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Abstract— Wi-Fi Fine Timing Measurement (FTM)
measurements contain a constant error that depends on the
device and the environment. Previous studies, which we refer to
as conventional methods, corrected these errors by calculating
the difference between the actual distance and the measured
distance obtained from prior measurements; however, this
method is labor-intensive and cannot adapt to changes in the
device and the environment. In this study, we propose a particle-
filter-based positioning method that estimates and corrects the
bias in FTM distance in real time and performs positioning
using the corrected values. This method eliminates the need for
prior measurements while achieving positioning accuracy
comparable to or better than conventional methods. To the best
of the authors' knowledge, this is the first study to perform real-
time calibration using only FTM distance without relying on
actual distances. According to the experimental results, under
line-of-sight (LOS) conditions between the access point (AP) and
the station (STA), the estimated bias converges to the true value
over time. Under non-line-of-sight (NLOS) conditions, where a
wall exists between the AP and STA, it was confirmed that the
estimated bias converges to a value with an additional bias
caused by signal penetration through the wall. In terms of
positioning accuracy, the proposed method achieved
performance comparable to or superior to that of the
conventional method.
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I. INTRODUCTION

In recent years, the development of smartphones and IoT
technologies has increased the demand for indoor positioning
technologies. In addition to indoor navigation in commercial
facilities, real-time tracking and management of equipment,
materials, and personnel are required in logistics warehouses
and factories. While GPS can provide high-accuracy
positioning outdoors, indoor environments often suffer from
signal attenuation and reflection caused by building structures,
resulting in insufficient accuracy. Therefore, alternative
methods are needed. In particular, Wi-Fi-based indoor
positioning has gained considerable attention due to its ability
to utilize existing Wi-Fi infrastructure. Wi-Fi-based indoor

positioning methods can be broadly categorized into two types.

The first type is the fingerprinting method, which utilizes
machine learning [1]. In this approach, the received signal
strength indicator (RSSI) is measured at many known
locations within the target area to construct a database. During
positioning, the location is estimated by finding the point in
the database that best matches the measured RSSI. This
method does not require knowledge of access point (AP)
locations and has been reported to achieve relatively high
positioning accuracy [2]. However, it requires significant
effort and time to construct the database, and its accuracy
degrades substantially when the environment changes.
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The second type is model-based positioning methods that
do not rely on machine learning. Based on ranging between
APs and stations (STAs), positions can be estimated using
trilateration with three or more APs. Wi-Fi Fine Timing
Measurement (FTM), which enables highly accurate distance
measurement, is widely used in model-based positioning [3].
In FTM, the round-trip time (RTT) of frames between the AP
and the STA is precisely measured, and the distance is
calculated by multiplying the RTT by the radio wave
propagation speed. In indoor environments representing
realistic usage scenarios, particle-filter-based positioning was
reported to have an average error of 3.52 m [4]. In addition,
positioning methods that integrate other sensor information,
such as combining FTM with smartphone-based pedestrian
dead reckoning (PDR), have also been studied [5][6].

However, due to hardware processing delays and obstacles,
FTM measurements contain a constant bias. Consequently,
most prior studies using FTM for indoor positioning,
including those mentioned above, perform calibration by
measuring the difference between the actual distance and the
FTM distance [4]-[9]. While effective at the research stage,
this approach poses a significant challenge when
implementing services because actual distance measurements
are required. Furthermore, since this bias depends on the
combination of AP and STA as well as the environment,
methods that rely on prior calibration require re-calibration
whenever the devices or the environment change.

To address these issues, this paper proposes a particle-
filter-based positioning method that estimates and corrects the
bias in FTM distance in real time and performs positioning
using the corrected values. This approach eliminates the need
to measure actual distances and automatically adapts to
environmental changes, overcoming the need for re-
calibration of previous methods. To the best of the authors’
knowledge, this is the first study to perform real-time
calibration using only FTM distance without actual distance
measurements. The remainder of this paper is organized as
follows. Section 2 describes the principles of Wi-Fi FTM, the
causes of the ranging errors and conventional calibration
methods. Section 3 explains the particle filter used to achieve
simultaneous positioning and calibration. Section 4 details the
experimental setup, and Section 5 presents the results. Finally,
Section 6 concludes the paper.

II. WI-FIFTM

A. FTM Algorithm

FTM measures the distance between an AP and a STA,
and by deriving the signal propagation time (time-of-flight)
from timestamped exchanges, which is then multiplying the
signal propagation time by the propagation speed of
electromagnetic waves. The FTM procedure begins when the
AP receives an FTM Request frame transmitted by the STA
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and responds with an ACK frame. Subsequently, the AP sends
an FTM frame to the STA and records the transmission time
t,. Upon receiving the FTM frame, the STA records the
reception time t,, sends an ACK frame back to the AP, and
records the ACK transmission time t3. When the AP receives
the ACK frame, it records the reception time t,. The round-
trip time (R77) of the frames between the AP and STA is then
calculated using these recorded timestamps.

RTT = (t, — t;) — (t3 — t3) ¢Y)

In FTM, this frame exchange is performed Nz, times during
a single ranging session to obtain Ngry, samples. From these,
the measured distance dpry, and standard deviation opr), are
acquired as follows.

NFTM

c 1
dpry = 57— Z {(t4,i - t1,i) - (t3,i - tz,i)} )]
2 Nery —

_ Z;V:FlTM[{(tzt,i - t1,i) - (ts,i - tz,i)} - dFTM]2 3

OptM =

)
Nery
where c is the propagation speed of electromagnetic waves in
free space.

B. Types of Errors

In general, the distances measured by FTM contain errors.
The relationship between the measured distance dgry and the
true distance d;,,, between the AP and STA can be modeled
as follows.

dprm = dirye + Edelay T EnLos T Emaitipath T Enoise “

E£gelay 18 the error caused by hardware processing delay
[71[8]. When the AP or STA transmits or receives an FTM
frame, a small processing delay occurs before the timestamp
is recorded. This processing delay increases R77, resulting in
a ranging error. This is a constant error that depends on the
AP-STA pair. gy s 1s the error that occurs when obstacles
such as walls or doors exist between the AP and STA [8]-[10].
Radio waves propagate more slowly through obstacles than in
free air, which increases RTT and causes a ranging error. This
is a constant error that depends on the positional relationship
between the AP and the STA. &,4¢ipqrn 18 the error caused by
multipath propagation. As radio waves reflect, diffract, and
transmit through obstacles, the receiver receives frames from
multiple paths. Since this error occurs even when measuring
with the same AP and STA at the same positions, it is
considered a random error. &5 is the random noise arising
from the measurement process.

Based on the above discussion, the errors contained in
FTM distance can be broadly classified into two categories.
The first is a constant error that does not fluctuate, namely a
bias, which depends on the combination and relative positions
of the devices, such as the error €444, caused by hardware
processing delay and the error gy o5 caused by walls and
doors between the AP and STA. The second is a random error
, which fluctuates randomly, such as the error &pqitipacn due
to multipath propagation and the error &4, due to
measurement noise. Here, a bias &p;,5 and a random error
Erandom are defined as follows:

Epias = edelay + ENLOS, (5)

Erandom = emaltipath + Enoise (6)

Then, (4) can be rewritten as:

drry = dirue + Epias + Erandom- @)

This indicates that the error in FTM distance can be
decomposed into bias and random error.

C. Conventinal Calibration Method

In conventional research, calibration for the bias included
in FTM measurement distances is performed by constructing
a polynomial regression model between the measured distance
and the true distance. Recently, there are studies that attempt
more accurate fitting by setting the maximum order of the
explanatory variables to a higher order [5][7], but for this work,
we treat the most common model, the linear regression model,
as the conventional method. In the linear regression model, the
maximum order is set to one. For each AP, the parameters
(a,B) are estimated by fitting the calibration data —
consisting of the measured and true distances — to the
following model:

dpry = @ X dipye + B (®

During positioning, calibration is performed for each AP
using the obtained parameters (, ) as follows:

R dery — B

dery = %- 9

III. PARTICLE FILTERING

In this study, we employ a particle filter. A particle filter
is a method for probabilistically estimating time-varying states
[11]. The probability distribution of the state is approximated

by a set of N particles {X O (i)}N each with a state X
e WO t
and weight w,. In this study, the state X, is defined as follows

to estimate the 2D coordinates of the STA and the bias
contained in the FTM distance for each AP.

X = [x'yr""gbias,jl"']T' (10)
Here, x and y represent the 2D coordinates of the STA, and
Epias,j Tepresents the bias in FTM distance for AP, (j =
1, ..., k). While previous studies have used particle filters to
estimate the STA coordinates [4], to the best of the authors’

knowledge, this is the first study to also estimate the bias in
FTM distance.

The particle filter consists of the following five steps:

A. Initial Particle Generation

On a 2D plane that includes the target positioning area, N
particles are generated with a uniform distribution. In this
study, N was set to 40,000. If N is too small, the probability
distribution of the state cannot be approximated accurately,
resulting in degraded accuracy. Conversely, if N is too large,
the computational cost increases; therefore, it is essential to
choose an appropriate value for N. Additionally, the bias in
the FTM distance is initially set to 0 m. That is, each particle
has the following state:

Xi—o = [U(xmin: xmax)' U(ymin: ymax)v =, 0, ]T (1 1)

Here, Xmin> Xmax> Ymin> and Vpya, can be set arbitrarily as
long as they cover the target positioning area; in this study,
they were set to =50 m, 50 m, =50 m, 50 m, respectively.
Thereafter, at each time step t, when the measured distance



dprm,je anq standard deviation opry,j ;- are obtained from AP;
, the following four steps are executed.

B. Prediction

The state of each particle at time step t is predicted based
on the resampled particle states from time step t — 1 (Details
of resampling are provided below). The STA coordinates are
predicted based on a standard random walk model [4]. Since
abrupt changes in the STA’s position are unlikely, it is
assumed that the STA moves at a velocity close to its past
speed, with a random direction, to estimate the next position.
Similarly, abrupt changes in the bias are also unlikely, so it is
predicted by adding small noise. Based on the above, the x-

coordinate x,_Ei), y-coordinate yt(i) of the STA, and the bias
Ebias, j‘t(i) in the FTM distance for AP; of particle i at time step
t are predicted as follows.

® @'

xt(i) x§?1 +v-At-cosf
Ve |y +v-At-sing

X, = (12)

lsbias,j,t(i)J Ebias,j,t—l(i), + € ‘

Here, At represents the absolute time difference between time
step t and t — 1. Additionally, the prime symbol (') indicates
the state after resampling. Furthermore, v, 8, and € are
random numbers that follow the distributions defined below:

U~N(:uv,tr av,tz)' (13)
0~U(0,2m), (14)
E~N(0, O-biasz)! (15)

where, u,, . and o,,; are the mean and standard deviation of the
moving speed from the positioning results from time step 1 to
t — 1. M (u, o) represents a normal distribution with mean u
and standard deviation u and U(a, b) represents a uniform
distribution on the interval [a,b]. In this study, based on
experimental considerations, 0;;,s Was set to 0.03 m.

C. Weighting and Normalization

The weight of each particle a)t(i) is updated. Using the
measured distance dpry j, and standard deviation oprj¢,

the likelihood of each particle L(ti) is calculated as follows:

AN 2
(dermjc = d](?)

(16)
20pTM, gt

exp| —

k
1O = L
t 2T O R i 2
=1 FTM,jt

Here, &J(Lt) denotes the expected FTM distance calculated from
the coordinates and bias predicted by Section III-B, and it is

calculated as follows.
(O]
X ]
[yt(‘)

where p; represents the position of the AP;.

4o =

e = + Ebias,j,t(i) a7

Furthermore, the weight wt(i) is obtained by normalizing
these likelihoods so that the sum of the likelihoods of all
particles equals 1.

(b) Environment II (APs in room and corridor)
Fig. 1 Measurement environments.
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D. State Estimation

As mentioned previously, the particle filter approximates
the state’s probability distribution using a set of particles; a
statistical aggregation method is necessary to obtain a single
state estimate from the particle set. Therefore, in this research,
the state at time step t is estimated using the weighted mean
of all particles X.

N

X =) o x{ 19)
i=1

This allows the estimation of the STA's 2D coordinates and

the bias in the FTM distance for each AP at time step t.

E. Resampling

Repeatedly weighting particles leads to "degeneracy", a
problem where the weights become concentrated on a few
specific particles, and most other particles no longer
contribute to the probability distribution. To solve this issue,
resampling is performed. This process prevents the
concentration of weights on specific particles by duplicating
particles with high weights and eliminating unnecessary
particles with low weights. Several resampling methods
exist; in this study, resampling is performed using the method
known as Multinomial Resampling [12].

In Multinomial Resampling, a cumulative distribution
function (CDF) of the weights up to the m-th particle is

defined:
m
Sur
i=1

Next, N uniform random numbers are generated in the
interval [0, 1]:

En

(20)
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Fig. 5 FTM ranging results in scenario II-B.

U;~u,1), i=1,..,N (21)
An index K; is obtained using the following formula:
K; = min{m|E,, = U;}. (22)

Finally, resampling is completed by setting the state of
particle with index K; at time step t, X t(Ki), as the resampled

T
particle state at time step t, X t(l) .

T
xt(l) X,EK 0
@' (K)
x®=| Y |=xm0=| (23)
@' Sbias,j,t(Ki)

Ebias,jt

IV. MEASUREMENT

Fig. 1 (a) shows the setup where the AP is placed only
inside the room (Environment I), while Fig. 1 (b) shows the

setup where the AP is placed both inside the room and in the
corridor (Environment II). There are two types of paths, as
indicated by the blue lines in Figs. 1 (a), (b): one is a path that
moves randomly within an area of 5.0 m x 5.7 m inside the
room (path A), and the other is a path that makes five round
trips along an L-shaped corridor measuring 12.2 m x 2.7 m
(path B). As there are two types of environments and two
types of movement paths, a total of four scenarios (I-A, I-B,
II-A, 1I-B) were conducted for the measurements. Google
Wifi was used as the AP, and a Google Pixel 3a was used as
the STA. The STA was mounted on an autonomous mobile
robot. The robot moved at a maximum speed of 1.0 m/s, and
the true positions of the STA were recorded every 100 ms.
Both the AP and the STA were placed at a height of 1.2 m
from the floor. FTM measurements were performed using the
Android application WifiRttScan [13]. Ngry was set to 8.
FTM measurements were performed for each AP
approximately every 30 ms. According to the principle of



TABLE L. FITTING PARAMATER
. a B
Scenario
AP1 AP2 AP3 AP4 AP1 AP2 AP3 AP4
(a) Scenario I-A 1.09 1.06 1.05 1.05 -2.21 -2.13 -1.83 -1.71
(b) Scenario 1-B 1.28 0.32 1.15 1.22 -1.55 9.15 -1.38 0.29
(c) Scenario II-A 1.22 1.05 1.06 1.00 0.57 -2.08 -1.89 1.62
(d) Scenario 11-B 1.35 0.58 1.11 1.34 -3.93 6.08 -1.07 -4.67
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Fig.6 Estimated bias.

trilateration, positioning is impossible unless distances are
obtained simultaneously from three or more APs. Therefore,
in this study, a 200 ms time window was set, and all
measurements obtained within this window were treated as
occurring at the same timestamp. The end of the window was
used as the measurement timestamp. If multiple distance
measurements were obtained from the same AP within the
window, their average was used. When measurements from
three or more APs were available within the window, the
particle filter executed steps (B)—(E) in Section III to estimate
the 2D coordinates of the STA and the bias in the FTM
distance for each AP.

V. RESULTS

A. FTM Ranging Results

As mentioned earlier, the conventional method requires
prior measurements to calibrate the FTM distances. Figs. 2-5
show the FTM ranging results of each AP obtained during the
prior measurements in each scenario. The presence of
negative measured distances is likely due to the fact that
Android devices have a default offset for RTT measurements
for each model [14]. The red lines represent the fitted lines
obtained by linear regression given in (8), and the obtained
parameters («, 8) are shown in Table 1. In scenario I-A, all
AP-STA links are line-of-sight (LOS), so multipath effect is
minimal, and the measured distance increases linearly with the
true distance. In scenario II-A, the measured distances for AP1
and AP4, which is non-line-of-sight (NLOS), can be seen as a

parallel shift of those in scenario I-A along the distance axis
due to a constant bias £y is caused by the wall. On the other
hand, in scenario I-B and II-B, the measured distance does not
increase linearly with the true distance because the effects of
wall penetration, diffraction, and multipath vary depending on
the STA position.

B. Constant Bias Estimation Results

Fig. 6 shows the estimated bias in the FTM distance for
each AP obtained by the particle filter in the positioning
experiment in each scenario. In all scenarios, it can be
observed that the estimated bias takes some time to converge
from the initial value of 0 m. From Figs. 6 (a)-(d), the
convergence times are approximately 50 s, 70 s, 40 s, and 100
s, respectively.

For APs that are always in LOS conditions, such as all APs
in scenario I-A and AP2 and AP3 in scenario II-A, the
estimated bias converges to values close to the B obtained in
Section V-A. This indicates that the bias contained in the FTM
distances of LOS APs is being accurately estimated. In
contrast, AP1 and AP4 in scenario II-A are in NLOS
conditions, and their estimated biases converge to higher
values compared with the LOS APs. This is reasonable, since
the measured distances of NLOS APs are expected to include
an additional bias caused by wall attenuation; thus, the larger
estimated bias can be interpreted as correctly reflecting this
effect. Similarly, in scenario II-B, the estimated biases for
AP2 and AP3, which are always in NLOS conditions,
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converge to higher values than those for AP1 and AP4, which
are only partially NLOS. From these results, it can be
concluded that when the AP—STA link is always LOS, the bias
can be accurately estimated, whereas under NLOS conditions,
the estimated bias includes the bias caused by NLOS effects.

C. Positioning Error

We compare the positioning accuracy of the proposed
method with the conventional method, which corrects FTM
distances using (9) and Table 1 and estimates only the STA
coordinates with a particle filter. As shown in Section V-B,
the proposed method requires some time for bias convergence;
therefore, Fig. 7 shows the cumulative distribution function
(CDF) of the positioning error after convergence for each
environment. Fig. 7 (a) shows results for environment I, and
Fig. 7 (b) for environment II. In Fig. 7 (a), for scenario I-A,
80 % of the positioning error was 0.80 m for the conventional
method and 0.93 m for the proposed method, showing only a
negligible difference. For scenario I-B, the errors were 4.02 m
and 3.50 m, respectively, where the proposed method
performed better. In Fig. 7 (b), for scenarios II-A and II-B, the
proposed method also achieved higher accuracy, with 80 % of
the positioning errors of 1.25 m and 2.61 m compared to 2.05
m and 4.21 m for the conventional method. The proposed
method achieves higher positioning accuracy because its
estimated bias adapts to environmental changes. The
conventional method uses a fixed, pre-determined correction
value and cannot respond to variations such as changing walls
between the AP and STA. In contrast, the proposed method
sequentially estimates the bias, enabling environment-
dependent corrections.

VI. CONCLUSION

In this study, we proposed a particle-filter-based
positioning method that estimates and corrects the bias in the
FTM distance in real-time, and performs positioning using the
corrected values. The bias estimation results showed that the
estimated bias converges to the correct value over time under
LOS conditions. Under NLOS conditions, it reflects the
NLOS-induced bias. Regarding the positioning results, when
all APs were placed inside the room, 80% of the positioning
error was 0.80 m for the conventional method and 0.93 m for
the proposed method during random movement within the
room, and 4.02 m and 3.50 m, respectively, during movement
along the corridor. On the other hand, when the APs were
placed both inside the room and in the corridor, 80% of the
positioning error was 2.05 m for the conventional method and
1.25 m for the proposed method during random movement
within the room, and 4.21 m and 2.61 m, respectively, during
movement along the corridor. These results demonstrate that

the proposed method achieves positioning accuracy
comparable to or higher than that of the conventional method,
while eliminating the need for prior measurements based on
ground truth, as required in the conventional approach.
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