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Abstract—With the rise of remote work and increasing security
concerns, VPN usage has expanded. VPNs typically rely on UDP
or TCP tunnels; UDP is preferred for performance, whereas
TCP is favored when the use of UDP is restricted or unstable.
TCP-based VPNs in wireless networks suffer from Head-of-Line
(HOL) blocking, where a lost packet delays subsequent packets,
increasing latency and reducing throughput. To address this issue,
we propose an SDN-based multicasting method for multi-homed
environments that operates without requiring modification of
the operating system. SDN enables flexible path control, and
bicasting improves reliability while mitigating HOL blocking by
sending duplicated packets over an alternative path. According
to simulation results under both bidirectional and client-side
unidirectional bicasting, the former reduces RTT up to 80%
along with throughput improvement six times compared with
that of unicast, and the latter reduces RTT up to 20% along with
throughput improvement up to 8 %. These results demonstrate the
effectiveness of our proposed methods in poor network conditions.

Index Terms—Multi-homed Network, Bicasting, SDN, Head-
of-Line Blocking

I. INTRODUCTION

Despite the recent resurgence of office-based work, 58%
of employees still have the option to work remotely [1],
making it an integral part of the modern workplace. In such
contexts, users frequently connect to external wireless net-
works (e.g., public Wi-Fi or shared workspaces), which pose
security threats such as eavesdropping and data tampering. To
address these issues, Virtual Private Networks (VPNs) [2] are
employed extensively.

VPNs typically use UDP or TCP for tunneling. UDP tunnel-
ing is lightweight, has small headers, and reduces latency and
overhead compared with TCP [3], making it the default or rec-
ommended method in modern implementations(e.g., Open VPN
and WireGuard). However, corporate networks and government
agencies often block UDP and non-standard ports, forcing
users to use TCP tunneling. Furthermore, wireless environ-
ments can experience increased packet loss owing to hidden
terminal problems [4] and other issues, and the lack of UDP
retransmission control can significantly reduce throughput. In
contrast, the TCP reliability mechanism provides an advantage
over UDP in poor network environments, achieving a stable
throughput, as shown in Fig. 1.

However, TCP tunnels suffer from Head-of-Line Blocking
(HOLB) [5] issues owing to their reliability mechanisms.
When a single packet is lost, the subsequent data delivery
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Fig. 1: Impact of Packet Loss on VPN Throughput: TCP vs.
UDP Tunneling

is halted, and the delays propagate until the retransmission
is complete. The impact of HOLB is particularly pronounced
in high-RTT environments and wireless networks with high
loss rates, which severely degrades the performance of VPN
over TCP. Although some existing studies have proposed
methods for mitigating performance degradation such as per-
flow reconfiguration using PFRAS [6] and utilization of Mul-
tipath TCP (MPTCP) with multiple underlying TCP connec-
tions) [7], these approaches require OS kernel modifications or
the introduction of dedicated protocols, making their practical
implementation challenging. QUIC [8] has attracted attention
as a new transport to avoid HOLB; however, its adoption rate
is limited compared to HTTP/3’s adoption rate of 34.6% [9].
Furthermore, since it is based on UDP, it cannot avoid UDP
blocking and UDP-specific vulnerabilities in corporate net-
works.

To address these issues, an effective approach is to reduce
the probability of HOLB by mitigating packet loss. In particu-
lar, in multihomed environments, where multiple communica-
tion paths can be used simultaneously, using different network
paths to increase redundancy and reliability is effective. Specif-
ically, bicasting, which allows the simultaneous transmission of
the same packet over multiple routes, improves loss tolerance
since it only requires successful packet delivery via at least
one route.

Based on these findings, this paper proposes a software-
based bicasting method to mitigate the performance degrada-
tion caused by the HOLB in a VPN over TCP. Because the
proposed method is a purely software-based implementation
that utilizes the Software-Defined Networking (SDN) [10]
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Fig. 2: HOLB in VPN over TCP

architecture and the flexible packet handling mechanism of
Open vSwitch (OVS) [11], it does not require OS kernel
modifications or the introduction of dedicated protocols, and
can be applied without changing the existing VPN applications
or TCP stacks.

The contributions of this study are as follows:

« Software-based Bicasting Method for HOLB Mitiga-
tion: By leveraging Software Defined Networking (SDN)
and Open vSwitch (OVS), bicasting in multi-homed envi-
ronments can be implemented entirely in software, with-
out requiring any modifications to the operating system.

« Bidirectional Bicasting and Unidirectional Bicasting:
To investigate the bicasting performance and its associ-
ated network overhead, two approaches are considered:
bidirectional bicasting, applied in both the client—server
and server—client directions, and client-side unidirectional
bicasting, applied only in the client-to-server direction.

« Empirical Validation: Experimental evaluation using
OpenVPN on real devices demonstrated that the pro-
posed bidirectional bicasting substantially mitigates HOL
blocking in VPN over TCP communication. Furthermore,
client-side unidirectional bicasting improves performance
under similar network conditions, indicating its potential
for effective HOLB mitigation with reduced redundancy.

II. BACKGROUND AND RELATED WORK
A. SDN

Software-defined networking (SDN) [10] virtualizes and
centrally controls network devices such as routers through
software. Unlike conventional networks, in which the control
and data planes are integrated and configured per device,
SDN separates these planes, enabling centralized and flexible
management without modifying the host kernels.

The use of Open vSwitch (OVS) [11] and OpenFlow allows
for dynamic path control and software-based deployment. SDN
has been widely adopted in practical systems, such as data
centers [12] and commercial routers [13], demonstrating its
low overhead and applicability in real-world environments.

B. HOLB in VPN over TCP

Head-of-Line Blocking occurs when the first packet in a
queue is delayed, preventing subsequent packets from being
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processed. This is a well-known issue at both the applica-
tion and transport layers, although it is caused by different
mechanisms of occurrence. At the application layer, HTTP/1.1
processes requests sequentially over a single TCP connection;
therefore, a slow response blocks all the subsequent requests.
This is known as the HOLB at the HTTP level.

HTTP/2 [14] mitigates this by multiplexing multiple streams
over a single TCP connection. However, HOLB still occurs at
the transport layer: if a packet is lost, TCP halts the processing
of all streams until the missing packet is retransmitted.

Therefore, HOLB occurs in the VPN over TCP. VPNs use
tunneling to prevent data from being sent and received from
being viewed from the outside. By tunneling, packets sent from
different servers are multiplexed within the same VPN tunnel
and pass through a single route. Fig. 2 shows a case in which
a HOLB occurs downstream of the VPN connection. Even if
data orange 1 sent from server 1 reaches the client, if data
blue 1 sent from server 2 are lost in the network, data orange
2 and 3 of the VPN client will remain in the queue until the
retransmission is completed, and the processing of data orange
will be kept waiting until the retransmission of data blue 1 is
completed. Similarly, upstream ACK loss also causes HOLB.

C. Related work for mitigation of HOLB

Shikama et al. proposed the Per-Flow ReAssembling and
reSequencing (PFRAS) method [6] to reduce HOLB when
multiple flows are aggregated into a single TCP connection.
In this method, flow identifiers and sequence information are
added to packets, and reassembly is performed per-flow at
the receiver using the “urgent pointer” and “frame pointer” in
the TCP header. Although experiments have shown that this
mitigates HOLB, it requires TCP stack modification, making
it challenging to implement.

Another approach is to leverage Multipath TCP (MPTCP),
an extension of TCP designed for multihomed environments.
The redundant scheduler of the MPTCP can transmit identical
data across multiple interfaces, thereby mitigating the HOLB
by compensating for packet loss. However, its dependence
on kernel-level support restricts its compatibility with limited
operating systems, thereby reducing its practicality in diverse
deployment scenarios.

QUIC, a UDP-based transport protocol developed by
Google, mitigates HOL blocking by multiplexing streams with
independent flow control, preventing loss in one stream from
affecting others [8]. However, as a relatively new technology,
it is not yet fully supported by the network infrastructure and
servers. Because it runs on UDP, it still faces issues such as
security concerns and communication blocking. Moreover, the
adoption rate of the related HTTP/3 protocol remains limited to
approximately 34.6% [9], restricting its practical deployment.

III. A PRACTICAL SDN-BASED BICASTING APPROACH
FOR HOLB MITIGATION
A. Proposed Architecture

This study proposes a practical and easily deployable
method for mitigating HOLB in VPN over TCP, even under
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Fig. 3: Proposed network architecture

high packet loss conditions. Fig. 3 illustrates the proposed
architecture, where the client is configured as a multi-homed
client with two interfaces that are connected to the VPN
server. The client—VPN server link is assumed to be a wireless
connection prone to packet loss

The bicasting functionality is implemented using OVS,
which is deployed directly beneath both client and VPN
servers. The SDN controller dynamically manages the forward-
ing rules to realize bicasting over multiple interfaces. OVS is
a flexible user-space software switch that allows fine-grained
control of packet forwarding behavior and is easy to install
and configure in a virtual environment.

In the experimental environment, Linux namespaces [15]
were employed to isolate the network stacks of both the VPN
client and OVS, enabling their co-location on the same host
machine.

In this method, the architecture incorporates an SDN-based
bicasting function into a multi-homed network environment.
Bicasting refers to the simultaneous transmission of identical
packets over multiple network paths. This redundancy ensures
successful delivery as long as packet loss does not occur on all
paths simultaneously, effectively reducing the packet loss and
mitigating the HOLB. Although bicasting improves reliability,
it also increases the number of transmitted packets, which may
introduce an additional overhead. Thus, two approaches with
different overhead trade-offs are considered:

« Bidirectional bicasting: Packets are bicasting in both
directions—client to VPN server and VPN server to
client.

o Client-side unidirectional bicasting: Only upstream
packets (from client to VPN server). Client-side unidi-
rectional bicasting reduces network overhead by bicasting
only small packets, such as ACKs.

In this study, bicasting only from the server side was not
employed because the data packets sent from the server to the
client were relatively large, and server-side bicasting would
increase the network load, which is undesirable.

This method is entirely software-based and can be imple-
mented by simply installing and configuring OVS. It is highly
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portable and easy to integrate into existing VPN environments
because it does not require any changes to the operating
system.

Section III-B describes how the application and OVS are
integrated into a single host using the namespaces. Finally,
Section III-C provides a detailed explanation of the bicasting
implementation.

B. Namespace integrated host

In the proposed network environment, as illustrated in Fig.
3, namespaces are used and OVS is placed on the client and
VPN server. A Namespace is a mechanism that provides an
independent resource space for each process. For example,
using network namespaces, a virtual network environment
can be built that allows communication with the host using
virtual NICs. This allows the client to coexist with the OVS
device without introducing new OVS equipment and can be
implemented only by installing the software. Virtual interfaces
are used to connect the client application and OVS on the
client side, and the OVS and VPN server application on the
VPN server side.

C. Bicasting function using SDN

Fig. 4 presents an overview of the system architecture
for implementing bicasting using SDN. The mechanism for
realizing bicasting with OpenFlow and Open vSwitch (OVS)
is described as follows:

The OpenFlow switches correspond to the OVS instances
shown in Fig. 3. OpenFlow switches are installed on both the
client and VPN servers, and are interconnected through two
network paths. Packets sent from the client (or VPN server) are
forwarded to the counterpart through the OpenFlow switches.
The OVS is used as the OpenFlow switch, and it is connected
to an OpenFlow controller that performs control, and bicasting
is performed by changing flow entries.

A group table function is used to realize bicasting in
OpenFlow. The group table enables a single flow entry to
specify multiple output ports, thereby allowing packets to be
transmitted to multiple destinations simultaneously. Table I
lists the group table configurations used in the implementation.



TABLE I: GROUP TABLE OF OpenFlow

Group ID | Type Action Bucket
1 all send to client portl via port 1
send to client port2 via port 2
Client VPN server
Client O0—— OpeqFE)w OpeqFE)w ——-~1 VPN server
application switc L i switc application
OpenFlow OpenFlow
controller controller

Fig. 4: Overview of Bidirectional Communication via Bicast-
ing

Whereas a general flow table forwards packets to a single
output port, the group table enables concurrent forwarding
(bicasting) to multiple ports, thereby achieving redundancy and
reliability of the system.

Fig. 5 illustrates the packet flow when bicasting occurs
from the VPN server to the client. Packets sent from serverl
and server2 are sent to the OVS via the network interface
(vpn-veth — ovs-veth) using the VPN server application on
the namespace vpn. The OVS replicates each packet and
concurrently transmits the identical copies to the client’s portl
and port2. Conversely, Fig. 6 illustrates the flow of packets
when bicasting from the client to the VPN server. Packets sent
from the client application are sent to the OVS via the network
interface (client-veth — ovs-veth), duplicated by the OVS,
and then sent to VPN server’s portl and port2. Bidirectional
bicasting performs bicasting in both downstream and upstream
directions. Downstream bicasting reduces the HOLB caused
by data packet loss, whereas upstream bicasting mitigates the
HOLB caused by ACK packet loss. In contrast, client-side
unidirectional bicasting is a method of performing bicasting
only in the upstream direction. A challenge in downstream
bicasting is the increased communication overhead. To address
this, HOL blocking can be reduced while suppressing addi-
tional traffic by restricting bicasting to the upstream direction.
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Fig. 5: Packet flow during bicasting from server to client
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Fig. 6: Packet flow during bicasting from client to server

TABLE II: HARDWARE SPECIFICATIONS OF FIGURE3

Client VPNserver
CPU Intel Core i7-8550U @ 1.80GHz  Intel Core i5-1035G1 @ 1.00Ghz
Memory 4GBx2 DDR4 2400MHz 8GB DDR4 3200MHz
0OS Ubuntu 22.04.6 LTS Ubuntu 22.04.6 LTS

IV. EXPERIMENTATION, RESULTS AND ANALYSIS
A. Test Environment

The experimental environment was implemented on real
hardware based on the proposed architecture, as shown in
Fig. 3. The specifications of the client and VPN server are
summarized in Table II, and a Raspberry Pi 3 was used
as the content server for the test. Both the client-VPN and
VPN server-content server links were configured as wired
connections.

To emulate the characteristics of wireless communication
over wired links, the Linux Traffic Control (TC) tool [16] was
used. Using the TC, link parameters such as the bandwidth,
delay, and packet loss rate were adjusted according to the
settings listed in Table III. This configuration allowed for the
controlled reproduction of various wireless conditions while
maintaining the experimental reproducibility. Open vSwitch
(OVS) was installed on both the client and VPN server hosts,
and packet forwarding was managed using the OpenFlow
protocol. OpenVPN (version 2.5.1) was used to establish VPN
tunnels between the client and the VPN server. The tunnels
were configured in TCP mode by modifying the OpenVPN
configuration files. The overall network configuration during
the experiments consisted of the aforementioned components
and settings, ensuring a controlled environment for evaluating
the proposed bicasting mechanism under various network
conditions.

e On the client, the OVS and the client application are
executed in different network namespaces, and communi-
cation is performed to the VPN server via OVS. Similarly,
on the VPN server, the OVS and VPN server applications
were executed in different namespaces.

o Establish a VPN connection between the client applica-
tion and the VPN server application, and perform data
communication through the VPN tunnel.

B. Test Method

The experimental environment described in the previous
subsection was used to evaluate the performance of the pro-
posed bicasting mechanism. Using this setup, the following
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TABLE III: Communication link setup for the experiment
Client-VPNserver ~ VPNserver-Serverl, 2

RTT (ms) 10 10
Bandwidth (Mbps) 10 100
Loss rate (%) 0-5, 0-10 * 0

* from client to vpn server:0-5%, from vpn server to client:0-10%

test methods were applied to measure the impact of the HOLB
under various packet loss conditions.

To evaluate the effectiveness of the proposed method in
mitigating HOLB in VPN over TCP, the performances of
unicast, client-side unidirectional bicasting (c-bicast), and bidi-
rectional bicasting (bi-bicast) transmissions were compared.
The performance was evaluated using ping and iperf3 under
various packet loss conditions. In the experiment, server2
transmitted a TCP data stream to the client using iperf3, while
server] measured the RTT to the client using ping. In this
context, the downstream direction is defined as the traffic from
the server to the client, and the upstream direction is defined
as the traffic from the client to the server. The packet loss rates
varied asymmetrically: 0-5% in the upstream direction (client
— VPN server) and 0-10% in the downstream direction (VPN
server — client). The asymmetric configuration reflects the fact
that packet loss in the downstream direction (data packets) has
a larger impact on the HOLB than the loss in the upstream
direction (ACK packets).

For each condition, RTT was measured by sending 30 ping
packets from serverl to the client, and the average values
were calculated. Simultaneously, the throughput was measured
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using iperf3 with the -R option to evaluate the downstream
performance from server2 to the client. By analyzing the
average and maximum RTT values and throughput, the impact
of HOLB and the effectiveness of bicasting were assessed.

C. Result

In this experiment, the ICMP RTT occasionally exceeded
1000 ms, which was likely due to the buffer bloat caused by
concurrent TCP (iperf3) traffic. Packet loss triggers congestion
control and retransmission, delaying the ICMP packets in the
shared buffer and resulting in large RTT values.

Fig. 7 shows the average and maximum RTTs of the ping
packets between the client and Serverl under different packet
loss conditions. When the client-side loss rate is 0%, the
average RTT of unicast is 1389ms for a server-side loss rate
of 0%, increasing to 6066 ms and 11602 ms for server-
side loss rates of 5% and 10%, respectively. These results
indicate that RTT increases proportionally with packet loss,
thereby demonstrating the impact of HOLB on TCP-based
VPN tunnels. Even when the server-side loss rate is 0%,



the average RTT increases from 1389 ms to 1720 ms as the
client-side loss rate increases from 0% to 5%, suggesting that
upstream HOLB occurs owing to the loss of ACK packets.

In contrast, bi-bicast effectively suppressed RTT growth
under moderate and severe loss conditions. For instance, when
the client-side loss rate is 5% and the server-side loss rate
is 5%, the maximum RTT of unicast reaches 10046 ms,
whereas the bi-bicast reduces it to 2450 ms, representing an
approximately 75% reduction in the RTT. Similarly, when the
client-side loss rate is fixed at 5% and the server-side loss
rate increases to 10%, bi-bicast achieves 3925 ms compared
to 19591 ms for unicast, corresponding to an approximately
80% reduction. These results demonstrate that redundant data
transmission in both directions via the bi-bicast effectively
mitigates the HOLB and stabilizes the delay characteristics
under asymmetric packet loss.

Fig. 8 further shows that unicast throughput degrades sharply
as packet loss increases, whereas the bi-bicast throughput
remains stable under moderate to high loss rates. When the
server-side loss rate is 5%, bi-bicast maintains approximately
three times the throughput of unicast. Even under a 10% server-
side loss rate, the bi-bicast achieves approximately six times
the unicast throughput. This demonstrates that the bi-bicast
effectively alleviates the retransmission delay and maintains
higher data rates under adverse network conditions.

The performance of c-bicast, which performs unidirectional
bicasting only in the upstream direction, is more modest but
remains beneficial in specific conditions. When the server-
side loss rate is 5%, c-bicast reduces the maximum RTT by
approximately 10%. When the server-side loss rate is 0% and
the client-side loss rate is 5%, the average RTT decreases
from 3133 ms (unicast) to 2447 ms (c-bicast), representing a
20% reduction. Throughput improvements were also observed
compared to unicast when the loss occurred only on the client-
side path. However, the effect of c-bicast under high server-side
loss is limited because data packets lost on the downstream
path prevent the transmission of ACK packets required for
TCP reliability. These observations align with the improved
performance under loss-free server conditions, where ACK
redundancy is most effective. Additionally, the TCP delayed
ACK mechanism [17] partially mitigates the upstream HOLB
by aggregating ACK packets into multiple data segments.

Overall, these results confirm that the bi-bicast significantly
mitigates HOLB, achieving both low latency and high through-
put even under severe packet loss conditions. Meanwhile, c-
bicast offers a lightweight alternative that provides meaningful
performance gains in asymmetric loss environments, particu-
larly when the server-side path is stable and the upstream path
is prone to packet loss.

V. CONCLUSION

This study proposes a practical SDN-based bicasting method
in multi-homed environments to mitigate head-of-line blocking
(HOLB) in VPN over TCP environments. By leveraging Open
vSwitch and OpenFlow, this method does not require any OS
modifications and can be readily deployed.
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Under poor network conditions, data packet loss in the
downstream direction from the server causes HOLB and sig-
nificantly degrades communication quality. Bidirectional bicas-
ting substantially improves communication quality by mitigat-
ing downstream packet loss, whereas client-side unidirectional
bicasting provides performance gains by alleviating HOLB in
the upstream direction. Future work will include evaluating the
system overhead introduced by bicasting, particularly in terms
of the additional network traffic and processing load.

Furthermore, because the effectiveness of bicasting depends
on the packet loss rate, a selective bicasting mechanism that
dynamically adjusts the redundancy levels according to real-
time network conditions is explored to balance the performance
gain with the communication overhead. In addition, the pro-
posed method was compared with QUIC, which inherently
mitigates HOLB, to evaluate the practical advantages and
limitations of SDN-based bicasting under diverse network
scenarios. Moreover, the experimental environment will be
expanded to more realistic settings, including heterogeneous
wireless networks, to validate the effectiveness and scalability
of the proposed method for practical deployment.
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