[N1 = 5] ≈ 0.0035,
Pr[N1 = 8] ≈ 0.0007), reflecting the rarity of frequent
reconnections.

Overall, the analytical results closely match the simulation
outcomes. The average percentage difference across all values
of n is just 3.58%, with a maximum deviation of 16.67% at
n = 8 (outlier). These results confirm the validity and accuracy

TABLE II: Default network parameters in the experiments

Parameter Name Values
ts (User session Time) 160 s
E[Tc] (Expected WiFi connection time) 50 s
E[T0] (Expected WiFi disconnection time) 50 s
E[F ] (Expected file size) 1 GB
Bmin (Guaranteed minimum bandwidth) 40 Mbps
E[B] (Expected total bandwidth) 50 Mbps
Simulation iteration 100,000

of the proposed analytical models for predicting WiFi link visit
behavior under exponential connection dynamics.

IV. NUMERICAL EXAMPLES

To evaluate the feasibility of the proposed analytical models
in capturing QoS performance, we perform simulations using
a custom implementation in the Go language. The evaluation
considers three key QoS metrics: expected download fail-
ure volume (E[VF ]), deadline miss ratio (Pmiss), and QoS
satisfaction probability (PQoS), as defined in (14)–(21). We
compare four schemes: MLSR, MLMR with dual-link and
triple-link configurations, and MO based on the model of Sou
and Peng [6], which integrates cellular and WiFi paths using
MPTCP.

All schemes are evaluated under a baseline configuration
summarized in Table II. In the MO scheme, the average
bandwidths for cellular and WiFi paths are set to 40 Mbps and
60 Mbps, respectively. For MLMR-dual-link, the primary and
secondary links are configured with 40 Mbps and 60 Mbps.
In the MLMR-triple-link scheme, the three links are assigned
40 Mbps, 50 Mbps, and 60 Mbps, respectively. The average
connection durations across all three WiFi links (E[Ti]) are
assumed equal (i.e., E[Tc] = E[T1] = E[T2] = E[T3]). For
the expected file size E[F ], we model F using a Pareto dis-
tribution with a mean of 1 GB. Its scale and shape parameters
are set to xm = 800 MB and α = 5, respectively, ensuring
that the simulated file size never falls below 800 MB while
allowing variability around the mean. Finally, the simulation
is executed for 100,000 iterations.

A. Effect of user session time, ts
As shown in Fig. 4, both the MLMR-triple link and MO

schemes achieve near-optimal QoS when the session time is
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Fig. 5: The output metrics against the expected ratio between E[Tc] and E[T0].

sufficiently long. The triple-link scheme usually outperforms
the MO scheme in improving all metrics with a marginal
improvement of approximately 3%. In Figs. 4a and 4b, the
average download failure volume (E[VF ]) and deadline miss
ratio (Pmiss) for these two schemes drop sharply, approaching
zero when ts ≥ 320 seconds, highlighting their ability to
complete transfers before the deadline. In contrast, the MLSR
and MLMR-dual link schemes perform worse due to limited
bandwidth diversity. Their E[VF ] and Pmiss values remain high
under shorter deadlines. Fig. 4c confirms that only MO and
triple-link consistently achieve high QoS satisfaction (PQoS),
with both reaching near 100% for longer sessions. In general,
these two schemes outperform the others by roughly 90% in
reducing E[VF ] and 85% in minimizing Pmiss.

B. Effect of E[Tc] to E[T0]

As shown in Fig. 5, the performance of all schemes
improves as the duration of the WiFi connection increases.
When E[Tc] ≥ 2E[T0], the MLMR schemes, especially
the triple-link configuration, begin to consistently outperform
the MO scheme across all metrics. In particular, the triple-
link scheme achieves superior utilization of the available
bandwidth, resulting in lower average failure volume, fewer
deadline miss ratio, and higher QoS satisfaction. For example,
under E[Tc] > E[T0], its average deadline miss ratio is 1.52%,
significantly outperforming the MO scheme’s 4.71%, reflect-
ing a 68% lower miss ratio. This highlights the effectiveness
of coordinated multi-link usage under favorable connection
durations.

V. CONCLUSION

This paper proposed novel analytical models to characterize
WiFi link visit behavior and evaluate QoS performance under
various MLO schemes in WiFi 7 networks. Their validity was
confirmed through simulations, showing close alignment be-
tween theoretical and empirical results. Numerical evaluations
demonstrated that multi-link configurations—especially the
MLMR-triple-band scheme can outperform the existing MO
scheme, particularly in reducing download failures and dead-
line misses. The proposed framework offers a scalable foun-
dation for analyzing next-generation wireless access strategies
under heterogeneous and time-varying conditions. As future

work, we aim to develop adaptive MLO selection policies,
potentially leveraging reinforcement learning or multi-armed
bandits to optimize QoS in real-time.
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