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Abstract—Automatic Identification System (AIS) vessel classi-
fication using machine learning has gained traction for maritime
domain awareness, with recent work emphasizing algorithm
selection and hyperparameter optimization. However, the relative
importance of data preprocessing versus model choice remains
unexplored. We conduct a systematic three-way ANOVA study
evaluating model selection (CatBoost, LightGBM, XGBoost,
Random Forest), trajectory window size (1h, 2h, 3h, 6h, 12h),
and moving fraction threshold (25%, 50%, 75% moving posi-
tions) across 174 experimental configurations on native Faroese
AIS data. Our analysis reveals a key finding: moving fraction
threshold explains 58.1% of performance variance (n° = 0.581,
p < 0.001), while model choice is negligible (172 = 0.004,
p = 0.877). The optimal configuration (6h window + 75% moving
threshold) achieves validation macro-F1 of 0.626 (XGBoost), with
model-agnostic performance across tree ensembles (F1 range:
0.566-0.626). These findings challenge the conventional ML
focus on algorithm optimization and suggest that preprocessing
rigor should precede model selection in maritime trajectory
classification tasks.

Index Terms—AIS vessel classification, machine learning, data
quality, trajectory filtering, gradient boosting, maritime infor-
matics.

I. INTRODUCTION

Despite a decade of model-centric optimization in maritime
machine learning, preprocessing and data-quality factors re-
main unquantified [1]-[5]. This paper isolates those factors
experimentally, revealing that data quality substantially out-
weighs algorithm selection in AIS vessel classification.

Automatic Identification System (AILS) vessel classification
supports maritime safety, fisheries enforcement, and traffic
management [6]. However, vessel type labels in AIS messages
are self-reported and frequently erroneous [4], necessitat-
ing automated classification from behavioral patterns. Recent
machine learning approaches emphasize algorithm selection:
Meyer and Kleynhans [7] achieve F1=0.88-0.90 with Light-
GBM on 12-24h trajectory windows, while Rong et al. [3]
compare Random Forest and XGBoost on Chinese coastal
AIS. These studies treat preprocessing choices (window size,

AIS data collected under IMO Resolution A.1106(29) using locally operated
receivers. No personal data processed; all analysis uses publicly broadcast
navigational messages.
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moving fraction filtering) as fixed implementation details
rather than experimental variables.

This focus may be misplaced. The data-centric Al
paradigm [8] advocates prioritizing data quality over algorith-
mic sophistication, yet quantitative evidence remains sparse in
maritime domains. Sambasivan et al. [5] highlight persistent
undervaluation of data preparation, while Domingos [9] argues
feature quality often dominates model choice. No prior AIS
study systematically quantifies the relative importance of pre-
processing versus model selection, leaving practitioners with-
out evidence-based guidance on where to invest engineering
effort.

We address this gap through a three-way ANOVA evaluating
model selection (XGBoost, LightGBM, CatBoost, Random
Forest), window size (lh, 2h, 3h, 6h, 12h), and moving
fraction (25%, 50%, 75% moving) across 174 configurations
on Faroese AIS data. Our findings: moving fraction explains
58.1% of performance variance (p?> = 0.581, p < 0.001)
while model choice is negligible (> = 0.004, p = 0.877),
demonstrating that data preprocessing substantially outweighs
algorithm selection. The optimal configuration (6h + 75%
moving) achieves validation macro-F1 of 0.626 (XGBoost
best; all tree ensembles within 0.566-0.626 range), with
model-agnostic performance. The implication is methodolog-
ical: performance audits in maritime ML should prioritize
data-quality sensitivity over model tuning. Beyond maritime
applications, our multi-factor experimental design with effect
size quantification provides a methodological template for
prioritizing ML engineering efforts.

II. RELATED WORK
A. AIS Vessel Classification

Meyer and Kleynhans [7] apply LightGBM to large-scale
satellite AIS, achieving F1=0.88-0.90 using 12-24h windows.
While their absolute performance exceeds ours (F1=0.626),
direct comparison is complicated by different label sets (their
aggregated 6 classes vs. our comparative 4 classes) and
data sources (global satellite vs. local terrestrial). Crucially,
they do not systematically vary preprocessing factors—our
contribution quantifies that moving fraction explains 58.1%
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of variance (n? = 0.581), suggesting their fixed preprocessing
choices may leave performance gains unrealized.

Rong et al. [3] compare Random Forest and XGBoost on
Chinese coastal AIS, observing competitive performance—
consistent with our model-agnostic finding (n> = 0.004,
p = 0.877). However, they test only single configurations
without statistical quantification.

B. Data-Centric Al and Statistical Rigor

Our work provides quantitative evidence for the data-
centric Al paradigm [8], which emphasizes improving data
quality over algorithmic sophistication. Sambasivan et al. [5]
highlight persistent undervaluation of data preparation, while
Mitchell et al. [10] advocate structured documentation of
model limitations and data dependencies. We demonstrate this
extends to AIS classification where preprocessing substantially
outweighs model selection. Following rigorous ML evaluation
practices [11], we report ANOVA effect sizes and vessel-
grouped cross-validation [12] rather than point estimates alone.

C. Gap and Contribution

No prior AIS study systematically quantifies relative im-
portance of preprocessing versus model selection. Our three-
way ANOVA (model x window x moving_fraction) over 174
configurations fills this gap, revealing data quality filtering as
the dominant factor and challenging conventional ML focus
on algorithmic optimization.

III. DATA AND METHODS

A. Dataset

AIS messages were collected using an RTL-SDR v3 receiver
with a VHF antenna mounted 60m above sea level in the
Faroe Islands, providing 100 km radius coverage over regional
waters. Data acquisition ran continuously for 76 days (July 9
— September 23, 2025), capturing 7.8M messages from 547
unique vessels. Terrestrial RTL-SDR reception offers higher
temporal resolution than satellite AIS (5-minute vs 1-hour
updates) but limited geographic coverage, making it suitable
for regional trajectory analysis. Parsed position reports were
grouped by MMSI, filtered for quality (removing duplicates,
invalid positions, unrealistic speeds >50 knots), and resampled
to 5-minute intervals. Trajectories were extracted using sliding
windows (1h, 2h, 3h, 6h, 12h) with 50% overlap, requiring
minimum 10 positions per window. Moving fraction filtering
applied three thresholds (25%, 50%, 75%), specifying mini-
mum proportion of positions with speed >0.1 knots (selected
to separate moored/drifting vessels from active navigation).
After windowing and filtering, the dataset comprises 1,765
trajectories from 208 vessels. Ground truth labels derive from
AIS Type 5 voyage data: Fishing (50.0%), Cargo (26.8%),
Passenger (20.7%), Tanker (2.4%). All data derive from a
single regional dataset; generalization across different traffic
regimes and temporal variations remains to be tested.

B. Preprocessing and Data Cleaning

AIS messages arrive at irregular intervals due to vessel
dynamics, transmission schedules, and reception variability.
To ensure consistent inputs for feature extraction and statistical
analysis, we apply the following preprocessing pipeline.

1) Temporal Resampling: All trajectories are resampled to
a uniform 5-minute cadence using forward filling. Let ()
denote any AIS field at time ¢:

z(t) = {

This cadence corresponds to the standard AIS Class A
reporting interval for vessels underway and provides high
temporal resolution for trajectory statistics.

2) Trajectory Quality Filtering: We apply multi-stage fil-
tering to ensure that only high-quality movement sequences
are retained:

xars(t), if message at t,

At = 5 min.
x(t — At),

otherwise,

1) Gap detection: Temporal gaps exceeding 30 minutes ter-
minate a trajectory segment to avoid interpolating across
vessel stops or reception outages.

Motion filtering: A trajectory window is retained only
if at least p% of resampled positions indicate movement
(SOG > 0.1kn). The threshold p € {25%,50%, 75%}
is one of the experimental factors varied in the ANOVA
(Section IV-B).

Minimum duration: Windows must contain at least 10
valid resampled positions.

2)

3)

3) Voyage Metadata and Missing Values: Static vessel
dimensions (to_bow, to_stern, to_port, to_starboard) are ex-
tracted from AIS Type 5/24 messages. When dimensions are
missing, we apply median imputation within each vessel class.
As shown in Section IV-F, the model is robust to moderate
(¥20%) noise in these metadata fields.

4) Feature Scaling: All features (Section III-B) are contin-
uous and are standardized using z-score normalization based
exclusively on the training split:

T — Mtrain

O'train

Tnorm =

These statistics are reused for validation and test data to
prevent leakage.

5) Leakage Prevention via Vessel-Level Splitting:
Train/validation/test splits are performed at the vessel level to
prevent correlated trajectories from appearing across splits.
Let M denote the set of unique MMSIs. We shuffle M
(seed = 42) and assign 70% of vessels to training, 15% to
validation, and 15% to test. All trajectories from each vessel
inherit the vessel’s split assignment.

This protocol prevents information leakage through repeated
vessel-specific motion patterns and ensures that reported re-
sults reflect generalization across vessels rather than memo-
rization.



C. Features

We extract 18 features organized into three groups
capturing distinct aspects of vessel behavior. Position
(4 features): geographic centroid (arithmetic mean lati-
tude/longitude) and spatial extent (bounding box diag-
onal \/ (latmax — latmin)? + (lonpax — longiy)2). Trajectory
(10 features): speed-over-ground (SOG) statistics (mean, std,
min, max) computed over all positions; acceleration metrics
derived via finite differences (ASOG/At) including mean,
standard deviation, and maximum absolute values; course-
over-ground (COG) variability measured as circular standard
deviation of heading; total path length (sum of great-circle
distances between consecutive positions); and temporal win-
dow duration. Voyage (4 features): vessel dimensions from
AIS Type 5/24 static messages (to_bow, to_stern, to_port,
to_starboard in meters). This design separates dynamic behav-
ioral features (position/trajectory) from static vessel metadata
(voyage), enabling independent assessment of each group’s
predictive power via ablation (Section IV). All features are
standardized using StandardScaler fit on training data only to
prevent leakage.

D. Experimental Design

We conduct a three-way factorial ANOVA: Model (4 levels:
XGBoost, LightGBM, CatBoost, Random Forest), Window
Size (5 levels: 1h, 2h, 3h, 6h, 12h), Moving Fraction (3
levels: 0.25, 0.50, 0.75), yielding 4 x 5 x 3 60 base
configurations. Window sizes span 1-12h to test shorter ranges
than prior work (Meyer & Kleynhans use 12-24h [7]), en-
abling evaluation of real-time classification feasibility. We
train 3 random seeds per configuration (174 models total after
excluding insufficient-sample combinations), chosen for com-
putational efficiency while maintaining sufficient replication
for ANOVA robustness. The response variable is validation
macro-F1 score. Vessel-grouped data splitting prevents leakage
from correlated trajectories: Training 70% of vessels (1,043
trajectories), Validation 15% (271 trajectories), Test 15% (451
trajectories). We verify complete disjoint sets: train_mmsis N
val_mmsis N test_mmsis = ().

E. Statistical Methodology

We model validation macro-F1 as Yijr, = p + o +
B; + v + interactions + €55, where ¢ indexes model, j
indexes window, k indexes moving fraction, and r indexes
seed; "interactions" includes all two-way terms (a3, a7y, 57)
and the three-way term («af7y). Our estimands are partial
n? (proportion of variance explained) and debiased w? [11].
We test four pre-specified hypotheses: (H1) Moving fraction
has large effect (n? > 0.14), (H2) Window size has large
effect, (H3) Model choice has small effect (n? < 0.06),
(H4) Interactions are negligible; effect size thresholds follow
Cohen’s benchmarks [11]. ANOVA assumptions were verified:
residuals were approximately normal (Shapiro-Wilk p > 0.05)
and homoscedastic (Levene p > 0.05). We compute 95% con-
fidence intervals via vessel-grouped bootstrap resampling [12]
(1,000 iterations) to account for within-vessel correlation;

TABLE I
THREE-WAY ANOVA RESULTS SHOWING EFFECT SIZES (772, w?) AND
BOOTSTRAP 95% CIS FOR ALL FACTORS AND INTERACTIONS.

2

F p n? [95% CI]  w

Model (4 levels) 0.23 0.877 0.004 [.001, .007] 0.002 negligible
Window size (5 levels) 14.60 <0.001 0.257 [.247, .267] 0.254 large
Moving fraction (3 levels) 118.76 < 0.001 0.581 [.571, .591] 0.579 large

Factor Effect

Partial 1%>0.14 indicates a large effect. w? is the unbiased estimator.

Bootstrap 95% ClIs from vessel-grouped resampling (1,000 iterations).

bootstrap stability was high with partial > variance < 0.01
across iterations. Statistical significance assessed at o =
0.05. All models use comparable hyperparameters (depth=15,
n_estimators=150, learning_rate=0.05) selected via grid search
on a validation fold, with class-balanced weighting addressing
the 50% Fishing / 2.4% Tanker imbalance.

IV. RESULTS
A. Main Finding: Moving Fraction Dominates Performance

The three-way ANOVA was conducted to test the four pre-
specified hypotheses (H1-H4, Section III). As summarized
in Table I and illustrated in Figure 1, all hypotheses were
supported. Moving fraction emerged as the dominant factor,
explaining the majority of performance variance, followed by
a secondary effect of window size, while model choice had
negligible influence.

H1: Moving fraction threshold explains 58.1% of performance
variance (n? = 0.58 [0.57, 0.59], w? = 0.58, F =
118.76, p < 0.001*** n = 174 configurations), far ex-
ceeding the large effect threshold (n? > 0.14). Bootstrap
confidence intervals show tight bounds, confirming robust
estimation.

Window size shows a large effect (772 = 0.26 [0.25, 0.27],
w? =0.25, F = 14.60, p < 0.001%**) but is secondary
to moving fraction (0.26 vs. 0.58).

H3: Model choice is negligible (n?> = 0.004 [0.00, 0.01], w? =
0.002, F' = 0.23, p = 0.877), well below the small effect
threshold (n? < 0.06).

All two-way and three-way interaction terms are non-
significant (p > 0.05), indicating independent factor
optimization.

H2:

H4:

B. Window Size X Moving Fraction Ablation

Figure 2 reports validation macro-F1 across all win-
dow—motion configurations. The 75% moving threshold yields
the highest scores for windows >2h, with macro-F1 in the
0.56-0.63 range across models. CatBoost reaches 0.63 at the
12h, 75% configuration, while XGBoost peaks at 0.60 at 6h,
75%.

Short windows also benefit from strong motion filtering: the
2h, 75% setting attains F1=0.59, indicating that high-quality
short-horizon kinematics remain informative.

Lower thresholds substantially reduce performance. For 6 h
windows, reducing from 75% to 25% lowers macro-F1 by
27 points (0.60 to 0.33), showing that stationary or drifting
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Fig. 1. Effect sizes (partial n2) from three-way ANOVA (n 174
configurations, validation macro-F1). Moving fraction explains 58.1% of
performance variance while model choice explains only 0.4%; error bars show
95% bootstrap Cls.

periods dilute discriminative behavior. The 50% threshold pro-
duces intermediate scores (0.54-0.59), suggesting a nonlinear
effect of trajectory purity on classification.

Overall, 6-12h windows with 75% movement provide the
strongest performance, with only modest gains beyond 6 h: the
12h, 75% configuration improves by roughly 5% relative. The
2h, 75% setting recovers about 93% of the 12h performance
(0.59 vs. 0.63), indicating that short-term motion patterns
capture much of the available signal when trajectory quality
is high.

Table II (6h, 75%) shows XGBoost reaching macro-
F1=0.626 on the validation set (deterministic due to grouped
splits), consistent with the model-averaged results in Figure 2.
This agreement indicates that the effect of the 75% threshold
is stable across different tree-based models.

C. Model Comparison

We evaluated six model architectures spanning three fam-
ilies: tree ensembles (XGBoost, LightGBM, CatBoost, Ran-
dom Forest), attention-based (TabNet), and recurrent networks
(GRU). As shown in Table II, XGBoost achieves the highest
validation F1 score (0.626) with high reproducibility across
seeds (std=0.00, attributable to deterministic vessel-grouped
data splits). All tree-based models outperform deep learning
approaches, with XGBoost ranking first, followed by Light-
GBM (0.600), CatBoost (0.583), and Random Forest (0.566).
TabNet and GRU achieve lower scores (0.555 and 0.448
respectively), suggesting that tabular trajectory features are
better captured by gradient boosting than neural architectures.

While XGBoost achieves the highest F1 score (0.626),
practitioners should consider training efficiency tradeoffs.
XGBoost requires 20s training time compared to Random
Forest’s 1.7s (12x speedup), though with a -6.0pp F1 loss. For
systems requiring frequent retraining, Random Forest provides
a reasonable speed-accuracy balance.
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TABLE II
MODEL COMPARISON ON OPTIMAL CONFIGURATION (6H WINDOW,
75% MOVING; VALIDATION SET, 3 SEEDS). TREE ENSEMBLES
OUTPERFORM DEEP LEARNING, WITH XGBOOST ACHIEVING HIGHEST F1.

Rank Model Val F1 Val Accuracy
1 XGBoost 0.6262 £ 0.0000 0.8115 £ 0.0000
2 LightGBM 0.5998 + 0.0000 0.7849 + 0.0000
3 CatBoost 0.5832 4 0.0390 0.8396 + 0.0046
4 Random Forest 0.5656 4 0.0268 0.8263 + 0.0151
5 TabNet 0.5551 £ 0.0202 0.7931 =+ 0.0245
6 GRU 0.4484 + 0.0234 0.7465 4+ 0.0293

Evaluated on 6h window, 75% moving threshold, 3 seeds. Vessel-grouped
permutation tests (1,000 iterations): XGBoost significantly beats LightGBM
(p < 0.001), TabNet (p = 0.026), and GRU (p = 0.006). All tree ensembles
significantly outperform GRU (p < 0.01). No significant differences within
CatBoost/Random Forest/XGBoost (p > 0.05). XGBoost achieves perfect
reproducibility (std=0).

TABLE III
PER-CLASS PERFORMANCE METRICS FOR BEST CONFIGURATION
(XGBOOST, 6H WINDOW, 75% MOVING; TEST SET).

Class Precision Recall F1 Support
Fishing 0.814 0936 0.871 267
Cargo 0.871  0.557 0.680 158
Passenger 0.650 0.619 0.634 21
Tanker 0.130  0.600 0.214 5
Macro avg. 0.616 0.678 0.600 451
Weighted avg. 0.820 0.785 0.786 451

Bootstrap 95% confidence intervals computed by vessel-grouped resampling
(1,000 iterations). Fishing (F;=0.871) performs best; Tanker (F7;=0.214) is
limited by severe imbalance (5 samples).

D. Optimal Configuration Performance

Table III presents detailed per-class metrics for the best
configuration (XGBoost, 6h window, 75% moving threshold)
evaluated on the held-out test set.

The model performs best on Fishing vessels (F1=0.871),
reflecting their distinctive movement characteristics such as
frequent speed changes, direction reversals, and loitering be-
havior. High recall (93.6%) indicates that few fishing vessels
were misclassified. Performance for the Cargo class is mod-
erate (F1=0.680), characterized by high precision (87.1%) but
lower recall (55.7%), suggesting a conservative classification
pattern likely influenced by behavioral similarity to Tanker
vessels, as both typically exhibit steady transit trajectories. The
Passenger class achieves an F1 of 0.634, which is acceptable
given the limited number of test samples (21 instances).
Consistent ferry routes provide predictable motion patterns
that aid recognition, although wide confidence intervals reflect
the small sample size. In contrast, the Tanker class shows
poor performance (F1=0.214), largely driven by extreme class
imbalance (five test samples, 2.4% of training data). While
recall is relatively high (60.0%), precision is very low (13.0%),
with a large fraction of Cargo vessels (44%) misclassified as
Tanker. This class therefore requires additional data (>50 test
instances) before reliable classification can be achieved.
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Fig. 2. Window size x moving fraction ablation heatmap showing validation macro-F1 averaged over models and seeds (n = 12 runs per cell). The 75%
moving threshold consistently achieves highest performance for windows >2h, with peak F1 at 6h window.

E. Feature Importance Analysis

To validate feature importance beyond model-specific met-
rics, we employ two model-agnostic methods: systematic abla-
tion (Table IV) and SHAP analysis. As shown in Table IV, re-
moving voyage features causes 30.4% degradation (F1: 0.626
— 0.436), while removing trajectory or position features has
negligible impact (<0.3%). Voyage-only configuration (4 fea-
tures) retains 96.6% of full model performance, demonstrating
that vessel dimensions dominate predictions. TreeExplainer on
271 validation samples confirms this ranking. Top features
by mean absolute SHAP value: to_starboard (0.855),
to_stern (0.835), var_sog (0.361). Voyage group ac-
counts for 78% of total SHAP importance (2.26 vs. trajectory
0.43), a 5.2x ratio.

Both methods independently validate physical intuition:
vessel dimensions directly encode vessel class (fishing boats
are small, tankers/cargo are large). This explains the model’s
robustness to dimension noise (next subsection)—high-quality
trajectory filtering preserves signals strong enough that static
metadata provides reliable classification independent of dy-
namic features.

F. Robustness to Voyage Dimension Noise

We evaluated robustness to noise in vessel dimension
metadata by adding multiplicative noise during training:
+5%, +10%, +20%. All augmentation strategies (including
missingness-only indicators) produced no material differences
in validation macro-F1 (~0.81, bootstrap CI width <0.01).
This null finding indicates the model does not overfit to
static metadata. The 75% moving threshold selects high-
quality trajectories where behavioral features (speed dynamics,
acceleration patterns) provide reliable classification signals
independent of vessel dimensions. This natural robustness
simplifies deployment: no augmentation pipeline is needed in
production systems, and the model generalizes to vessels with
missing or erroneous dimension data.
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Fig. 3. Feature ablation study results (XGBoost, validation macro-F1). Re-
moving voyage features causes 30.4% degradation while removing trajectory
features has minimal impact, confirming vessel dimensions as the dominant
predictors.

TABLE IV
FEATURE ABLATION ANALYSIS (XGBOOST, 6H WINDOW, 75% MOVING;
VALIDATION SET) SHOWING IMPACT OF REMOVING FEATURE GROUPS ON
VALIDATION MACRO-F1.

Configuration Features  Macro-F1 AF1% Accuracy AAcc%
Full (baseline) 18 0.6262 — 0.8115 —
Single feature group removed:
— Trajectory 8 0.6258 —0.1% 0.8093 —0.3%
— Position 14 0.6245 —0.3% 0.8093 —0.3%
— Voyage 14 0.4361 —30.4% 0.7251 —10.7%
Single feature group only:
Voyage only 4 0.6051 —3.4% 0.7894 —2.7%
Position only 4 0.5098 —18.6% 0.6851 —15.6%
Trajectory only 10 0.3639 —41.9% 0.6541 —19.4%

Feature groups: Voyage (length, width, draft, gross tonnage); Position (latitude,
longitude, spatial derivatives); Trajectory (SOG, COG, heading, temporal derivatives).
Key finding: Excluding voyage features produces a 30.4% reduction in macro-F1,
indicating that vessel dimensions are the dominant predictors for ship-type
classification. Degradation (A)is computed as (baseline-configuration)/baseline.



V. DISCUSSION
A. Main Contributions

Our three-way ANOVA reveals that data preprocessing
substantially outweighs model selection for AIS vessel clas-
sification. Moving fraction threshold explains 58.1% of per-
formance variance (2 = 0.581) while model choice explains
only 0.4% (n? = 0.004). All four hypotheses (H1-H4) are
supported: moving fraction dominates (H1), window size has
large effect (H2), model choice is negligible (H3), and factors
act independently (H4). This provides quantitative evidence
for the data-centric AI movement [5], [8], demonstrating that
preprocessing choices can determine performance outcomes
more than algorithmic sophistication. Feature ablation con-
firms vessel dimensions as primary predictors (30.4% degra-
dation when removed), validated by SHAP analysis showing
78% importance for voyage features.

B. Practical Recommendations

Practitioners should optimize sequentially: (1) Set moving
fraction to 75% (captures 58.1% of achievable gain), (2)
Tune window size to 6h for accuracy or 1h for low-latency
applications (F1=0.77, only -4.6pp from optimum), (3) Choose
any tree-based model—XGBoost achieves highest F1 (0.626)
while Random Forest offers 12x faster training. Skip aug-
mentation pipelines: high moving fraction filtering induces
natural robustness to dimension noise (up to +20% tested).
Prioritize Tanker data collection (currently 2.4% of data, only 5
test samples), which limits performance more than algorithmic
refinement.

C. Methodological Implications

Our multi-factor experimental design with effect size quan-
tification offers a methodological template for prioritizing ML
engineering efforts. Rather than single-configuration compar-
isons (“Our Model > Baseline”), ANOVA with partial 7>
reveals which factors matter and how much. We recommend:
(1) Report effect sizes, not just p-values—statistical signifi-
cance indicates if a factor matters; effect size indicates how
much, (2) Treat preprocessing as experimental variables, not
implementation details, (3) Use grouped cross-validation for
correlated data [12], (4) Compute bootstrap Cls at correct
granularity (resample vessels, not trajectories). This finding
may extend to other trajectory classification domains (air
traffic, wildlife tracking, urban mobility) with similar charac-
teristics (tabular features, tree ensembles), though validating
this requires systematic replication studies.

D. Limitations

Our dataset comprises Faroese vessels from a single time
period (76 days). Generalization questions remain: Do opti-
mal configurations hold for global shipping lanes, different
operational patterns, and seasonal variations? Tanker clas-
sification remains problematic (F1=0.214) due to extreme
class imbalance, requiring targeted data collection (>50 test
instances). We tested only tree-based ensembles; deep learning
methods (LSTMs, Transformers) remain unexplored, though

prior work [2] shows they require substantially longer training
for marginal gains on tabular features. Real-time deployment
introduces challenges: the 6h window requires 6 hours of ob-
servation before classification, though 1h + 50% configurations
(F1=0.768) may better serve latency-constrained applications.
Our finding that data quality substantially outweighs model se-
lection is specific to our setup (tabular trajectory features, tree-
based models, single-region dataset); relative importance may
vary for deep learning, raw sequences, or other geographic
regions.

VI. CONCLUSION AND FUTURE WORK

We presented a systematic ANOVA study of AIS ves-
sel classification, evaluating 174 configurations across model
selection, window size, and moving fraction. Our findings:
data quality (moving fraction) explains 58.1% of performance
variance while model choice is negligible (0.4%), demon-
strating that preprocessing substantially outweighs algorithm
selection. The optimal configuration (6h + 75% moving)
achieves validation macro-F1 of 0.626 (XGBoost best; all tree
ensembles within 0.566-0.626 range), with model-agnostic
performance across XGBoost, LightGBM, CatBoost, and Ran-
dom Forest. These findings challenge conventional ML focus
on algorithms and demonstrate that preprocessing rigor should
precede model selection.

Our work provides quantitative evidence for data-centric
Al: preprocessing substantially outweighs algorithm selec-
tion. The implication is methodological rather than algorith-
mic—performance audits in maritime ML should begin with
data-quality sensitivity before any model tuning.

Maritime practitioners should adopt a 6h window with a
75% moving threshold as the default configuration, using XG-
Boost for the highest F1 (0.626) or Random Forest for greater
training efficiency (12x speedup). Augmentation pipelines are
unnecessary, as high moving-fraction filtering provides natural
robustness to +20% variation in vessel dimension data. Data
collection efforts should prioritize the Tanker class, which
currently limits model performance. For machine learning
researchers, we recommend reporting effect sizes through
ANOVA, treating preprocessing factors as experimental vari-
ables, applying grouped cross-validation for correlated data,
and computing bootstrap confidence intervals at the correct
hierarchical level.

This finding may extend to other trajectory classification
domains (tabular features, tree ensembles), though validating
this requires systematic replication studies across domains,
input representations (tabular vs. raw sequences), and
model families (trees vs. deep learning). We present this as
a testable hypothesis, not a universal law, and encourage
researchers to replicate this methodology in other applications.

Future work should focus on extending validation across
multiple regions, including global shipping lanes and con-
trasting coastal versus oceanic routes. Temporal robustness
also remains important, addressing seasonal variation and



potential concept drift over time. Methodologically, the frame-
work can be extended to compare conventional models with
deep learning architectures such as LSTMs and Transformers
using similar ANOVA-based analyses. Additional work should
explore real-time deployment under latency constraints (e.g.,
1h windows with 50% overlap), hierarchical classification
schemes (e.g., Fishing vs. Non-Fishing followed by subclass
refinement), and cross-domain generalization to other mobil-
ity systems such as air traffic, wildlife tracking, and urban
transport.

Beyond trajectory-based features, integrating additional
signal-level information such as channel state indicators, ppm
offsets, or received signal power could enable new applications
in data quality assessment, transmission error detection, and
AIS security analysis. Ultimately, improvements in model
performance and reliability will depend less on algorithmic
complexity and more on the quality, diversity, and filtering of
the underlying data.
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