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Abstract— Wi-Fi Fine Timing Measurement (FTM) 
measurements contain a constant error that depends on the 
device and the environment. Previous studies, which we refer to 
as conventional methods, corrected these errors by calculating 
the difference between the actual distance and the measured 
distance obtained from prior measurements; however, this 
method is labor-intensive and cannot adapt to changes in the 
device and the environment. In this study, we propose a particle-
filter-based positioning method that estimates and corrects the 
bias in FTM distance in real time and performs positioning 
using the corrected values. This method eliminates the need for 
prior measurements while achieving positioning accuracy 
comparable to or better than conventional methods. To the best 
of the authors' knowledge, this is the first study to perform real-
time calibration using only FTM distance without relying on 
actual distances. According to the experimental results, under 
line-of-sight (LOS) conditions between the access point (AP) and 
the station (STA), the estimated bias converges to the true value 
over time. Under non-line-of-sight (NLOS) conditions, where a 
wall exists between the AP and STA, it was confirmed that the 
estimated bias converges to a value with an additional bias 
caused by signal penetration through the wall. In terms of 
positioning accuracy, the proposed method achieved 
performance comparable to or superior to that of the 
conventional method. 
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Calibration 

I. INTRODUCTION 
In recent years, the development of smartphones and IoT 

technologies has increased the demand for indoor positioning 
technologies. In addition to indoor navigation in commercial 
facilities, real-time tracking and management of equipment, 
materials, and personnel are required in logistics warehouses 
and factories. While GPS can provide high-accuracy 
positioning outdoors, indoor environments often suffer from 
signal attenuation and reflection caused by building structures, 
resulting in insufficient accuracy. Therefore, alternative 
methods are needed. In particular, Wi-Fi-based indoor 
positioning has gained considerable attention due to its ability 
to utilize existing Wi-Fi infrastructure. Wi-Fi-based indoor 
positioning methods can be broadly categorized into two types. 

The first type is the fingerprinting method, which utilizes 
machine learning [1]. In this approach, the received signal 
strength indicator (RSSI) is measured at many known 
locations within the target area to construct a database. During 
positioning, the location is estimated by finding the point in 
the database that best matches the measured RSSI. This 
method does not require knowledge of access point (AP) 
locations and has been reported to achieve relatively high 
positioning accuracy [2]. However, it requires significant 
effort and time to construct the database, and its accuracy 
degrades substantially when the environment changes. 

The second type is model-based positioning methods that 
do not rely on machine learning. Based on ranging between 
APs and stations (STAs), positions can be estimated using 
trilateration with three or more APs. Wi-Fi Fine Timing 
Measurement (FTM), which enables highly accurate distance 
measurement, is widely used in model-based positioning [3]. 
In FTM, the round-trip time (RTT) of frames between the AP 
and the STA is precisely measured, and the distance is 
calculated by multiplying the RTT by the radio wave 
propagation speed. In indoor environments representing 
realistic usage scenarios, particle-filter-based positioning was 
reported to have an average error of 3.52 m [4]. In addition, 
positioning methods that integrate other sensor information, 
such as combining FTM with smartphone-based pedestrian 
dead reckoning (PDR), have also been studied [5][6]. 

However, due to hardware processing delays and obstacles, 
FTM measurements contain a constant bias. Consequently, 
most prior studies using FTM for indoor positioning, 
including those mentioned above, perform calibration by 
measuring the difference between the actual distance and the 
FTM distance [4]-[9]. While effective at the research stage, 
this approach poses a significant challenge when 
implementing services because actual distance measurements 
are required. Furthermore, since this bias depends on the 
combination of AP and STA as well as the environment, 
methods that rely on prior calibration require re-calibration 
whenever the devices or the environment change. 

To address these issues, this paper proposes a particle-
filter-based positioning method that estimates and corrects the 
bias in FTM distance in real time and performs positioning 
using the corrected values. This approach eliminates the need 
to measure actual distances and automatically adapts to 
environmental changes, overcoming the need for re-
calibration of previous methods. To the best of the authors’ 
knowledge, this is the first study to perform real-time 
calibration using only FTM distance without actual distance 
measurements. The remainder of this paper is organized as 
follows. Section 2 describes the principles of Wi-Fi FTM, the 
causes of the ranging errors and conventional calibration 
methods. Section 3 explains the particle filter used to achieve 
simultaneous positioning and calibration. Section 4 details the 
experimental setup, and Section 5 presents the results. Finally, 
Section 6 concludes the paper. 

II. WI-FI FTM 

A. FTM Algorithm 
FTM measures the distance between an AP and a STA, 

and by deriving the signal propagation time (time-of-flight) 
from timestamped exchanges, which is then multiplying the 
signal propagation time by the propagation speed of 
electromagnetic waves. The FTM procedure begins when the 
AP receives an FTM Request frame transmitted by the STA 

1979-8-3315-7896-1/26/$31.00 ©2026 IEEE ICOIN 2026



and responds with an ACK frame. Subsequently, the AP sends 
an FTM frame to the STA and records the transmission time 
𝑡𝑡1. Upon receiving the FTM frame, the STA records the 
reception time 𝑡𝑡2, sends an ACK frame back to the AP, and 
records the ACK transmission time 𝑡𝑡3. When the AP receives 
the ACK frame, it records the reception time 𝑡𝑡4. The round-
trip time (RTT) of the frames between the AP and STA is then 
calculated using these recorded timestamps. 

𝑅𝑅𝑅𝑅𝑅𝑅 = (𝑡𝑡4 − 𝑡𝑡1) − (𝑡𝑡3 − 𝑡𝑡2) (1) 

In FTM, this frame exchange is performed 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 times during 
a single ranging session to obtain 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 samples. From these, 
the measured distance 𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹 and standard deviation 𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹 are 
acquired as follows. 

𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑐𝑐
2

1
𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹

[ ∑ {(𝑡𝑡4,𝑖𝑖 − 𝑡𝑡1,𝑖𝑖) − (𝑡𝑡3,𝑖𝑖 − 𝑡𝑡2,𝑖𝑖)}
𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹

𝑖𝑖=1
] , (2) 

𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹 = √∑ [{(𝑡𝑡4,𝑖𝑖 − 𝑡𝑡1,𝑖𝑖) − (𝑡𝑡3,𝑖𝑖 − 𝑡𝑡2,𝑖𝑖)} − 𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹]
2𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹

𝑖𝑖=1
𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹

. (3) 

where c is the propagation speed of electromagnetic waves in 
free space. 

B. Types of Errors 
In general, the distances measured by FTM contain errors. 

The relationship between the measured distance 𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹 and the 
true distance 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 between the AP and STA can be modeled 
as follows. 
𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜀𝜀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠𝑠𝑠 (4) 

𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  is the error caused by hardware processing delay 
[7][8]. When the AP or STA transmits or receives an FTM 
frame, a small processing delay occurs before the timestamp 
is recorded. This processing delay increases RTT, resulting in 
a ranging error. This is a constant error that depends on the 
AP–STA pair. 𝜀𝜀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is the error that occurs when obstacles 
such as walls or doors exist between the AP and STA [8]-[10]. 
Radio waves propagate more slowly through obstacles than in 
free air, which increases RTT and causes a ranging error. This 
is a constant error that depends on the positional relationship 
between the AP and the STA. 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ is the error caused by 
multipath propagation. As radio waves reflect, diffract, and 
transmit through obstacles, the receiver receives frames from 
multiple paths. Since this error occurs even when measuring 
with the same AP and STA at the same positions, it is 
considered a random error. 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the random noise arising 
from the measurement process. 

Based on the above discussion, the errors contained in 
FTM distance can be broadly classified into two categories. 
The first is a constant error that does not fluctuate, namely a 
bias, which depends on the combination and relative positions 
of the devices, such as the error 𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 caused by hardware 
processing delay and the error 𝜀𝜀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 caused by walls and 
doors between the AP and STA. The second is a random error
, which fluctuates randomly, such as the error 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ due 
to multipath propagation and the error 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 due to 
measurement noise. Here, a bias 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 and a random error 
𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are defined as follows: 

𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≡ 𝜀𝜀𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝜀𝜀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁, (5) 

𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≡ 𝜀𝜀𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ + 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (6) 

Then, (4) can be rewritten as: 

𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜀𝜀𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. (7) 

This indicates that the error in FTM distance can be 
decomposed into bias and random error. 

C. Conventinal Calibration Method 
In conventional research, calibration for the bias included 

in FTM measurement distances is performed by constructing 
a polynomial regression model between the measured distance 
and the true distance. Recently, there are studies that attempt 
more accurate fitting by setting the maximum order of the 
explanatory variables to a higher order [5][7], but for this work, 
we treat the most common model, the linear regression model, 
as the conventional method. In the linear regression model, the 
maximum order is set to one. For each AP, the parameters 
( 𝛼𝛼, 𝛽𝛽 ) are estimated by fitting the calibration data — 
consisting of the measured and true distances — to the 
following model: 

𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹 = 𝛼𝛼 × 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽. (8) 

During positioning, calibration is performed for each AP 
using the obtained parameters (𝛼𝛼, 𝛽𝛽) as follows: 

𝑑̂𝑑𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹 − 𝛽𝛽
𝛼𝛼 . (9) 

III. PARTICLE FILTERING 
In this study, we employ a particle filter. A particle filter 

is a method for probabilistically estimating time-varying states 
[11]. The probability distribution of the state is approximated 
by a set of 𝑁𝑁 particles {𝑿𝑿𝑡𝑡

(𝑖𝑖), 𝜔𝜔𝑡𝑡
(𝑖𝑖)}𝑖𝑖=1

𝑁𝑁
, each with a state 𝑿𝑿𝑡𝑡 

and weight 𝜔𝜔𝑡𝑡. In this study, the state 𝑿𝑿𝑡𝑡 is defined as follows 
to estimate the 2D coordinates of the STA and the bias 
contained in the FTM distance for each AP. 

𝑿𝑿𝑡𝑡 ≡ [𝑥𝑥, 𝑦𝑦,⋯ , 𝜀𝜀𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗, ⋯ ]𝑇𝑇. (10) 
 

Here, 𝑥𝑥 and 𝑦𝑦 represent the 2D coordinates of the STA, and 
𝜀𝜀𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗 represents the bias in FTM distance for AP𝑗𝑗, (𝑗𝑗 =
1, … , 𝑘𝑘). While previous studies have used particle filters to 
estimate the STA coordinates [4], to the best of the authors’ 
knowledge, this is the first study to also estimate the bias in 
FTM distance. 

The particle filter consists of the following five steps: 

A. Initial Particle Generation 
On a 2D plane that includes the target positioning area, 𝑁𝑁 

particles are generated with a uniform distribution. In this 
study, 𝑁𝑁 was set to 40,000. If 𝑁𝑁 is too small, the probability 
distribution of the state cannot be approximated accurately, 
resulting in degraded accuracy. Conversely, if 𝑁𝑁 is too large, 
the computational cost increases; therefore, it is essential to 
choose an appropriate value for N. Additionally, the bias in 
the FTM distance is initially set to 0 m. That is, each particle 
has the following state: 

𝑿𝑿𝑡𝑡=0 = [𝑈𝑈(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚), 𝑈𝑈(𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚),⋯ , 0,⋯ ]𝑇𝑇 (11) 

Here, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚, 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 can be set arbitrarily as 
long as they cover the target positioning area; in this study, 
they were set to −50 m, 50 m, −50 m, 50 m, respectively. 
Thereafter, at each time step 𝑡𝑡, when the measured distance 
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𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹,𝑗𝑗,𝑡𝑡 and standard deviation 𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹,𝑗𝑗,𝑡𝑡 are obtained from AP𝑗𝑗
, the following four steps are executed. 

B. Prediction 
The state of each particle at time step 𝑡𝑡 is predicted based 

on the resampled particle states from time step 𝑡𝑡 − 1 (Details 
of resampling are provided below). The STA coordinates are 
predicted based on a standard random walk model [4]. Since 
abrupt changes in the STA’s position are unlikely, it is 
assumed that the STA moves at a velocity close to its past 
speed, with a random direction, to estimate the next position. 
Similarly, abrupt changes in the bias are also unlikely, so it is 
predicted by adding small noise. Based on the above, the x-
coordinate 𝑥𝑥𝑡𝑡

(𝑖𝑖) , y-coordinate 𝑦𝑦𝑡𝑡
(𝑖𝑖) of the STA, and the bias 

𝜀𝜀𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗,𝑡𝑡
(𝑖𝑖) in the FTM distance for AP𝑗𝑗 of particle 𝑖𝑖 at time step 

𝑡𝑡 are predicted as follows. 

𝑿𝑿𝑡𝑡
(𝑖𝑖) =

[
 
 
 
 
 𝑥𝑥𝑡𝑡

(𝑖𝑖)

𝑦𝑦𝑡𝑡
(𝑖𝑖)

⋮
𝜀𝜀𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗,𝑡𝑡

(𝑖𝑖)

⋮ ]
 
 
 
 
 

=

[
 
 
 
 
 𝑥𝑥𝑡𝑡−1

(𝑖𝑖) ′
+ 𝑣𝑣 ∙ ∆𝑡𝑡 ∙ cos 𝜃𝜃

𝑦𝑦𝑡𝑡−1
(𝑖𝑖) ′

+ 𝑣𝑣 ∙ ∆𝑡𝑡 ∙ sin 𝜃𝜃
⋮

𝜀𝜀𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗,𝑡𝑡−1
(𝑖𝑖)′ + 𝜖𝜖

⋮ ]
 
 
 
 
 

. (12) 

Here, ∆𝑡𝑡 represents the absolute time difference between time 
step 𝑡𝑡 and 𝑡𝑡 − 1. Additionally, the prime symbol (′) indicates 
the state after resampling. Furthermore, 𝑣𝑣 , 𝜃𝜃 , and 𝜖𝜖  are 
random numbers that follow the distributions defined below: 

𝑣𝑣~𝒩𝒩(𝜇𝜇𝑣𝑣,𝑡𝑡, 𝜎𝜎𝑣𝑣,𝑡𝑡
2), (13) 

𝜃𝜃~𝒰𝒰(0,2𝜋𝜋), (14) 

𝜖𝜖~𝒩𝒩(0, 𝜎𝜎𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
2), (15) 

where, 𝜇𝜇𝑣𝑣,𝑡𝑡 and 𝜎𝜎𝑣𝑣,𝑡𝑡 are the mean and standard deviation of the 
moving speed from the positioning results from time step 1 to 
𝑡𝑡 − 1. 𝒩𝒩(𝜇𝜇, 𝜎𝜎2) represents a normal distribution with mean 𝜇𝜇 
and standard deviation 𝜇𝜇  and 𝒰𝒰(𝑎𝑎, 𝑏𝑏)  represents a uniform 
distribution on the interval [𝑎𝑎, 𝑏𝑏] . In this study, based on 
experimental considerations, 𝜎𝜎𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖 was set to 0.03 m. 

C. Weighting and Normalization 

The weight of each particle 𝜔𝜔𝑡𝑡
(𝑖𝑖)  is updated. Using the 

measured distance 𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹,𝑗𝑗,𝑡𝑡  and standard deviation 𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹,𝑗𝑗,𝑡𝑡 , 
the likelihood of each particle 𝐿𝐿𝑡𝑡

(𝑖𝑖) is calculated as follows: 

𝐿𝐿𝑡𝑡
(𝑖𝑖) = ∏ 1

√2𝜋𝜋𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹,𝑗𝑗,𝑡𝑡2 𝑒𝑒𝑒𝑒𝑒𝑒(−
(𝑑𝑑𝐹𝐹𝐹𝐹𝐹𝐹,𝑗𝑗,𝑡𝑡 − 𝑑̂𝑑𝑗𝑗,𝑡𝑡

(𝑖𝑖))
2

2𝜎𝜎𝐹𝐹𝐹𝐹𝐹𝐹,𝑗𝑗,𝑡𝑡2 )
𝑘𝑘

𝑗𝑗=1
(16) 

Here, 𝑑̂𝑑𝑗𝑗,𝑡𝑡
(𝑖𝑖) denotes the expected FTM distance calculated from 

the coordinates and bias predicted by Section III-B, and it is 
calculated as follows. 

𝑑̂𝑑𝑗𝑗,𝑡𝑡
(𝑖𝑖) = |[𝑥𝑥𝑡𝑡

(𝑖𝑖)

𝑦𝑦𝑡𝑡
(𝑖𝑖)] − 𝝆𝝆𝑗𝑗| + 𝜀𝜀𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗,𝑡𝑡

(𝑖𝑖) (17) 

where 𝝆𝝆𝑗𝑗 represents the position of the AP𝑗𝑗. 

Furthermore, the weight 𝜔𝜔𝑡𝑡
(𝑖𝑖) is obtained by normalizing 

these likelihoods so that the sum of the likelihoods of all 
particles equals 1. 

𝜔𝜔𝑡𝑡
(𝑖𝑖) = 𝐿𝐿𝑡𝑡

(𝑖𝑖)

∑ 𝐿𝐿𝑡𝑡
(𝑖𝑖)𝑁𝑁

𝑖𝑖=1
(18) 

D. State Estimation 
As mentioned previously, the particle filter approximates 

the state’s probability distribution using a set of particles; a 
statistical aggregation method is necessary to obtain a single 
state estimate from the particle set. Therefore, in this research, 
the state at time step 𝑡𝑡 is estimated using the weighted mean 
of all particles 𝑿𝑿𝑡𝑡̅̅ ̅. 

𝑿𝑿𝑡𝑡̅̅ ̅ = ∑𝜔𝜔𝑡𝑡
(𝑖𝑖)

𝑁𝑁

𝑖𝑖=1
𝑿𝑿𝑡𝑡

(𝑖𝑖) (19) 

This allows the estimation of the STA's 2D coordinates and 
the bias in the FTM distance for each AP at time step 𝑡𝑡. 

E. Resampling 
Repeatedly weighting particles leads to "degeneracy", a 

problem where the weights become concentrated on a few 
specific particles, and most other particles no longer 
contribute to the probability distribution. To solve this issue, 
resampling is performed. This process prevents the 
concentration of weights on specific particles by duplicating 
particles with high weights and eliminating unnecessary 
particles with low weights. Several resampling methods 
exist; in this study, resampling is performed using the method 
known as Multinomial Resampling [12]. 
In Multinomial Resampling, a cumulative distribution 
function (CDF) of the weights up to the m-th particle is 
defined: 

𝐹𝐹𝑚𝑚 ≡ ∑𝜔𝜔𝑡𝑡
(𝑖𝑖)

𝑚𝑚

𝑖𝑖=1
. (20) 

Next, N uniform random numbers are generated in the 
interval [0, 1]: 

 
(a) Environment I (APs in room) 

 
(b) Environment II (APs in room and corridor) 

Fig. 1  Measurement environments. 
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𝒰𝒰𝑖𝑖~𝒰𝒰(0, 1), 𝑖𝑖 = 1, … , 𝑁𝑁 (21) 
An index 𝐾𝐾𝑖𝑖 is obtained using the following formula: 

𝐾𝐾𝑖𝑖 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑚𝑚|𝐹𝐹𝑚𝑚 ≥ 𝒰𝒰𝑖𝑖}.        (22) 

Finally, resampling is completed by setting the state of 
particle with index 𝐾𝐾𝑖𝑖 at time step 𝑡𝑡, 𝑿𝑿𝑡𝑡

(𝐾𝐾𝑖𝑖), as the resampled 
particle state at time step 𝑡𝑡, 𝑿𝑿𝑡𝑡

(𝑖𝑖)′. 

𝑿𝑿𝑡𝑡
(𝑖𝑖)′ =

[
 
 
 
 
 𝑥𝑥𝑡𝑡

(𝑖𝑖)′

𝑦𝑦𝑡𝑡
(𝑖𝑖)′

⋮
𝜀𝜀𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗,𝑡𝑡

(𝑖𝑖)′

⋮ ]
 
 
 
 
 

= 𝑿𝑿𝑡𝑡
(𝐾𝐾𝑖𝑖) =

[
 
 
 
 
 𝑥𝑥𝑡𝑡

(𝐾𝐾𝑖𝑖)

𝑦𝑦𝑡𝑡
(𝐾𝐾𝑖𝑖)

⋮
𝜀𝜀𝑏𝑏𝑖𝑖𝑖𝑖𝑖𝑖,𝑗𝑗,𝑡𝑡

(𝐾𝐾𝑖𝑖)

⋮ ]
 
 
 
 
 

(23) 

IV. MEASUREMENT 
Fig. 1 (a) shows the setup where the AP is placed only 

inside the room (Environment I), while Fig. 1 (b) shows the 

setup where the AP is placed both inside the room and in the 
corridor (Environment II). There are two types of paths, as 
indicated by the blue lines in Figs. 1 (a), (b): one is a path that 
moves randomly within an area of 5.0 m × 5.7 m inside the 
room (path A), and the other is a path that makes five round 
trips along an L-shaped corridor measuring 12.2 m × 2.7 m 
(path B). As there are two types of environments and two 
types of movement paths, a total of four scenarios (I-A, I-B, 
II-A, II-B) were conducted for the measurements. Google 
Wifi was used as the AP, and a Google Pixel 3a was used as 
the STA. The STA was mounted on an autonomous mobile 
robot. The robot moved at a maximum speed of 1.0 m/s, and 
the true positions of the STA were recorded every 100 ms. 
Both the AP and the STA were placed at a height of 1.2 m 
from the floor. FTM measurements were performed using the 
Android application WifiRttScan [13]. 𝑁𝑁𝐹𝐹𝐹𝐹𝐹𝐹 was set to 8. 
FTM measurements were performed for each AP 
approximately every 30 ms. According to the principle of 

 
(a) AP1 (LOS) 

 
(b) AP2 (LOS) 

 
(c) AP3 (LOS) 

 
(d) AP4 (LOS) 

Fig. 2  FTM ranging results in scenario I-A. 

 
(a) AP1 (NLOS) 

 
(b) AP2 (NLOS) 

 
(c) AP3 (NLOS) 

 
(d) AP4 (NLOS) 

Fig. 3  FTM ranging results in scenario I-B. 

 
(a) AP1 (LOS) 

 
(b) AP2 (NLOS) 

 
(c) AP3 (NLOS) 

 
(d) AP4 (LOS) 

Fig. 5  FTM ranging results in scenario II-B. 

 
(a) AP1 (NLOS) 

 
(b) AP2 (LOS) 

 
(c) AP3 (LOS) 

 
(d) AP4 (NLOS) 

Fig. 4  FTM ranging results in scenario II-A. 
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trilateration, positioning is impossible unless distances are 
obtained simultaneously from three or more APs. Therefore, 
in this study, a 200 ms time window was set, and all 
measurements obtained within this window were treated as 
occurring at the same timestamp. The end of the window was 
used as the measurement timestamp. If multiple distance 
measurements were obtained from the same AP within the 
window, their average was used. When measurements from 
three or more APs were available within the window, the 
particle filter executed steps (B)–(E) in Section III to estimate 
the 2D coordinates of the STA and the bias in the FTM 
distance for each AP. 

V. RESULTS  

A. FTM Ranging Results 
As mentioned earlier, the conventional method requires 

prior measurements to calibrate the FTM distances. Figs. 2-5 
show the FTM ranging results of each AP obtained during the 
prior measurements in each scenario. The presence of 
negative measured distances is likely due to the fact that 
Android devices have a default offset for RTT measurements 
for each model [14]. The red lines represent the fitted lines 
obtained by linear regression given in (8), and the obtained 
parameters (𝛼𝛼,𝛽𝛽) are shown in Table 1. In scenario I-A, all 
AP–STA links are line-of-sight (LOS), so multipath effect is 
minimal, and the measured distance increases linearly with the 
true distance. In scenario II-A, the measured distances for AP1 
and AP4, which is non-line-of-sight (NLOS), can be seen as a 

parallel shift of those in scenario I-A along the distance axis 
due to a constant bias 𝜀𝜀𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 is caused by the wall. On the other 
hand, in scenario I-B and II-B, the measured distance does not 
increase linearly with the true distance because the effects of 
wall penetration, diffraction, and multipath vary depending on 
the STA position. 

B. Constant Bias Estimation Results 
Fig. 6 shows the estimated bias in the FTM distance for 

each AP obtained by the particle filter in the positioning 
experiment in each scenario. In all scenarios, it can be 
observed that the estimated bias takes some time to converge 
from the initial value of 0 m. From Figs. 6 (a)-(d), the 
convergence times are approximately 50 s, 70 s, 40 s, and 100 
s, respectively. 

For APs that are always in LOS conditions, such as all APs 
in scenario I-A and AP2 and AP3 in scenario II-A, the 
estimated bias converges to values close to the β obtained in 
Section V-A. This indicates that the bias contained in the FTM 
distances of LOS APs is being accurately estimated. In 
contrast, AP1 and AP4 in scenario II-A are in NLOS 
conditions, and their estimated biases converge to higher 
values compared with the LOS APs. This is reasonable, since 
the measured distances of NLOS APs are expected to include 
an additional bias caused by wall attenuation; thus, the larger 
estimated bias can be interpreted as correctly reflecting this 
effect. Similarly, in scenario II-B, the estimated biases for 
AP2 and AP3, which are always in NLOS conditions, 

TABLE I.  FITTING PARAMATER 

Scenario 
𝜶𝜶 𝜷𝜷 

AP1 AP2 AP3 AP4 AP1 AP2 AP3 AP4 

(a) Scenario I-A 1.09 1.06 1.05 1.05 -2.21 -2.13 -1.83 -1.71 

(b) Scenario I-B  1.28 0.32 1.15 1.22 -1.55 9.15 -1.38 0.29 

(c) Scenario II-A 1.22 1.05 1.06 1.00 0.57 -2.08 -1.89 1.62 

(d) Scenario II-B 1.35 0.58 1.11 1.34 -3.93 6.08 -1.07 -4.67 

 

 

 
(a) scenario I-A 

 
(b) scenario I-B 

 
(c) scenario II-A 

 
(d) scenario II-B 

Fig.6  Estimated bias. 
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converge to higher values than those for AP1 and AP4, which 
are only partially NLOS. From these results, it can be 
concluded that when the AP–STA link is always LOS, the bias 
can be accurately estimated, whereas under NLOS conditions, 
the estimated bias includes the bias caused by NLOS effects. 

C. Positioning Error 
We compare the positioning accuracy of the proposed 

method with the conventional method, which corrects FTM 
distances using (9) and Table 1 and estimates only the STA 
coordinates with a particle filter. As shown in Section V-B, 
the proposed method requires some time for bias convergence; 
therefore, Fig. 7 shows the cumulative distribution function 
(CDF) of the positioning error after convergence for each 
environment. Fig. 7 (a) shows results for environment I, and 
Fig. 7 (b) for environment II. In Fig. 7 (a), for scenario I-A, 
80 % of the positioning error was 0.80 m for the conventional 
method and 0.93 m for the proposed method, showing only a 
negligible difference. For scenario I-B, the errors were 4.02 m 
and 3.50 m, respectively, where the proposed method 
performed better. In Fig. 7 (b), for scenarios II-A and II-B, the 
proposed method also achieved higher accuracy, with 80 % of 
the positioning errors of 1.25 m and 2.61 m compared to 2.05 
m and 4.21 m for the conventional method. The proposed 
method achieves higher positioning accuracy because its 
estimated bias adapts to environmental changes. The 
conventional method uses a fixed, pre-determined correction 
value and cannot respond to variations such as changing walls 
between the AP and STA. In contrast, the proposed method 
sequentially estimates the bias, enabling environment-
dependent corrections. 

VI. CONCLUSION 
In this study, we proposed a particle-filter-based 

positioning method that estimates and corrects the bias in the 
FTM distance in real-time, and performs positioning using the 
corrected values. The bias estimation results showed that the 
estimated bias converges to the correct value over time under 
LOS conditions. Under NLOS conditions, it reflects the 
NLOS-induced bias. Regarding the positioning results, when 
all APs were placed inside the room, 80% of the positioning 
error was 0.80 m for the conventional method and 0.93 m for 
the proposed method during random movement within the 
room, and 4.02 m and 3.50 m, respectively, during movement 
along the corridor. On the other hand, when the APs were 
placed both inside the room and in the corridor, 80% of the 
positioning error was 2.05 m for the conventional method and 
1.25 m for the proposed method during random movement 
within the room, and 4.21 m and 2.61 m, respectively, during 
movement along the corridor. These results demonstrate that 

the proposed method achieves positioning accuracy 
comparable to or higher than that of the conventional method, 
while eliminating the need for prior measurements based on 
ground truth, as required in the conventional approach. 
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Fig.7  CDF of positioning error after convergence. 
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