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Abstract— In RSSI-based localization systems, many 
conventional implementations assume that all available anchors 
within communication range participate in position estimation. 
While this simplifies system design, it can increase communication 
overhead, computational load, and susceptibility to poor geometry, 
especially when anchor density is high or the mobile node is in an 
unfavorable Geometric Dilution of Precision (GDOP) region. This 
paper addresses the problem of selecting both the number and the 
specific subset of anchors for each localization update, considering 
geometric configuration, link quality, and communication range 
constraints. We propose a learning-based anchor selection 
framework that predicts the most beneficial anchors using 
geometric and link-quality features, aiming to minimize GDOP 
and localization error while respecting resource constraints. 
Simulations demonstrate that the proposed approach, evaluated 
on a 10-anchor 2-D testbed, delivers 98.6% coverage of true classes 
with 44.4% Top-1 exact-subset accuracy over 65 active classes 
while consistently choosing low-GDOP, high-quality links and 
producing near-instant decisions without exhaustive search over 
582 subsets. 

Keywords—anchor node selection, RSSI-based localization, 
machine learning, geometric dilution of precision, wireless sensor 
networks, positioning accuracy optimization 

I. INTRODUCTION  
Received Signal Strength Indicator (RSSI)–based 

localization has become an attractive solution for positioning in 
GPS-denied environments due to its low hardware cost, ease of 
deployment, and compatibility with low-power wireless 
networks [1], [2]. In such systems, the geometry of anchor node 
placement plays a critical role in determining localization 
accuracy through the Geometric Dilution of Precision (GDOP) 
[3]. High-GDOP configurations amplify measurement errors, 
making accurate position estimation challenging, especially in 
the presence of non-line-of-sight (NLOS) conditions and signal 
fluctuations [4]. 

In dynamic localization scenarios, the set of anchors 
available to the mobile node changes over time due to mobility 
and communication range limitations [5]. It is neither practical 
nor efficient to use all visible anchors at every localization 
update: some anchors may be too far to maintain a reliable link, 
and excessive anchor usage increases communication overhead 
and computational cost. Moreover, different anchor subsets 
yield different GDOP values, meaning that poor subset choices 
can significantly degrade localization accuracy even when 
measurement noise remains constant [6]. 

Early studies often treated anchor selection and placement in 
a rather ad-hoc manner. For example, Shang et al. [7] and Li et 
al. [8] selected anchors randomly within the network, with 
Shang et al. merely noting that a collinear set of anchors 
constitutes an “unlucky” choice without theoretical justification. 
More systematic approaches were later proposed. Doherty et al. 
[9] required anchors to be placed along the network boundaries, 
ideally at the corners, to ensure that unknown nodes remain 
within the convex hull of the anchors. Ash et al. [10] further 
provided analytical support for distributing anchors uniformly 
around the network perimeter, which minimizes localization 
errors under simple multilateration models. Karl and Willig [11], 
in their book, also emphasized the importance of perimeter 
anchor placement, reflecting the consensus that geometric 
configuration plays a decisive role in localization accuracy. 

Beyond perimeter-based strategies, several works attempted 
to generalize anchor placement methods to more complex 
scenarios. Hara et al. [12] proposed a grid-based partitioning 
scheme, placing anchors at sub-rectangle centers to achieve 
target accuracy, although the method assumes a rectangular area 
and basic RSSI-based localization. Recognizing that poor 
anchor placement can significantly degrade performance in 
irregular or anisotropic networks. Cheng et al. [13] introduced 
the HyBloc algorithm, which combines multidimensional 
scaling (MDS) with proximity-distance mapping (PDM). By 
augmenting anchor geometry through artificial anchors in 
isotropic regions, HyBloc is able to mitigate the adverse effects 
of clustered or poorly distributed anchors. These studies 
collectively underscore the critical impact of anchor subset 
selection and placement strategies on localization robustness 
and accuracy. 

Existing anchor selection strategies typically rely on either 
using all available anchors or applying simple heuristic rules 
such as selecting the nearest anchors or those with the widest 
angular spread. These methods do not explicitly account for the 
combined effects of measurement quality and geometric 
configuration, nor can they adapt dynamically to changing 
channel conditions. As a result, they may include anchors with 
poor link quality or unfavorable geometry, leading to suboptimal 
GDOP values and degraded positioning performance. 

To address these limitations, this paper proposes a learning-
based anchor node selection framework that jointly considers 
geometric and link-quality features to identify the most 
beneficial subset of anchors for trilateration. The proposed 
approach predicts both the number of anchors and the specific 

20979-8-3315-7896-1/26/$31.00 ©2026 IEEE ICOIN 2026



subset to use at each localization update, aiming to minimize 
GDOP and localization error while reducing computational and 
communication load. The selected anchors are then used in 
conjunction with trilateration algorithm to estimate the mobile 
node’s position. This design allows the system to maintain high 
positioning accuracy even under NLOS and high-GDOP 
conditions while achieving substantial reductions in 
computational cost, offering a scalable and robust solution for 
dynamic environments. 

II. MODEL AND MATHEMATICAL FORMULATION 

A. System Setup 
Assume that at time 𝑡𝑡, let the mobile node be located at 𝐱𝐱���1, 

estimated position from the previous step as shown in Fig. 1. 
Given a communication radius, the set of visible anchors is 
denoted by 

𝒜𝒜� = {1,2, … ,𝑀𝑀},𝑀𝑀 = |𝒜𝒜�| (1) 

The objective is to select a subset 𝑆𝑆 𝑆 𝑆𝑆� with |𝑆𝑆| ≥ 3 that will 
be used for trilateration at the current step. Since trilateration 
requires at least three anchors, the minimum subset size is 
𝐾𝐾��� = 3, while the maximum size can be up to all visible 
anchors 𝑀𝑀. 

 For any candidate subset 𝑆𝑆, the GDOP  [3] is defined as  

GDOP(𝑆𝑆, 𝐱𝐱���1) = �tr[(𝐻𝐻��𝐻𝐻�)�1] (2) 

where  

𝐻𝐻� = [𝐮𝐮��]�∈�, 𝐮𝐮� =
𝐚𝐚� − 𝐱𝐱���1

‖𝐚𝐚� − 𝐱𝐱���1‖
 (3) 

and 𝐚𝐚� is the position of anchor 𝑖𝑖.  

 

B. Objective Function 
The overall objective function augments GDOP with a 

penalty term that accounts for link fluctuations or obstructions 

𝐽𝐽(𝑆𝑆) = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑆𝑆, 𝐱𝐱���1) + 𝜆𝜆�  
�∈�

𝜔𝜔�  (4) 

where 𝜆𝜆 𝜆 𝜆 balances geometric accuracy and link reliability 
penalties. 𝜔𝜔�  is defined as a monotonically increasing function 
of the RSSI variance as  

𝜔𝜔� =
𝜎𝜎��2

𝜎𝜎��2 + 𝜎𝜎���2 , 𝜎𝜎���2 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝜎𝜎��2�, 𝑗𝑗 ∈ 𝑆𝑆 (5) 

 
Fig. 1. Illustration of the localization scenario with 20 anchor nodes and a mobile 
node with a trajectory, showing a dashed communication range enclosing about 
six candidate anchors; an ML-based scheme selects a robust in-range subset for 
RSSI-based trilateration while explicitly accounting for obstacles that might 
degrade link quality. 

where 𝜎𝜎��2 is the variance of the RSSI time series for link 𝑖𝑖, and 
𝜎𝜎���2  denotes a robust scale reference that can be chosen as the 
median of the variances across all visible links. 

The ground-truth subset is obtained by 

𝑆𝑆�⋆ = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚𝑚𝑚
�⊆𝒜𝒜�,|�|�3

 𝐽𝐽(𝑆𝑆) (6) 

which represents the optimal anchor subset that minimizes the 
objective function 𝐽𝐽(𝑆𝑆). 

Since the anchor indices are unordered in subset formation, 
the cardinality of the candidate subset space is determined by the 
binomial coefficient summation 

|𝒮𝒮�| = �  
�

������

�
𝑀𝑀
𝑘𝑘 �

 (7) 

For the case of six visible anchors 𝑀𝑀 𝑀 6 as in our setup, this 
expands to 

|𝒮𝒮�| = �
6
3
� + �

6
4
� + �

6
5
� + �

6
6
� = 20 + 15 + 6 + 1

= 42 
(8) 

meaning all 42 candidate subsets. This exhaustive evaluation 
against the objective 𝐽𝐽(𝑆𝑆) is computationally feasible when 𝑀𝑀 is 
small, but scales exponentially for larger 𝑀𝑀, motivating the use 
of learning-based subset selection. 
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(a) Subset {1, 2, 4} (b) Subset {1, 5, 6} 

  
(c) Subset {3, 1, 2} (d) Subset {1, 2, 6} 

  
(e) Subset {3, 1, 2, 6} (f) Subset {1, 4, 5, 6} 

Fig. 2. Comparative analysis of GDOP for anchor-node subsets within a mobile 
node’s communication range. 

 

C. Illustrative GDOP Example 
To provide an intuitive understanding of how anchor-node 

placement affects GDOP, Fig. 2 presents the GDOP 
distributions for six representative anchor subsets within the 
mobile node’s communication range. Each surface plot 
visualizes the spatial variation of GDOP values with different 
anchor configurations. As observed, subsets with more 
favorable geometric diversity (e.g., well-separated anchors such 
as {1, 2, 4} or {1, 4, 5, 6}) result in lower GDOP across the region, 
indicating better positioning accuracy. In contrast, subsets with 
colinear anchors (e.g., {1, 2, 6}) exhibit larger GDOP values, 
implying poor geometry and degraded localization performance. 
This example highlights the necessity of subset selection, as the 
choice of anchors has a direct impact on the positioning accuracy. 

III. MACHINE LEARNING-BASED ANCHOR SUBSET SELECTION 
In this section, we formulate the problem of anchor subset 

selection as a supervised classification task, where the goal is to 
identify the most reliable subset of anchors for trilateration-

based localization. The classification relies on a set of 
engineered features extracted from the communication links, 
including (GDOP), RSSI statistics, and link quality indicator 
(LQI) statistics. 

 
TABLE I. Extracted Per-Link Features 

Feature 
Category 

Feature 
Description Mathematical Expression 

Signal Strength 

 

RSSI Mean 𝜇𝜇� =
1
𝑇𝑇�

 
�

��1

𝑟𝑟�,� 

RSSI Variance 𝜎𝜎��2 =
1

𝑇𝑇 − 1
� 
�

��1

�𝑟𝑟�,� − 𝜇𝜇��
2
 

RSSI Max 𝑟𝑟�max = max
�
 𝑟𝑟�,� 

RSSI Min 𝑟𝑟�min = min
�
 𝑟𝑟�,� 

Link Quality 

LQI Mean 𝑞𝑞�� =
1
𝑇𝑇�  

�

��1

𝑞𝑞�,� 

LQI Variance 𝜎𝜎��,�2 =
1

𝑇𝑇 − 1
� 
�

��1

�𝑞𝑞�,� − 𝑞𝑞���
2
 

LQI Max 𝑞𝑞�max = max
�
 𝑞𝑞�,� 

LQI Min 𝑞𝑞�min = min
�
 𝑞𝑞�,� 

Geometry 
Relative Angle 𝜃𝜃� = arctan

𝑦𝑦� − 𝑦𝑦���1

𝑥𝑥� − 𝑥𝑥���1
 

Estimated 
Distance 𝑑𝑑�� = ‖𝐚𝐚� − 𝐱𝐱���1‖ 

 

A. Feature Design 

To enable robust subset classification, features are extracted 
at two levels: (i) per-link features that characterize individual 
anchor–mobile links in TABLE , and (ii) subset-level 
descriptors that aggregate link information and geometric 
measures in   TABLE . The per-link features 
capture signal statistics and link quality, while subset-level 
descriptors provide geometric diversity and overall stability of 
the candidate subset. 

The key geometric metric is the GDOP, which quantifies 
spatial geometry. In addition, the average distance and minimum 
angular separation relative to the mobile node describe anchor 
placement diversity. Statistical descriptors such as RSSI and 
LQI mean, variance, maximum, and minimum capture the 
stability and reliability of the selected links. 

By combining per-link features with subset-level descriptors, 
the feature space integrates both signal reliability and geometric 
diversity. This allows the machine learning classifier to 
effectively discriminate between high-quality and low-quality 
anchor subsets. 
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  TABLE II. Subset-Level Descriptors 

Feature 
Category 

Feature 
Description Mathematical Expression 

Geometric 
Feature 

GDOP GDOP(𝑆𝑆, 𝐱𝐱���1) = �tr[(𝐻𝐻��𝐻𝐻�)�1] 

Avg. 
Distance 

𝑑̅𝑑(𝑆𝑆�) =
1
|𝑆𝑆�|

�  
�∈��

𝑑𝑑� 

Min 
Angular 
Separation 

Δ𝜃𝜃min(𝑆𝑆�) = min
���∈��

 min��𝜃𝜃� − 𝜃𝜃��, 

                   2𝜋𝜋 − �𝜃𝜃� − 𝜃𝜃��� 

Statistical 
Reliability 

 

RSSI 
Mean*  

RSS_mean (𝑆𝑆�) =
1
|𝑆𝑆�|

�  
�∈��

𝜇𝜇�
(�) 

RSSI 
Variance*  

RSS_var(𝑆𝑆�) =
1
|𝑆𝑆�|

�  
�∈��

𝜎𝜎�
2(�) 

RSSI Max* RSS_max (𝑆𝑆�) = max
�∈��

 𝑟𝑟�max 

RSSI Min*  RSS_min (𝑆𝑆�) = min
�∈��

 𝑟𝑟�min 

Link Quality 

LQI Mean* LQI_mean(𝑆𝑆�) =
1
|𝑆𝑆�|

�  
�∈��

𝜇𝜇�
(�) 

LQI 
Variance* 

LQI_var(𝑆𝑆�) =
1
|𝑆𝑆�|

�  
�∈��

𝜎𝜎�
2(�) 

LQI Max* LQI_max (𝑆𝑆�) = max
�∈��

 𝑞𝑞�max 

LQI Min* LQI_min(𝑆𝑆�) = min
�∈��

 𝑞𝑞�min 

* Averaged within the selected subset. 

 

B. Machine Learning Model Selection 

We frame anchor-subset selection as a multi-class 
classification problem where each class corresponds to one 
candidate subset 𝑆𝑆 with sizes 3–5 and in total 582 classes for 10 
anchors. The ground-truth label for a mobile location is the 
subset that minimizes 𝐽𝐽(𝑆𝑆)  in Eq. (4). We adopt XGBoost 
because it handles tabular inputs with heterogeneous, non-linear 
interactions and provides calibrated class probabilities with fast 
inference. Given a training dataset {(𝐱𝐱�, 𝑦𝑦�)}��1

� , where 𝐱𝐱� is the 
feature vector and 𝑦𝑦�  is the ground-truth class label 
corresponding to the optimal anchor subset, XGBoost builds an 
ensemble of decision trees. 

The prediction function is defined as 

𝑦𝑦�� =�  
�

��1

𝑓𝑓�(𝐱𝐱�), 𝑓𝑓� ∈ ℱ (9) 

where ℱ is the space of regression trees and 𝐾𝐾 is the number of 
trees. The training objective is 

ℒ =�  
�

��1

ℓ(𝑦𝑦�, 𝑦𝑦��) +�  
�

��1

Ω(𝑓𝑓�) (10) 

with ℓ(𝑦𝑦�, 𝑦𝑦��) is differentiable convex loss, e.g., softmax cross-
entropy for classification. Ω(𝑓𝑓�) = 𝛾𝛾𝛾𝛾 𝛾 1

2
𝜆𝜆𝜆𝜆𝜆𝜆2  is 

regularization term penalizing the complexity of each tree, 
where 𝑇𝑇 is the number of leaves and 𝑤𝑤 are the leaf weights. 

 
Fig. 3. Overlay of the predicted best subset and the ground-truth best subset at a 
representative location. 

 
Fig. 4. Multiclass XGBoost training curves showing mlogloss and classification 
error versus boosting rounds. 

C. Model Training 
Synthetic datasets are generated by uniformly sampling 

mobile positions inside the communication region as shown in 
Fig. 3. For each position, we compute the label by exhaustive 
minimization of 𝐽𝐽(𝑆𝑆)  over all subsets and simulate per-link 
RSSI via a log-distance model with anchor-specific noise levels. 
To avoid degenerate rare classes and enable stratified splits, we 
retain only classes with at least two training samples; this leaves 
65 active classes out of 582. We train an XGBoost multi-class 
model with 500 trees, depth 6, learning rate 0.05, softmax cross-
entropy, using a stratified 75/25 train/validation split. Fig. 4 
plots the training curves that shows loss decreases steadily and 
validation error stabilizes, indicating convergence without 
instability. On a held-out test set of 500 positions, the model 
covers 98.6% of true classes (i.e., they were seen during training) 
and achieves 44.4% Top-1 exact-subset accuracy on the covered 
portion. 
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Fig. 5. Row-normalized confusion matrix for the 25 most frequent true classes 
with the remaining classes. 

 
Fig. 6. XGBoost feature importance (top 15 features ranked by gain) highlighting 
the most influential per-link and aggregate features. 

Fig. 7. All 582 candidate subsets, sorted by GDOP and 𝐽𝐽𝐽𝐽𝐽𝐽   at a representative 
position. 

 

 
Fig. 8. Scatter of 𝐽𝐽𝐽true)versus 𝐽𝐽𝐽pred) across test positions with the 𝑦𝑦 𝑦 𝑦𝑦 line 
indicating near-optimality of predictions. 

 

D. Model Evaluation 
The confusion matrix over the Top-25 most frequent test 

classes in Fig. 5 is diagonally dominant, with off-diagonal mass 
mostly between subsets of the same cardinality or with similar 
geometry. This pattern reflects the intrinsic difficulty of 
distinguishing near-optimal subsets when RSSI noise is 
comparable across anchors. XGBoost gain in Fig. 6 ranks range-
related features 𝑑𝑑�   and RSSI of individual anchors, plus global 
statistics as most informative, followed by a few per-link quality 
indicators. This confirms that the model primarily leverages 
geometry and link reliability, which aligns with the design of 
𝐽𝐽(𝑆𝑆). The ordered curves in Fig. 7 show GDOP and 𝐽𝐽(𝑆𝑆) for all 
582 subsets at the demo position. The sharp rise of 𝐽𝐽(𝑆𝑆)  in the 
tail indicates many subsets are clearly sub-optimal; our classifier 
avoids exploring them and focuses probability mass on the low- 
𝐽𝐽(𝑆𝑆)   region. Fig. 8 compares 𝐽𝐽𝐽true)  against 𝐽𝐽𝐽pred)  across 
test positions. Points cluster near the diagonal, showing that—
even when the exact subset differs—the predicted set is typically 
near-optimal in objective value. 

 

IV. CONCLUSION 
We presented a learning-based anchor selection framework 

that predicts, for each localization update, the subset of anchors 
minimizing a GDOP-aware objective under link-quality 
variability. On a 10-anchor testbed with 3–5-anchor candidates 
in 582 classes, the model covers 98.6% of true classes and 
achieves 44.4% Top-1 exact-subset accuracy over the 65 active 
classes, while producing fast decisions without online 
combinatorial search.  

ACKNOWLEDGMENT  
This work was supported by Institute of Information & 

communications Technology Planning & Evaluation (IITP) 
grant funded by the Korea government(MSIT) (No.RS-2024-
00461079, Development of Adaptive On-Device Software 
Technology for Environmental Adaptation in Unmanned 
Vehicle Surveillance Equipment).  

 

24



REFERENCES 
[1] J. Luomala and I. Hakala, “Analysis and evaluation of adaptive RSSI-based 

ranging in outdoor wireless sensor networks,” Ad Hoc Netw., vol. 87, pp. 
100–112, May 2019, doi: 10.1016/j.adhoc.2018.10.004. 

[2] Y. Gu, A. Lo, and I. Niemegeers, “A survey of indoor positioning systems 
for wireless personal networks,” IEEE Commun. Surv. Tutor., vol. 11, no. 
1, pp. 13–32, 2009, doi: 10.1109/SURV.2009.090103. 

[3] S.-H. Bach and S.-Y. Yi, “Constrained Least-Squares Trilateration for 
Indoor Positioning System Under High GDOP Condition,” IEEE Trans. 
Ind. Inform., vol. 20, no. 3, pp. 4550–4558, Mar. 2024, doi: 
10.1109/TII.2023.3326535. 

[4] K. Langendoen and N. Reijers, “Distributed localization in wireless sensor 
networks: a quantitative comparison,” Comput. Netw., vol. 43, no. 4, pp. 
499–518, Nov. 2003, doi: 10.1016/S1389-1286(03)00356-6. 

[5] L. L. de Oliveira, G. H. Eisenkraemer, E. A. Carara, J. B. Martins, and J. 
Monteiro, “Mobile Localization Techniques for Wireless Sensor Networks: 
Survey and Recommendations,” ACM Trans Sen Netw, vol. 19, no. 2, p. 
36:1-36:39, 2023, doi: 10.1145/3561512. 

[6] T. Kunz and B. Tatham, “Localization in Wireless Sensor Networks and 
Anchor Placement,” J. Sens. Actuator Netw., vol. 1, no. 1, pp. 36–58, June 
2012, doi: 10.3390/jsan1010036. 

[7] Y. Shang, W. Rumi, Y. Zhang, and M. Fromherz, “Localization from 
connectivity in sensor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 
15, no. 11, pp. 961–974, Nov. 2004, doi: 10.1109/TPDS.2004.67. 

[8] L. Li and T. Kunz, “Cooperative node localization using nonlinear data 
projection,” ACM Trans Sen Netw, vol. 5, no. 1, p. 1:1-1:26, 2009, doi: 
10.1145/1464420.1464421. 

[9] L. Doherty, K. S. J. pister, and L. El Ghaoui, “Convex position estimation 
in wireless sensor networks,” in Proceedings IEEE INFOCOM 2001. 
Conference on Computer Communications. Twentieth Annual Joint 
Conference of the IEEE Computer and Communications Society (Cat. 
No.01CH37213), Apr. 2001, pp. 1655–1663 vol.3. doi: 
10.1109/INFCOM.2001.916662. 

[10] J. N. Ash and R. L. Moses, “On optimal anchor node placement in sensor 
localization by optimization of subspace principal angles,” in 2008 IEEE 
International Conference on Acoustics, Speech and Signal Processing, 
Mar. 2008, pp. 2289–2292. doi: 10.1109/ICASSP.2008.4518103. 

[11] H. Karl and A. Willig, Protocols and Architectures for Wireless Sensor 
Networks. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. 

[12] S. Hara and T. Fukumura, “Determination of the placement of anchor 
nodes satisfying a required localization accuracy,” in 2008 IEEE 
International Symposium on Wireless Communication Systems, Oct. 2008, 
pp. 128–132. doi: 10.1109/ISWCS.2008.4726032. 

[13] K.-Y. Cheng, K.-S. Lui, and V. Tam, “HyBloc: Localization in Sensor 
Networks with Adverse Anchor Placement,” Sensors, vol. 9, no. 1, pp. 
253–280, Jan. 2009, doi: 10.3390/s90100253. 

 

25


