979-8-3315-0694-0/25/$31.00 ©2025 IEEE

Maximizing GPU Parallelism for
a High-performance Cryptanalysis System

Sangyub Kim
Korea University
Seoul, South Korea
sangy_kim@korea.ac.kr

Abstract—Modern cryptanalysis techniques utilize GPUs, ow-
ing to their parallel processing power, to significantly improve
the speed of cryptanalysis tasks. Thus, recent research directions
have focused on maximizing parallelism to complete large-scale
cryptanalysis in a short time. For this, previous works utilized
NVIDIA’s technologies such as Hyper-Q, Multi-Process Service
(MPS), and Multi-Instance GPU (MIG) for their cryptanalysis
system. However, no effort has been made to evaluate whether
integrating these technologies improves parallelism compared to a
single one. In this paper, we design and implement a cryptanalysis
system that integrates MPS and MIG. To evaluate this system, we
develop three versions of Strassen’s matrix multiplication pro-
grams for large-scale cryptanalysis. We evaluate the performance
of these programs using CUDA, cuBLAS, and a combination
of cuBLAS and MPI, respectively. Our results show that with
both MPS and MIG enabled, the computation time for matrix
multiplication is approximately 1.42x, 1.28x, and 2.02x faster.

Index Terms—Cryptanalysis System, Multi-Process Service,
Multi-Instance GPU, Parallel Computing

I. INTRODUCTION

Based on extensive research on various cryptographic algo-
rithms, there is also research on cryptanalysis. This includes
cryptanalysis using GPUs, which is a notable field.

Previous research efforts have focused on reducing the
computation time for cryptanalysis tasks by utilizing GPUs.
Cianfriglia et al. [2] proposed a novel framework for breaking
encryption by finding linear polynomials in the key bits, called
a cube attack [4], which utilizes GPUs to speed up the compu-
tation. Additionally, optimized cryptanalysis algorithms [15]
have been developed by addressing some of the limitations
of GPUs (e.g., limited number of registers available to each
thread, slow access time to global memory) through CUDA
programming.

Expanding on previous work, there is a need to reduce the
time needed to process cryptanalysis operations that leverage
large-scale data. Consequently, we present the need for a
system capable of parallelizing large-scale data in a single
GPU environment, i.e., when the system has limited GPU
resources.

One of NVIDIA’s latest parallelization technologies is
Multi-Process Services (MPS) [10], which allows multiple
GPU kernels belonging to different CUDA contexts to be
managed as a single context. It allows concurrent processing of
GPU kernels from different CUDA contexts on the same GPU,

572

Youngjoo Shin
Korea University
Seoul, South Korea
syoungjoo@korea.ac.kr

thereby increasing parallelism. Another is Multi-Instance GPU
(MIG) [12], which partitions a single GPU to enable parallel
processing of multiple GPU kernels.

In this paper, we propose a parallel processing environment
that leverages both MPS and MIG. This environment partitions
a single GPU into multiple instances, enabling efficient parallel
processing of GPU operations. This configuration allows for
a greater number of GPU tasks to be handled concurrently,
thereby reducing overall processing time. Consequently, we
design and implement a high-performance cryptanalysis sys-
tem based on this environment.

To evaluate our system, we apply matrix multiplication ac-
celeration techniques and assess its performance. For parallel
computation, we develop three Strassen’s matrix multiplication
[14] programs using shared source code [7]. These programs
were implemented using three different approaches: CUDA,
CUDA Basic Linear Algebra Subroutine (cuBLAS) [11], and a
combination of cuBLAS and Message Passing Interface (MPI)
[13]. We measure computation time both with and without the
proposed cryptanalysis system. The performance evaluation
indicates improvements of approximately 1.42x, 1.28x, and
2.02x, respectively.

The main contributions of our study are summarized as
follows:

o We design and implement a parallelism-maximizing sys-
tem by integrating MPS and MIG on a single GPU
system.

« We implement cryptanalysis programs, i.e., Strassen’s
matrix multiplication programs, using three methods,
apply them to our system, and evaluate their performance.

The structure of this paper is as follows. Section II un-
derscores related work to the current project and Section III
describes some background of this paper. Section IV proposes
the design of a cryptanalysis system using these technologies
and Section V implements the proposed system. In Section
VI, we present a performance evaluation of the system, and
Section VII discusses the pros and cons of MPI technology.
We finally conclude in Section VIII.

II. RELATED WORK

In this section, we discuss previous studies related to our
work.

ICOIN 2025

Cube attack with GPU. Cianfriglia et al. [2] presented a
framework for a cube attack [4] that leverages GPU processing
to enhance the efficiency of parallel search. The cube attack is
a cryptanalysis technique applicable to various symmetric key
algorithms. They successfully demonstrated this attack on two
different well-known stream ciphers: Trivium [3] and Grain-
128 [5].

In their study, they compared the execution times of an
OpenMP-based parallel CPU version and a GPU-based version
of the cube attack. The results of the performance evalua-
tion highlighted that the GPU-based version performs faster,
depending on the size of the free variables. In the case of
Trivium, NVIDIA Kepler showed 80x and NVIDIA Pascal
630x speedups, while for Grain-128, Kepler indicated 154 x
speedup, and Pascal showed 930X speedup.

This study introduced the first GPU-optimized cube attack
framework specifically designed to maximize parallelization.
It demonstrated the advantages of using GPUs by emphasizing
the speedup compared with the CPU-parallel benchmark,
the performance dependence on system parameters, and a
comparison between different GPU architectures.

While this attack simply leveraged the computational power
of the GPU, our work increases parallelism by allowing the
GPU’s operations to process in parallel.

Brute force attack with GPU. Cihangir Tezcan [15] pre-
sented a GPU-based brute force cryptanalysis approach for
lightweight cryptographic algorithms. Brute force attacks have
become practical, and algorithms that use short keys have been
abandoned, but there are still ISO/IEC standard ciphers that
use short keys. He demonstrated an exhaustive key search
attack on the bit-oriented block ciphers such as DES/3DES
and ISO/IEC 18033-3 PRESENT.

Since most programming languages operate at the byte level
rather than the bit level, bit-oriented algorithms like DES and
PRESENT require specialized handling. For this, his exper-
iments used a table-based CUDA implementation to bypass
bit-level operations and avoid performance degradation. His
results indicated a speedup of at least 1.22x using NVIDIA
MX 250 for PRESENT and showed that a DES key could
be obtained in less than a year using an NVIDIA RTX 3070
GPU.

All GPUs have various architectural constraints that degrade
performance, and the study provided an optimized CUDA
implementation to resolve these limitations. They focused on
optimizing the algorithm for these different architectures and
resources through GPU programming.

In contrast to this algorithm-level optimization through GPU
programming, our work focuses on establishing a parallel
execution environment to enhance overall performance.

III. BACKGROUND

A. Multi-Process Service

A single GPU operation can run across multiple GPU cores
simultaneously, enhancing GPU utilization and significantly
reducing idle time. However, these operations must exist

within the same CUDA context, meaning that operations in
different CUDA contexts cannot execute concurrently [1].
Each CUDA application has state information about the
hardware resources it needs to operate, which is called the
CUDA context. This restriction exists because GPU kernels
in the same context can run in parallel through the concurrent
scheduler, while those in different contexts must execute
sequentially via the time-sliced scheduler [8].

Multi-Process Service (MPS) is a CUDA API designed
to address this limitation and improve parallelism. It allows
multiple GPU kernels belonging to different CUDA contexts
to be managed as a single context, bypassing the time-
sliced scheduling. This enables CUDA applications to share
GPU resources more effectively, allowing the GPU kernels
of each process to run concurrently. MPS consists of three
components: an MPS control daemon process, an MPS server
process, and an MPS client runtime. The control daemon
coordinates the connection between the MPS client and the
MPS server, with the server providing MPS services to the
client. Also, environmental settings for the MPS server can be
specified by setting MPS-related environment variables (e.g.,
CUDA_MPS_PIPE_DIRECTORY).

The MPS workflow consists of three steps. In step 1, users
initiate an MPS control daemon process. In step 2, the control
daemon launches an MPS server. In step 3, the MPS client
submits its kernel to the execution environment managed by
the MPS server.

B. Multi-Instance GPU

Multi-Instance GPU (MIG) allows a single GPU to be par-
titioned into up to seven independent GPU instances, enabling
multiple CUDA applications to utilize distinct GPU instances
concurrently. This physical isolation provided by MIG allows
each application to interact with its assigned virtual GPU
instance as if it were a physical GPU.

Each MIG instance includes an L2 cache, memory, and
dedicated Streaming Multiprocessors (SMs). It ensures secure
isolation to prevent one client’s activities from negatively
impacting other client’s operations. As each instance operates
with independent GPU resources, resource contention is effec-
tively eliminated.

MIG provides flexibility in creating various partitions and
configuring different combinations of GPU instances. It is
noteworthy that the MIG is only supported on the latest
NVIDIA GPUs (Ampere and later). For example, the NVIDIA
A100 GPU can be decomposed into eight SGB memory slices
and seven SM slices. Users can create a 4g.20gb GPU Instance
(GI) profile with four 5GB memory slices and four SM slices.
NVIDIA also offers ”GPU Instance Profiles” options allowing
flexible and efficient resource management to respond to
various workloads.

C. Strassen’s algorithm

Cryptanalysis algorithms often rely on matrix operations,
and one such example is the Hill cipher [6], a substitution
cipher that utilizes matrix multiplication and inverse matrices

573

for message encryption and decryption. Hill ciphers are rooted
in concepts from linear algebra, making them more mathemat-
ical compared to other ciphers. In the Hill cipher, encryption
involves multiplying each message block by an invertible
matrix modulo 26, and decryption requires multiplying each
block by the inverse of the encryption matrix.

Therefore, various algorithms and studies have been de-
veloped to improve the computational complexity of matrix
multiplication. In particular, Strassen’s algorithm is more ef-
ficient than standard matrix multiplication for the following
reasons. First, it has a lower computational complexity of
O(n?8') compared to the O(n3) complexity of standard
matrix multiplication. Second, it is well-suited for parallelism
as it divides a large matrix into smaller submatrices and
processes them recursively.

Strassen’s algorithm achieves matrix multiplication by per-
forming a small number of multiplications and a large number
of additions and subtractions compared to standard matrix
multiplication. It performs better for certain matrix sizes,
which is achieved through the following process. First, users
partition each matrix into four equal-sized submatrices,

Ain Aig Bi1 Bip Cip Cip
A = ’ ’ B — ’ ’ C — ’ 3
I:AQ,l A2,2} ’ [32,1 BQ,Q:| ’ [02,1 02,2:|

where A and B represent the input matrices, and matrix C'
is the result of multiplying A and B. Users calculate seven
intermediaries M, Mo, Mg, My, Ms, Mg and M7 from the
partial matrices A and B and use them to determine the final
matrix elements C 1,C} 2,Cs 1 and Cs 9. The formulas for
calculating the intermediaries and the final matrix elements
are shown below.

My = (A1,1 + A2,2)(B1,1 + B2,2)
Mz = (A21 + A2,2)B11
M3z = Ay,1(B1,2 — Bz,2)
My = Az,2(B2,1 — B1,1)
Ms = (A11 + A1,2)B22
Mg = (A2,1 — A1,1)(B1,1 + Bi1,2)
M7 = (A1,2 — A2,2)(B2,1 + B2,2)

Ci1 = My + My — Ms + My
Ci,2 = M3 + Ms
C2 1 = Mz + My
Ca2 = My — M2 + M3 + Ms

IV. DESIGN

This section describes the design of a high-performance
cryptanalysis system that integrates MPS and MIG to maxi-
mize GPU parallelism. We design three distinct environments:
one with solely MIG, another with only MPS, and a third with
integrated MPS and MIG. Here, we assume the execution of a
cryptanalysis program that involves splitting and aggregating,
such as Strassen’s matrix multiplication.

A. Parallel processing system with MIG

When MIG is enabled, applications can run concurrently
on distinct GPU instances. MIG allows a single GPU to
be divided into multiple MIG instances, each with its own
memory and SMs. These instances are physically isolated,
ensuring that activities on one instance do not impact other
instances running on the same GPU. MIG not only enhances

overall GPU utilization but also guarantees Quality of Service
(QoS).

By leveraging MIG, we can create up to seven instances
to allocate to various cryptanalysis applications. Utilizing
separate GPU resources for each instance enables us to par-
allelize these applications, allowing multiple operations to be
processed simultaneously and efficiently without interference.

B. Parallel processing system with MPS

We design an environment where MPS is enabled. This
configuration allows the CUDA-based cryptanalysis program
to leverage MPS services and be scheduled within the same
context for concurrent execution.

When we execute an MPS client in an environment with
the MPS control daemon, the daemon activates and assigns
an MPS server. The MPS server runs under the same user ID
as the requesting user. Once the MPS server is running, the
MPS service can be provided to our application whenever we
execute the CUDA application.

In this configuration, the cryptanalysis program is divided
into multiple GPU kernels and executed sequentially. These
GPU kernels are managed as a single CUDA context using
MPS, even though they belong to different CUDA contexts.
As a result, they can be efficiently scheduled by a concurrent
scheduler rather than a time-sliced scheduler, enabling parallel
execution.

C. Farallel processing system integrated MPS and MIG

We design an environment that integrates MPS and MIG
to maximize GPU parallelism. In this design, multiple MPS
servers can operate on a single GPU. While a typical single
GPU setup involves only one MPS server, our design allows
for the operation of multiple servers. Each server can run on
a different MIG instance, and MPS clients utilizing the same
GPU resources (i.e., MIG instance) as the MPS server can
receive MPS services.

In our system, a single GPU is partitioned into n MIG
instances, as described in Section IV-A. Each MIG instance
functions as an independent GPU, allowing multiple opera-
tions to be performed within each instance. An MPS control
daemon can be launched on each MIG instance, enabling the
possibility of running a maximum of seven MPS servers on a
single GPU. CUDA applications using an MIG instance can
then receive MPS services from the MPS server within that
instance. The environment for each MPS instance follows the
same as in Section IV-B.

Consequently, this integrated environment leverages both
technologies to increase the maximum number of clients.
Each client can utilize the MPS service to process operations
in parallel. The subsequent section details the process of
implementing this environment based on our design.

V. IMPLEMENTATION

This section details the implementation of the proposed
high-performance cryptanalysis system that integrates MPS

574

and MIG. The implementation is based on the three envi-
ronments described in the previous section. In this setup, we
assume the use of a single NVIDIA A100 GPGPU.

A. Cryptanalysis system with MIG

We utilize MIG to split a single A100 GPGPU into four
MIG instances, each of type 1g.20gb, combining a 20GB
memory slice with one SM slice. Given that the A100 GPU
contains 108 SMs, each 1g.20gb instance can utilize 15 SMs.

To execute a CUDA application with specific GPU re-
sources, we use the CUDA_VISIBLE_DEVICES environment
variable. First, we identify the identifier (ID) of each MIG
instance using the NVIDIA System Management Interface
(nvidia-smi) [9] command. We then set the environment
variable to the ID of the desired MIG instance and execute
the cryptanalysis program. It allows us to control which GPU
resources the cryptanalysis program will use.

B. Cryptanalysis system with MPS

To initiate the MPS service environment, we start by
launching the MPS control daemon. Upon the first connection
attempt by an MPS client, the control daemon triggers the
launch of the MPS server. The MPS client subsequently
submits the CUDA context of each GPU kernel to the execu-
tion environment managed by the MPS server. The execution
environment effectively manages these contexts within a single
shared context known as the MPS CUDA context. This setup
allows GPU kernels from different CUDA contexts to run in
parallel.

The MPS control daemon is launched using a straightfor-
ward command nvidia—-cuda-mps—control, and can be
started either in the background or foreground. The control
daemon does not immediately start the MPS server. When an
MPS client, such as the CUDA driver, attempts to establish
a connection with the daemon, the daemon starts the MPS
server. From then on, with the MPS server activated, the MPS
client communicates with the server to receive MPS services.

Communication between the MPS control daemon, MPS
server, and MPS clients is facilitated through named pipes
and UNIX domain sockets, utilizing the /tmp/nvidia-mps
directory by default. Once this environment is constructed, the
MPS service is ready for use with any GPU kernel.

C. Cryptanalysis system integrated MPS and MIG

We construct Section V-A and apply the procedures de-
scribed in Section V-B for each instance to implement an
environment integrating MPS and MIG. To achieve this inte-
gration, additional environment variables must be configured.
Specifically, the MPS-related environment variables mentioned
in Section III-A need to be set, allowing for the execution of
multiple MPS servers and facilitating communication between
each server and client.

We create four 1g.20gb instances using the same single
A100 GPGPU as in Section V. For each instance, we follow
the procedures described in Section V-B and configure two
key environment variables: CUDA_MPS_PIPE_DIRECTORY

and CUDA_VISIBLE_DEVICES. The former specifies the
communication directory for each instance, while the latter
designates the ID of each MIG instance.

Before launching the MPS control daemon,
we set the CUDA_MPS_PIPE_DIRECTORY and
CUDA_VISIBLE_DEVICES environment variables for

each of the four instances. This configuration ensures that
MPS servers and MPS clients communicate exclusively
through specific directories, preventing any sharing of MPS
sockets. This setup enables the MPS server to operate
independently on each instance.

To verify that each program is functioning correctly on its
designated GPU instance, two methods are employed. First,
we inspect the log output from the MPS control daemon
to identify any error messages that might indicate the use
of an incorrect GPU instance. Second, we confirm that the
MPS server is running. It’s important to note that the MPS
control daemon does not immediately create an MPS server
upon startup; it generates an MPS server when it receives a
connection request from an MPS client. If the MPS server is
inactive, it may indicate that no operation has been requested
for that specific GPU instance.

VI. EVALUATION

To evaluate the design and implementation of the proposed
high-performance cryptanalysis system, we utilized three of
Strassen’s matrix multiplication programs. The first program
implemented Strassen’s matrix multiplication algorithm in the
CUDA for GPU acceleration. The second program utilized
the matrix multiplication function of the cuBLAS API to
implement Strassen’s algorithm. The third program extends
the second approach by incorporating MPI to enable parallel
operations.

We first describe the experimental environment setup, fol-
lowed by an evaluation of the system’s performance across the
three Strassen matrix multiplication programs.

A. Experimental setup

The hardware resources and software configuration used
to set up the high-performance cryptanalysis system are de-
scribed in Table I. We employed an Intel Xeon CPU to estab-
lish a stable system environment and selected an A100 GPGPU
to leverage both MPS and MIG. Specifically, we utilize MIG to
build an experimental environment by partitioning one A100
GPU into four virtual GPU instances. Each MIG instance
(1g.20gb) is allocated one SM slice and 20GB of memory.

TABLE I: Experimental setup for configuring system.

Configuration Detail
CPU Intel Xeon Silver 4210
GPU NVIDIA Ampere 100 GPU 80G

MIG 1g.20gb (4 instances)
Ubuntu 20.04.6 LTS
5.15.0-78-generic

Operation System

Kernel

575

In addition, Table II lists the drivers and applications in-
stalled to enable parallelism in the system. First, a dedicated
drive for the GPU device was installed to ensure proper
recognition by the operating system. To enable parallel pro-
gramming using the CUDA language, we installed a CUDA
driver compatible with the GPU device. Specifically, for the
utilization of the cuBLAS API, we need to install CUDA 11.0
or later. Finally, we prepared the environment for parallelism
by installing the OpenMPI compiler to support MPI-based
parallel operations.

TABLE II: List of installed applications and drivers.

Type Device or Technology Detail
. Device GPU nvidia-driver 535.54.03
Driver -
Tech. CUDA cuda-driver-12.2
MPI openmpi-4.1.5
BLA BLAS API 12.02.01
Application ~ Tech. u S u S 02.0
. gcc 9.4.0
Compiler
nvce 12.2.91

To evaluate the performance of the designed system, we uti-
lize a case study focused on matrix multiplication acceleration.
As mentioned in Section III-C, numerous matrix multiplication
algorithms have been studied to enhance the computational
complexity. Among them, we employed Strassen’s algorithm
to further enhance the parallelism within our system.

Strassen’s algorithm, based on the divide-and-conquer ap-
proach, divides the input matrix into smaller submatrices and
aggregates the results of these partial matrices to obtain the
final output matrix. The key advantage of using Strassen’s
algorithm in this study is its capability to perform intermediate
computations in parallel. The division and aggregation process
is highly suitable for the proposed system, as it task parti-
tioning, parallel execution of subtasks, and reduced memory
consumption.

Additionally, we developed a bash script to execute the
cryptanalysis program (i.e., Strassen’s matrix multiplication
program) on the MIG instances. This script takes two large-
scale matrices as input and divides each matrix into four partial
matrices. Then it provides them as input to each program and
runs each of these four programs on different MIG instances
so that the operations can be processed in parallel. At the end
of each program’s execution, it combines the results from each
program to create a final result matrix.

This system effectively divides a large matrix into four
smaller partial matrices, performing all calculations in parallel.
For instance, it can concurrently execute four multiplications
of 8 x 8 matrices to compute the multiplication of two 16 x 16
matrices.

We denote the environment with both MPS and MIG
enabled as ESEG (Section V-C) and the environment with
both MPS and MIG disabled as DSDG. In the ESEG setup,
a single GPU is split into four GPU instances (1g.20gb),
with each of the four MPS servers running on a different
GPU instance. Additionally, the environment with only MIG

enabled is DSEG (Section V-A), and with only MPS enabled,
that is ESDG (Section V-B).

B. CUDA

We first evaluate a matrix multiplication program imple-
mented in the CUDA, as illustrated in Fig. la. The matrix
size ranged from 64(25) to 8,192(2'3), with matrix elements
represented as float data types.

For a matrix of size 8,192, the computation takes approx-
imately 2287.9 ms in the DSDG environment. However, in
the ESEG environment, the time is reduced to around 1608.9
ms, indicating a performance improvement of approximately
1.42x when both technologies are integrated.

Furthermore, the result of ESDG shows an improvement
of approximately 1.24x, while the result of DSEG improves
by approximately 1.11x. These results highlight the potential
for performance enhancements by enabling MPS and MIG
individually.

C. cuBLAS API

To achieve faster computation, we utilized the cuBLAS API,
which provides optimized matrix multiplication functions,
to implement Strassen’s matrix multiplication program. The
performance results are shown in Fig. 1b. The matrix size
and element data type were consistent with those used in the
previous experiment.

A comparison of Fig. la and Fig. 1b reveals the faster
overall computation time achieved with the cuBLAS API. For
a matrix size of 8,192, the program implemented with the
cuBLAS API is approximately 1.57x faster than CUDA alone.

We also assessed the effects of the MPS and MIG on
this program’s performance and found optimal results in
the ESEG environment, with a performance improvement of
approximately 1.28x compared to the DSDG environment.

D. cuBLAS API and MPI

The third program builds on the implementation described
in Section VI-C, with the addition of MPI for distributed
processing. In this setup, the master node distributes tasks to
worker nodes, which then process these tasks in parallel using
MPI. This allows the input matrix to be divided into smaller
submatrices, enabling parallel calculations on these smaller
matrices.

Fig. lc illustrates the performance of this program. The
element data type is the same as in the previous experiment,
while the matrix size ranges from 64(2%) to 16,384(2'%).

As shown in the figure, the ESEG environment achieves the
highest performance, showing reduced matrix multiplication
times compared to the other cases. For a matrix size of
8,192, enabling both MPS and MIG results in a performance
improvement of approximately 2.02x compared to using no
parallelization technologies. Similarly, for a matrix of size
16,384, the performance improvement is about 1.71x with
both technologies enabled.

In comparing ESDG and DSEG, we observe that enabling
only MPS yields better performance than enabling only MIG.

576

g 70004 — DSDG ~ —— ESDG g 70004 — DSDG ~ —— ESDG £ 7000 T DSDG —— ESDG
- —— DSEG ESEG - —— DSEG ESEG - —— DSEG ESEG
@ 6,000 © 6000 © 60001
E 5,000 E 5,000 E 5,000
e

.5 4,000 ‘5 4,000 _g 4,000
:@ 3,000 5 3,000 S 3,000
3 2,000 / 3 2,000 é 2,000
g 1,000 S 1,000 ——— O 1,000

o Y © > > © 5 ° Y © 5 > 3 © 5 0@“ ~‘tb ‘;“’ «‘,W l»“ ® La“’ ‘nW 2

© < > & K4 K K4 e © ¥ > e K¢ K 4 & ~ v ° O 2° N IS

Matrix Size (N) Matrix Size (N) Matrix Size (N)
(a) CUDA (b) cuBLAS (c) cuBLAS and MPI

Fig. 1: Performance of parallel cryptanalysis system for Strassen’s matrix multiplication.

This difference is likely due to MIG providing some paral-
lelism while scheduling for other CUDA contexts is managed
by the concurrent execution scheduler.

VII. DISCUSSION

We assert that a primary advantage of an MPI-based dis-
tributed system is its capacity for significant memory savings.

A comprehensive analysis of the results in Fig. 1 indicates
that matrix multiplication programs implemented with the
cuBLAS API and MPI achieve an overall slower computation
speed. This is primarily due to the overhead introduced by the
MPI-based distributed system, which inherently involves nu-
merous parallel processes and overhead. Furthermore, there is
a scheduling latency associated with receiving MPS services,
as MPI increases the number of nodes.

However, it’s worth noting that without an MPI-based
distributed system, matrix multiplication calculations for a
matrix size of 16,384(2'%) cannot be performed. The reason
for this is that the OS kills the process due to memory pressure,
which we confirmed experimentally. Consequently, we expect
that the proposed MPI-based distributed system will enable
matrix multiplications on more large-scale data which is a
notable contribution.

VIII. CONCLUSION

In this paper, we presented the design and implementation of
a high-performance cryptanalysis system to accelerate large-
scale data processing. This system integrates two key technolo-
gies, MPS and MIG. MPS allows GPU kernels from different
contexts to execute concurrently by sharing GPU resources,
while MIG partitions a single GPU into multiple instances
to facilitate parallel execution of programs. Our case study
on matrix multiplication acceleration demonstrated that the
proposed system achieved notable performance improvements,
with up to a 2.02x increase. We expect that our work
has wide application in various cryptanalysis technologies,
offering promising performance enhancements.

ACKNOWLEDGMENT

This research was supported by a National Research Foun-
dation of Korea (NRF) grant, funded by the Korean govern-
ment (MSIT) (No.2023R1A2C2006862).

[1]
[2]

[3]

[4]

[5]

[6]
[7]
[8]

[9]

[10]
(1]
[12]
[13]
[14]

[15]

577

REFERENCES

T. Bradley, “Hyper-q example,” NVidia Corporation. Whitepaper vi. 0,
2012.

M. Cianfriglia, S. Guarino, M. Bernaschi, F. Lombardi, and M. Pedicini,
“A novel gpu-based implementation of the cube attack: Preliminary
results against trivium,” in Applied Cryptography and Network Security:
15th International Conference, ACNS 2017, Kanazawa, Japan, July 10-
12, 2017, Proceedings 15. Springer, 2017, pp. 184-207.

C. De Canniere, “Trivium: A stream cipher construction inspired by
block cipher design principles,” in International Conference on Infor-
mation Security. Springer, 2006, pp. 171-186.

I. Dinur and A. Shamir, “Cube attacks on tweakable black box poly-
nomials,” in Advances in Cryptology-EUROCRYPT 2009: 28th Annual
International Conference on the Theory and Applications of Crypto-
graphic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings
28. Springer, 2009, pp. 278-299.

M. Hell, T. Johansson, A. Maximov, and W. Meier, “A stream cipher
proposal: Grain-128.” in 2006 IEEE International Symposium on Infor-
mation Theory. 1EEE, 2006, pp. 1614-1618.

L. S. Hill, “Cryptography in an algebraic alphabet,” The American
Mathematical Monthly, vol. 36, no. 6, pp. 306-312, 1929.
ijleesw, “matmul-omp-cuda,” 2018. [Online].
https://github.com/ijleesw/matmul-omp-cuda

S. Kim, J. Oh, and Y. Kim, “An execution performance analysis of
applications using multi-process service over gpu,” Korea Network
Operations and Management Review Volume 19 Number 1, p. 60, 2019.

Available:

NVIDIA, “NVIDIA System Management In-
terface program,” 2016. [Online]. Available:
https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-
smi-367.38.pdf
——, “Multi-Process Service,” 2022. [Online]. Available:
https://docs.nvidia.com/deploy/mps/index.html

, “cuBLAS Release 12.3)” 2023. [Online]. Available:

https://docs.nvidia.com/cuda/cublas/

, “Multi-Instance GPU User Guide,” 2023. [Online]. Available:
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html
OpenMPI, “Open MPI: Open Source High Performance Computing,”
2023. [Online]. Available: https://www.open-mpi.org/

V. Strassen et al., “Gaussian elimination is not optimal,” Numerische
mathematik, vol. 13, no. 4, pp. 354-356, 1969.

C. Tezcan, “Key lengths revisited: Gpu-based brute force cryptanalysis
of des, 3des, and present,” Journal of Systems Architecture, vol. 124, p.
102402, 2022.

