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Abstract—In the context of cyberattack response, leveraging
damage states that can potentially be reported earlier than data
requiring specialized analysis may lead to reduced response
times and mitigated damage. However, while datasets such as
those for attack sequences exist, there is a lack of datasets that
correlate attack methods with their respective damage states.
This paper proposes a dataset generation tool for attack traces,
including mappings between attack methods and damage states.
The proposed tool operates within a virtual environment that
replicates organizational settings, automatically executing attacks
and collecting information. This approach addresses challenges
such as variations in data caused by different environments and
the burden of manual data collection.

Index Terms—dataset generation, attack trace

I. INTRODUCTION

Cyberattack damage targeting organizations, such as cor-
porations, is a serious issue, necessitating effective damage
mitigation measures. Responding to such cyberattacks involves
a series of activities, including preemptive measures such as
multi-layered defenses with firewalls, attack detection and
analysis, containment to prevent damage escalation, malware
removal and system recovery, and post-attack countermeasure
evaluation [1]. However, because these attacks often involve
thorough preliminary reconnaissance and use techniques tai-
lored to the target organization, achieving complete intrusion
prevention is challenging, highlighting the limitations of re-
lying solely on preemptive defenses. Consequently, there is a
need not only for intrusion prevention but also for rapid attack
detection and response to contain the scope of compromise and
reduce overall damage. In the stages of post-detection analy-
sis and response, organizations gather attack traces through
investigations of logs and security device alerts. Based on
these traces, they identify the attack methods used, assess the
progression stage of the attack, and take containment actions
as necessary. Although there exist multiple technologies and
research initiatives that support analysis and response efforts
[2] [3], these tools are often designed with the assumption that
users have a certain level of security expertise. Consequently,
the time required for trace analysis depends significantly on the
skill level of the responder, creating a risk of delayed response
in organizations that lack specialized response teams such as
CSIRTs.

To address the above-mentioned challenges, an incident
response approach that relies less on the responder’s skill

level and instead leverages information more accessible to non-
experts is a potential solution. This paper focuses on damage
states caused by cyberattacks as one such approach. Although
comprehensive investigation is required to fully assess all
damage, it is reasonable to assume that some degree of damage
―such as alert notifications or system malfunctions―will be
identifiable as soon as the attack is detected. Additionally,
significant damages that disrupt normal business operations
are likely to be recognized early, even by personnel without
specialized expertise, such as a CSIRT. By narrowing the
investigative focus based on observed damage states, it may
be possible to reduce the impact of cyberattacks. However,
to evaluate and validate technologies supporting this type
of incident response [4], each organization must identify
the specific damage states associated with various attack
methods. Although datasets detailing attack sequences exist
[5], there is a lack of datasets linking these sequences with
corresponding damage states. Furthermore, information that
includes sensitive damage states often depends significantly
on the applications and device configurations unique to each
organization. As a result, each organization must prepare data
tailored to its specific environment, a process that incurs
significant costs.

This paper proposes a dataset generation tool for attack
traces, which includes mappings between attack methods and
corresponding damage states. The proposed tool operates
within a virtual environment that replicates each organization’
s specific device and network configurations, allowing it
to account for variations in damage states across different
environments. By automating the selection and execution of
attack methods, as well as post-attack data collection, the tool
reduces the burden of manually designing attack scenarios
during data collection. The information on attack techniques,
required tools, and execution commands is sourced from red
team attack tools. The tool is designed to use essential attack-
related information, such as target IP addresses, usernames,
and passwords, which the user provides in a prepared file.
Based on this gathered information, the tool selects the ap-
propriate attack for the target, then collects various logs post-
attack and records the file differences from before and after
the attack as indicators of damage. Furthermore, we developed
a prototype of the proposed tool and conducted functional
verification in a small-scale environment. While the results
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confirmed successful automation of attack execution and data
collection, they also highlighted areas needing improvement,
particularly in the methods for capturing file differences as
damage indicators and in mapping damage states for attack
methods that do not produce logs. Additionally, we analyzed
elements that can serve as early indicators of damage and
examined supplementary information that should be collected.

II. RELATED WORKS

A. Red-Team Tools

In this paper, we utilize security evaluation tools capable of
reproducing multi-stage attack sequences and operable across
multiple platforms as our attack tools. Examples of such tools
include Metasploit, provided by Rapid7 [6], and Atomic Red
Team, developed by Red Canary [7].

These attack tools are designed to operate based on attack
methods categorized within the MITRE ATT&CK framework
[8], which provides a structured taxonomy for understanding
and simulating cyberattack tactics and techniques [9]. MITRE
ATT&CK is a knowledge base, published by the U.S. nonprofit
organization MITRE, that catalogs adversarial Tactics and
Techniques used in cyberattacks. In ATT&CK, the stages of an
attack sequence are segmented into units called ”Tactics,” each
representing a specific attack objective. By combining various
Tactics, the framework allows for the replication of complex
attack sequences. Examples of Tactics include ”Initial Access,”
which aims at gaining entry to a network, and ”Credential Ac-
cess,” which focuses on credential theft. Furthermore, within
each Tactic, ATT&CK organizes the attack methods employed
into units called ”Techniques.”

The attack tools referenced in this paper are assumed to
enable detailed simulated attacks by recreating attack se-
quences through Tactic combinations and selecting specific
attack methods, or Techniques, within each Tactic. Each of
these tools has distinct features. For instance, CALDERA
[10] provides a user-friendly GUI that allows customization,
execution, and result verification of attacks. In this study, we
select Atomic Red Team as our tool due to its suitability for
automation and its accessibility, offering plaintext descriptions
of each Technique ’s execution tool and command.

B. CyberAttack Dataset

Existing datasets for validating cyberattacks include those
developed for the evaluation of Intrusion Detection Systems
(IDS) [11] [12] [13] and for malware detection [14] [15].
However, there is limited research focusing on obtaining
comprehensive attack data that is not dependent on specific
devices [5] [16].

Takahashi et al. proposed APTGen, an approach for gen-
erating datasets targeting advanced persistent threats (APT)
[5]. APTGen generates attack sequences based on MITRE
ATT&CK by analyzing existing incident reports and replicates
these sequences by selecting appropriate attack tools based on
execution environment logs. Subsequently, simulated attacks
are conducted in the test environment using the generated se-
quence information, and logs corresponding to each sequence

are collected to create a dataset. Compared to previous studies
on the automated generation of attack sequences [17], APTGen
emphasizes the enumeration of feasible attack sequences and
the selection of attack tools for execution within the envi-
ronment, facilitating the generation of datasets that include
these sequences and their associated logs. However, the data
associated with attack sequences are limited to logs, without
inclusion of environment-dependent damage information.

Tsuda et al. introduced STARDUST, a platform designed
to collect data from targeted attacks [16]. STARDUST con-
structs a parallel network that mimics the organization’s real
network and, upon intrusion, redirects attackers to the parallel
network, enabling the collection of data produced by attack
sequences on the organizational network. However, when
creating datasets using STARDUST, it is necessary for the
organization to devise its own attack scenarios. Additionally,
both APTGen and STARDUST require users to conduct the
attacks and gather information, resulting in considerable cost
in dataset creation.

C. Attack Detection and Response Techniques

Information that serves as indicators of cyberattacks, such
as suspicious communications or excessive access requests
to confidential data, is utilized not only for preemptive mea-
sures like blacklist-based defenses but also for post-intrusion
detection and response efforts. Kanemoto et al. proposed a
method that uses attack traces extracted from emulation results
of attack code to assess the success of attacks, enabling
the identification of relevant alerts within the large volume
generated by IDS during attack detection [2]. Additionally,
technologies supporting the sharing of attack trace informa-
tion between organizations, such as the Malware Information
Sharing Platform (MISP), allow for the storage, sharing, and
correlation analysis of threat intelligence and attack traces [3].

However, effectively leveraging these detection and re-
sponse technologies requires prior investigation of attack
traces present within one’s own organization, which may be
challenging depending on the skill level of the responder. To
address such challenges, research has been conducted with the
aim of assisting early response even in cases where responders
have limited expertise [18], as well as studies that attempt to
identify attack methods based on partial information, such as
damage indicators, when detailed attack traces are unavailable
[4]. Nonetheless, the task of correlating attack traces with
damage states remains the responsibility of the individual
organization.

III. ATTACK TRACE DATA SET GENERATION TOOL

A. Outline

One type of information considered indicative of damage is
file differences before and after an attack. Depending on the
attack method, file system changes may occur on the target de-
vice, such as malware placement during the initial infiltration
or lateral movement stages, or file output of reconnaissance
results during privilege escalation and internal reconnaissance
stages. Additionally, even for attack methods that aim to leave
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Fig. 1: Structure and Workflow of the Generation Tool

TABLE I: Device Information of Attacker and Target

Tag Description
IP IPv4 address of the device

Platform Platform of the device
Role Role of the device (e.g., personal terminal, file server)

Executors Applications avalable on the device
Route IPv4 address of the router required for each connection

Related IPv4 address of the related device (e.g., management server)

no residual file differences at the end of an attack, temporary
files or other artifacts may be created at intermediate stages.
Given that file differences can occur at various stages of attack
methods, and that certain methods, like malware placement
on shared servers, produce observable damage that multiple
individuals can detect, this paper proposes an attack trace
generation tool that links attack methods with corresponding
damage states represented by file differences.

An overview of the attack trace dataset generation tool
is shown in Figure 1. It is assumed that users will prepare
device information files containing details about each de-
vice, as outlined in Table I. The attack information database
uses Atomic Red Team [7]. The proposed tool comprises a
Manager, which stores collected information, including device
and attack data; an Attacker, which executes commands on
targets for attack and information collection; and a Target, the
designated attack target. The Attacker, Target, and a router
to replicate the organizational network are all created in a
virtual environment, with each virtual machine’s initial state
saved using virtualization software’s snapshot function. Each
snapshot is configured so that upon reboot, a support module
launches on the Attacker and a reverse shell on the Target.

After collecting device information from the device infor-
mation file, the proposed tool selects an appropriate attack
method based on conditions such as the target platform and
available attack tools. Subsequently, the Attacker, Target, and
associated devices are initialized based on IP address infor-
mation. After restoring the Attacker to its initial snapshot
state and rebooting it, the support module registers attack

TABLE II: Output File Format

Tag Description
Tech ID Technique ID from MITRE ATT&CK

Phase Tactic from MITRE ATT&CK
Platform Platform of the Target
Target IP IPv4 address of the Target

Route IPv4 address of the router
required for each connection

Commands
and

Results

Commands Executed commands
Logs Collected logs

Creates Files generated after the attack
Changes Files modified after the attack
Deletes Files deleted after the attack

commands to the Attacker. Restoring the Target to its initial
state and rebooting it enables command execution from the
Attacker via the Target’s reverse shell. Before executing the
attack commands, the Attacker initiates a command to capture
the initial state of the Target’s files and sends this initial file
state to the Manager for storage. Following attack execution,
the Attacker takes a snapshot and transmits the Target’s
post-attack files and logs to the Manager, then restores the
post-attack snapshot to retrieve additional files. Finally, the
Manager extracts file differences from the Target’s files before
and after the attack and outputs them in a file along with
information on the selected attack method, attacking devices,
logs, and file differences. The format of the output file is shown
in Table II.

B. Atomic Red Team
The Atomic Red Team [7], used in this paper as an attack

information database, is an attack tool that enables simulated
attacks based on the MITRE ATT&CK framework. It consists
of an index that organizes Tactics and Techniques by platform,
as well as files detailing each attack method. This tool allows
for attack execution through a Ruby API and provides plaintext
access to detailed information on each Technique, including
the following attributes.

• Technique ID from MITRE ATT&CK
• Overview of Technique
• Prerequisites for the Attack (e.g., Required Applications)
• Executor
• Command for Executing the Attack
• Command for Concealinf Attack Activity
• Requirement for Elevated Privileges
In the proposed tool, the platform of the Target, obtained

from the device information, is used to retrieve a set of attack
methods from the index. Next, based on the applications avail-
able on the Target, the tool searches for attack methods that
meet the required conditions and retrieves relevant information
such as the Technique ID, execution application, and execution
and concealment commands.

C. Scope of Attacks and Attack Traces Envisioned by the
Proposed Tool

In actual attacks, concealment activities are often conducted
after a successful intrusion to hide traces of the attack. Addi-
tionally, cases may arise where the attack fails or is interrupted
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Fig. 2: Prototype Environment for the Functional Verification

mid-execution, resulting in a different damage state than if the
attack had completed. The proposed tool anticipates such sce-
narios by collecting additional damage states for each attack
method in cases where the execution command is interrupted
midway or when a concealment command is executed after the
execution command. Regarding the environment for data col-
lection with the proposed tool, fully replicating actual device
and network configurations is challenging from both personnel
and equipment cost perspectives. Therefore, the proposed tool
addresses this issue by creating a small-scale environment
consisting only of the Attacker executing the attack, the
Manager as the target, associated devices, and the necessary
routers for connectivity. However, this limited environment
may miss certain attack traces. Ideally, attack traces encompass
various indicators, such as suspicious communication patterns
or requests for specific files, command execution histories, and
standard output content. In the proposed tool, file differences
and logs serve as the main indicators of damage. Nonetheless,
some security devices may be configured to log specific events,
such as multiple terminals accessing a particular file within
a short timeframe. Under such configurations, when testing
lateral movement in the proposed tool, logs may not be
generated, although they would be expected during an actual
lateral movement scenario. In this way, the proposed tool does
not account for attack traces based on aggregated statistics
from multiple devices; instead, it focuses on traces related to
the Target and the devices directly responsible for managing
and monitoring it.

IV. IMPLEMENTATION OF THE PROTOTYPE

We implemented a prototype to verify how the proposed
tool operates and to evaluate the scope of data collection. We
developed each module of the tool in Python and created the
virtual environment using VirtualBox1. Figure 2 shows the
small-scale environment where we conducted the functional
verification.

A. Functional Verification with the Prototype

We conducted functional verification of the implemented
prototype within the environment shown in Figure 2. Table III
presents the device information for the Attacker and Target,
and Table IV details the attack methods used. Both attack

1https://www.virtualbox.org/

TABLE III: Device Information of Attacker and Target

Device Tag Description

Attacker

IP 192.168.56.1
Platform Ubuntu 22.04

Role Personal terminal
Executor bash

Route 192.168.56.254
Related None

Target

IP 192.168.30.2
Platform Windows11

Role Personal terminal
Executor command prompt

Route 192.168.56.254, 192.168.30.254
Related 192.168.30.100

methods involve saving internal information from the terminal
to a temporary file, allowing damage states to be verified
through file differences.

In the prototype, after collecting the device information and
attack method details, we launched the virtual machines for
the Attacker and Target, executing the attack through a reverse
shell activated at the Target ’s virtual machine startup. To
capture file differences, we used robocopy to obtain the Target’
s files before and after the attack. After executing the attack,
we used wevtutil to collect application, system, and security
logs from the device.

B. Results of Functional Verification

As a result of the functional verification, we confirmed
that components related to automation, such as the booting
of the Attacker device and the execution of commands on
the Target, operated without issues. However, in the data
collection phase, the file generated during the execution of
Attack Method 1 was successfully identified, whereas the text
file generated during the execution of Attack Method 2 could
not be retrieved. Figure 3 shows the files generated post-
attack execution. To investigate whether the issue stemmed
from the execution command, we used robocopy on the Target
after the attack to manually obtain the file differences. As the
generated text file was successfully identified in this case, we
determined that the issue was not with the execution command
itself but rather a limitation in the robocopy specifications.
Based on these findings, alternative methods for obtaining file
differences should be considered. Currently, we are exploring
approaches such as comparing snapshots using the Volume
Shadow Copy Service (VSS) or transferring files via FTP.

Additionally, all collected logs were empty, which we
attribute to the lack of log generation on the terminal. As
demonstrated, depending on how logging is configured within
an organization, collecting logs from terminals may not pro-
vide sufficient information to correlate attack methods with
damage states. Furthermore, during reconnaissance phases
like directory structure exploration, certain attack methods
may avoid generating actions that leave traces in logs. To
establish correlations between such attack methods and their
damage states, it is necessary to consider whether additional
information sources available during attack execution should
be collected by the tool.
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TABLE IV: Technique Used for Functional Verification

ID T1119
Tech name Automated Collection

Method 1

Platform Windows
Executor command prompt

Command
mkdir %temp%\T1119 command prompt collection >nul 2>&1

dir c: /b /s .docx |findstr /e .docx
for /R c: %f in (*.docx) do copy %f %temp%\T1119 command prompt collection

Method 2

Platform Windows
Executor command prompt

Command

sc query type=service >%TEMP%\T1119 1.txt
doskey /history >%TEMP%\T1119 2.txt

wmic process list >%TEMP%\T1119 3.txt
tree C:\AtomicRedTeam\atomics >%TEMP%\T1119 4.txt

Fig. 3: File Differences and Log Outputs after Execution

C. Future Works

From the results obtained, a key challenge moving forward
is determining the types of information to be treated as damage
states. Currently, file differences on the Target before and after
an attack are used as the primary damage indicator. However,
other potential early-detectable damages include disruptions

to business continuity, such as device failures or network
disconnections, as well as alerts from monitoring devices
that may notify incidents before detailed investigations. To
accommodate these damage types, we need to explore col-
lecting additional information, such as changes in network
connectivity and memory dump files after an attack.

V. CONCLUSION

In this paper, we proposed a dataset generation tool for
attack traces, linking attack methods with damage states, to
support the use of early-detectable damage states in cyber-
attack responses even in environments with limited security
expertise. The proposed tool replicates organizational device
and network configurations in a virtual environment to account
for variations in damage states across different settings. By
automating attack selection, execution, and post-attack data
collection, the tool reduces the burden of dataset creation.

Additionally, we developed a prototype of the attack trace
dataset generation tool and conducted functional verification.
While the results confirmed automation of attack execution
and data collection, we identified cases where file differences
could not be obtained due to limitations with certain execution
commands. Therefore, it is necessary to explore improvements
to the current method or investigate alternative approaches
for obtaining file differences. Furthermore, to support other
damage states that may be identified prior to detailed inves-
tigations, we plan to consider expanding data collection to
include additional information, such as network connectivity
changes and memory dumps.
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