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Abstract— In RSSI-based localization systems, many
conventional implementations assume that all available anchors
within communication range participate in position estimation.
While this simplifies system design, it can increase communication
overhead, computational load, and susceptibility to poor geometry,
especially when anchor density is high or the mobile node is in an
unfavorable Geometric Dilution of Precision (GDOP) region. This
paper addresses the problem of selecting both the number and the
specific subset of anchors for each localization update, considering
geometric configuration, link quality, and communication range
constraints. We propose a learning-based anchor selection
framework that predicts the most beneficial anchors using
geometric and link-quality features, aiming to minimize GDOP
and localization error while respecting resource constraints.
Simulations demonstrate that the proposed approach, evaluated
on a 10-anchor 2-D testbed, delivers 98.6% coverage of true classes
with 44.4% Top-1 exact-subset accuracy over 65 active classes
while consistently choosing low-GDOP, high-quality links and
producing near-instant decisions without exhaustive search over
582 subsets.
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1. INTRODUCTION

Received Signal Strength Indicator (RSSI)-based
localization has become an attractive solution for positioning in
GPS-denied environments due to its low hardware cost, ease of
deployment, and compatibility with low-power wireless
networks [1], [2]. In such systems, the geometry of anchor node
placement plays a critical role in determining localization
accuracy through the Geometric Dilution of Precision (GDOP)
[3]. High-GDOP configurations amplify measurement errors,
making accurate position estimation challenging, especially in
the presence of non-line-of-sight (NLOS) conditions and signal
fluctuations [4].

In dynamic localization scenarios, the set of anchors
available to the mobile node changes over time due to mobility
and communication range limitations [5]. It is neither practical
nor efficient to use all visible anchors at every localization
update: some anchors may be too far to maintain a reliable link,
and excessive anchor usage increases communication overhead
and computational cost. Moreover, different anchor subsets
yield different GDOP values, meaning that poor subset choices
can significantly degrade localization accuracy even when
measurement noise remains constant [6].
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Early studies often treated anchor selection and placement in
a rather ad-hoc manner. For example, Shang et al. [7] and Li et
al. [8] selected anchors randomly within the network, with
Shang et al. merely noting that a collinear set of anchors
constitutes an “unlucky” choice without theoretical justification.
More systematic approaches were later proposed. Doherty et al.
[9] required anchors to be placed along the network boundaries,
ideally at the corners, to ensure that unknown nodes remain
within the convex hull of the anchors. Ash et al. [10] further
provided analytical support for distributing anchors uniformly
around the network perimeter, which minimizes localization
errors under simple multilateration models. Karl and Willig [11],
in their book, also emphasized the importance of perimeter
anchor placement, reflecting the consensus that geometric
configuration plays a decisive role in localization accuracy.

Beyond perimeter-based strategies, several works attempted
to generalize anchor placement methods to more complex
scenarios. Hara et al. [12] proposed a grid-based partitioning
scheme, placing anchors at sub-rectangle centers to achieve
target accuracy, although the method assumes a rectangular area
and basic RSSI-based localization. Recognizing that poor
anchor placement can significantly degrade performance in
irregular or anisotropic networks. Cheng et al. [13] introduced
the HyBloc algorithm, which combines multidimensional
scaling (MDS) with proximity-distance mapping (PDM). By
augmenting anchor geometry through artificial anchors in
isotropic regions, HyBloc is able to mitigate the adverse effects
of clustered or poorly distributed anchors. These studies
collectively underscore the critical impact of anchor subset
selection and placement strategies on localization robustness
and accuracy.

Existing anchor selection strategies typically rely on either
using all available anchors or applying simple heuristic rules
such as selecting the nearest anchors or those with the widest
angular spread. These methods do not explicitly account for the
combined effects of measurement quality and geometric
configuration, nor can they adapt dynamically to changing
channel conditions. As a result, they may include anchors with
poor link quality or unfavorable geometry, leading to suboptimal
GDOP values and degraded positioning performance.

To address these limitations, this paper proposes a learning-
based anchor node selection framework that jointly considers
geometric and link-quality features to identify the most
beneficial subset of anchors for trilateration. The proposed
approach predicts both the number of anchors and the specific
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subset to use at each localization update, aiming to minimize
GDOP and localization error while reducing computational and
communication load. The selected anchors are then used in
conjunction with trilateration algorithm to estimate the mobile
node’s position. This design allows the system to maintain high
positioning accuracy even under NLOS and high-GDOP
conditions while achieving substantial reductions in
computational cost, offering a scalable and robust solution for
dynamic environments.

II. MODEL AND MATHEMATICAL FORMULATION

A. System Setup

Assume that at time t, let the mobile node be located at X,_;,
estimated position from the previous step as shown in Fig. 1.
Given a communication radius, the set of visible anchors is
denoted by

A, ={12, .., M}, M = |A,]| (1)
The objective is to select a subset S € A, with |S| = 3 that will
be used for trilateration at the current step. Since trilateration
requires at least three anchors, the minimum subset size is
Kynin = 3, while the maximum size can be up to all visible
anchors M.

For any candidate subset S, the GDOP [3] is defined as

GDOP(S,%,_;) = /tr[(h{sT Hg)~1] )
where
a; — Ry
Hs = [u]lies, W = m 3)
i t—

and a; is the position of anchor i.

B. Objective Function

The overall objective function augments GDOP with a
penalty term that accounts for link fluctuations or obstructions

J(S) = GDOP(S,%,_,) + AZ W,

iES

“

where 4 > 0 balances geometric accuracy and link reliability
penalties. w; is defined as a monotonically increasing function
of the RSSI variance as

A2
07.s = median(67),j € S
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Fig. 1. Tllustration of the localization scenario with 20 anchor nodes and a mobile
node with a trajectory, showing a dashed communication range enclosing about
six candidate anchors; an ML-based scheme selects a robust in-range subset for
RSSI-based trilateration while explicitly accounting for obstacles that might
degrade link quality.

where 67 is the variance of the RSSI time series for link i, and

arzef denotes a robust scale reference that can be chosen as the
median of the variances across all visible links.

The ground-truth subset is obtained by

J($)

S =arg min
SCALIS|23

(6)
which represents the optimal anchor subset that minimizes the
objective function J(S).

Since the anchor indices are unordered in subset formation,
the cardinality of the candidate subset space is determined by the
binomial coefficient summation

si- 3 (3)

k=Kmin

(N

For the case of six visible anchors M = 6 as in our setup, this
expands to

6\ (6\ (6\ (6

|5t|=< >+( )+( >+( )=20+15+6+1
3/ \4) " \5) " \6

42

®)

meaning all 42 candidate subsets. This exhaustive evaluation
against the objective J(S) is computationally feasible when M is
small, but scales exponentially for larger M, motivating the use
of learning-based subset selection.
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Fig. 2. Comparative analysis of GDOP for anchor-node subsets within a mobile
node’s communication range.

C. Illustrative GDOP Example

To provide an intuitive understanding of how anchor-node
placement affects GDOP, Fig. 2 presents the GDOP
distributions for six representative anchor subsets within the
mobile node’s communication range. Each surface plot
visualizes the spatial variation of GDOP values with different
anchor configurations. As observed, subsets with more
favorable geometric diversity (e.g., well-separated anchors such
as{1,2,4}or {1, 4,5, 6}) result in lower GDOP across the region,
indicating better positioning accuracy. In contrast, subsets with
colinear anchors (e.g., {1, 2, 6}) exhibit larger GDOP values,
implying poor geometry and degraded localization performance.
This example highlights the necessity of subset selection, as the

choice of anchors has a direct impact on the positioning accuracy.

III. MACHINE LEARNING-BASED ANCHOR SUBSET SELECTION

In this section, we formulate the problem of anchor subset
selection as a supervised classification task, where the goal is to
identify the most reliable subset of anchors for trilateration-

based localization. The classification relies on a set of
engineered features extracted from the communication links,
including (GDOP), RSSI statistics, and link quality indicator
(LQI) statistics.

TABLE 1. Extracted Per-Link Features

Feature Feature . .
Category Description Mathematical Expression
1 T
RSSI Mean Hi = TZ Tit
t=1
T
: . 1
Signal Strength RSSI Variance 62 = mz (rie — Hi)z
t=1
RSSI Max T = maxt,
RSSI Min " = minr
1 T
LQI Mean q; = ?Z Qi
t=1
T
. 2 1 _\2
Link Quality LQI Variance Gy = mz (a1 — @)
t=1
LQI Max "™ = maxqi,
LQI Min ™" = ming;,
Relative Angle 6, = arctan%
Geometry ' i
Estimated d: = lla; — %, I
Distance 0= 3= Xy

A. Feature Design

To enable robust subset classification, features are extracted
at two levels: (i) per-link features that characterize individual
anchor-mobile links in TABLE , and (ii) subset-level
descriptors that aggregate link information and geometric
measures in TABLE The per-link features
capture signal statistics and link quality, while subset-level
descriptors provide geometric diversity and overall stability of
the candidate subset.

The key geometric metric is the GDOP, which quantifies
spatial geometry. In addition, the average distance and minimum
angular separation relative to the mobile node describe anchor
placement diversity. Statistical descriptors such as RSSI and
LQI mean, variance, maximum, and minimum capture the
stability and reliability of the selected links.

By combining per-link features with subset-level descriptors,
the feature space integrates both signal reliability and geometric
diversity. This allows the machine learning classifier to
effectively discriminate between high-quality and low-quality
anchor subsets.



TABLE II. Subset-Level Descriptors

Feature Feature . '
Category Description Mathematical Expression
GDOP GDOP(S,R,_;) = |tr[(HJ Hs)™]
1
Geometric S}'g. ags,) = mz d;
Feature istance &g
Min _ — . o
Angular B0 rin(St) i;ndEnStmmqel 9] |_
Separation 2 —|6;—6;])
1
RSSI RSS_mean (S,) = _Z Q)
Mean* - (S0 IS, - Hi
€S
Statistical RSSI _ i 2r)
Reliability Variance* RSS_var(S,) = IStIZ o;
iese
RSSI Max* RSS_max (S;) = mgxri’“ax
i€Sy
RSSI Min* RSS_min (S,) = min7"™"
€Sy
1 @
LQI Mean* Lal_mean(s,) = mz i
tlies.
Lal 1 2(a)
: . . LQl_var(S,) = —Z o;
Link Quality | Variance* 1S, &
-_— [nax
LQI Max* LQl_max (S;) = rirégtqu
1 i = mi min
LQI Min* Lal_min(S,) = ming;

* Averaged within the selected subset.

B. Machine Learning Model Selection

We frame anchor-subset selection as a multi-class
classification problem where each class corresponds to one
candidate subset S with sizes 3—5 and in total 582 classes for 10
anchors. The ground-truth label for a mobile location is the
subset that minimizes J(S) in Eq. (4). We adopt XGBoost
because it handles tabular inputs with heterogeneous, non-linear
interactions and provides calibrated class probabilities with fast
inference. Given a training dataset {(x;, y;)}/L,, where X; is the
feature vector and y; is the ground-truth class label
corresponding to the optimal anchor subset, XGBoost builds an
ensemble of decision trees.

The prediction function is defined as

K
9= fux),  fieF ©
k=1

where F is the space of regression trees and K is the number of
trees. The training objective is

M K
L=;anm+;om) (10)
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with €(y;, ¥;) is differentiable convex loss, e.g., softmax cross-
entropy for classification. Q(f) =yT + EA”WHZ is

regularization term penalizing the complexity of each tree,
where T is the number of leaves and w are the leaf weights.
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Fig. 3. Overlay of the predicted best subset and the ground-truth best subset at a
representative location.
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Fig. 4. Multiclass XGBoost training curves showing mlogloss and classification
error versus boosting rounds.

C. Model Training

Synthetic datasets are generated by uniformly sampling
mobile positions inside the communication region as shown in
Fig. 3. For each position, we compute the label by exhaustive
minimization of J(S) over all subsets and simulate per-link
RSSI via a log-distance model with anchor-specific noise levels.
To avoid degenerate rare classes and enable stratified splits, we
retain only classes with at least two training samples; this leaves
65 active classes out of 582. We train an XGBoost multi-class
model with 500 trees, depth 6, learning rate 0.05, softmax cross-
entropy, using a stratified 75/25 train/validation split. Fig. 4
plots the training curves that shows loss decreases steadily and
validation error stabilizes, indicating convergence without
instability. On a held-out test set of 500 positions, the model
covers 98.6% of true classes (i.e., they were seen during training)
and achieves 44.4% Top-1 exact-subset accuracy on the covered
portion.



5-(1,2,3,4,5)
5-(1,2,4,5.7)
5-(1,3,4,5,7)
5-(1,4,5,7,10)
5(1,2,34,7)
5-(1,2,4,5,6)
5-(1,2,3,7,10)
5-(1,4,7,89)
5-(4,5,6,7,10)
5(1,4,5,6,7)
5-(1,2,4,7,10)
5-(1,4,5,6,9)
5-(1,2,7,8,10)
5-(1,3,4,7,10)

Confusion Matrix (Top-25 true classes + other)

0207 002,05 0.02
12580.110.09.09 0.04
.150.0 004 002 002

010003016 003
fBoamos 019 o004
:120,08.04
oomos JE
006 006

020020
0.08

0.0
0.02.04
0.00.04 0.04
004 012 004.04.04

012

.0M.13
.250.17
0.08

0.0%.07
0.080.25

0.1

0.09
h.090.18.09

0.09 0.09.09 0.09

04

True label

5-(4,5,7,8,10)
5-(4,5,6,7.9)
5-(1,4,7,8,10)
5-(1,4,5,8,9)
5-(1,2,3.8.10)
5-(1,4,5,7,9)
5-(4,5,6,8,9)
5(124,7.8)
5-(1,2,3,5.7)
441,2,3.4) P27 B @

5-(1,5,6,7.9)
other .

017

0.0

541,2,345
5-(1,4,5,7,10)
5-(1,2,3,7,10]
5-(4,5,6,7,10)

5-(1

Fig. 5. Row-normalized confusion matrix for the 25 most frequent true classes
with the remaining classes.
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D. Model Evaluation

The confusion matrix over the Top-25 most frequent test
classes in Fig. 5 is diagonally dominant, with off-diagonal mass
mostly between subsets of the same cardinality or with similar
geometry. This pattern reflects the intrinsic difficulty of
distinguishing near-optimal subsets when RSSI noise is
comparable across anchors. XGBoost gain in Fig. 6 ranks range-
related features d and RSSI of individual anchors, plus global
statistics as most informative, followed by a few per-link quality
indicators. This confirms that the model primarily leverages
geometry and link reliability, which aligns with the design of
J(S). The ordered curves in Fig. 7 show GDOP and J(S) for all
582 subsets at the demo position. The sharp rise of J(S) in the
tail indicates many subsets are clearly sub-optimal; our classifier
avoids exploring them and focuses probability mass on the low-
J(S) region. Fig. 8 compares J(true) against J(pred) across
test positions. Points cluster near the diagonal, showing that—
even when the exact subset differs—the predicted set is typically
near-optimal in objective value.

IV. CONCLUSION

We presented a learning-based anchor selection framework
that predicts, for each localization update, the subset of anchors
minimizing a GDOP-aware objective under link-quality
variability. On a 10-anchor testbed with 3—5-anchor candidates
in 582 classes, the model covers 98.6% of true classes and
achieves 44.4% Top-1 exact-subset accuracy over the 65 active
classes, while producing fast decisions without online
combinatorial search.
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