
Reducing Client-Side Cost in Secure Inner Product
Evaluations

Changhee Hahn
dept. Electrical and Information Engineering

Seoul National University of Science and Technology
South Korea

Dongyoung Koo
dept. Convergence Security

Hansung University
South Korea

Junbeom Hur
dept. Computer Science and Engineering

Korea University
South Korea

Abstract—In the era of ubiquitous data collection and analysis,
preserving privacy while utilizing data, such as inner product
evaluations, poses a significant challenge. One such method is
inner product functional encryption (IPFE), which enables the
computation of inner products on encrypted vectors without
exposing the vectors themselves. However, the computational
intensity of IPFE decryption poses challenges, particularly for
resource-limited client devices and high-dimensional vectors. To
facilitate partial decryption, prior IPFE schemes require the
client to derive a partial decryption key from an assigned secret
key, incurring computation costs linear to the vector dimension.
In this paper, we provide a framework for the challenges of
IPFE, enabling efficient decryption outsourcing, maintaining data
privacy, and facilitating key generation outsourcing in IPFE
schemes. In the proposed framework, outsourced decryption
using a partial decryption key generates a masked plaintext
that only the client can unmask. Furthermore, the process of
deriving the partial decryption key can be fully outsourced,
thereby ensuring that the client’s computational burden remains
constant.

Index Terms—Security, inner-product, outsourced computation

I. INTRODUCTION

In the ever-expanding landscape of modern computing, the
analysis of vast and complex datasets is crucial in numerous
applications and industries. Central to this analytical endeavor
is the concept of inner product evaluations, a fundamental
mathematical operation with profound implications for data
analysis [1], machine learning [2], and beyond. Inner product
evaluations, also known as dot products, provide a means
to quantify the similarity or dissimilarity between vectors,
offering valuable insights into the underlying structure and
relationships within data.

However, alongside the immense utility of inner product
evaluations, privacy concerns are present. Traditional ap-
proaches often involve the centralization of data in a sin-
gle location, making it susceptible to unauthorized access,
breaches, and misuse. Moreover, the aggregation and analysis
of disparate datasets from multiple sources raise concerns
about data ownership, consent, and the potential for unintended
disclosures or re-identification of individuals.

In light of these privacy challenges, there is a growing
imperative to develop techniques and frameworks for pre-
serving the privacy of inner product evaluations. One such
technique is inner product functional encryption (IPFE) [3]–

[6], which enables users to compute the inner product of two
encrypted vectors without revealing the vectors themselves.
On the other hand, outsourced decryption of ciphertexts has
become a prevalent practice in modern computing, where
resource-limited clients delegate extensive computations to
cloud providers that offer computing resources over the In-
ternet [7], [8].

While prior studies devise a decryption-outsourceable IPFE
scheme, e.g., [9], there arises a strong motivation to outsource
not only the decryption process but also the computation of
partial decryption keys. This stems from the potential need that
clients may possess multiple vectors, leading to the need for
multiple decryption keys to be evaluated with another vectors
in ciphertexts. This, in turn, necessitates the generation of
a substantial number of partial decryption keys. In light of
these considerations, we present our design goal: On top of
decryption-outsourceable function-hiding IPFE, can the partial
decryption key generation process be outsourced, allowing
clients to offload the majority of computation burdens?

This design goal aims to address the challenge of computa-
tional complexity associated with generating partial decryption
keys for high-dimensional vectors in IPFE. By allowing clients
to delegate the key generation process to external entities, this
goal seeks to alleviate the client-side computational burden.
Accomplishing this objective would significantly improve the
practicality and scalability of IPFE, facilitating its broader
adoption in real-world scenarios such as privacy-preserving
large-scale data analysis and secure computation outsourcing,
among others.

In this paper, we propose an efficient partial decryption key
algorithm for performing decryption of IPFE ciphertexts. In
contrast to prior approach [10], which requires O(n) expo-
nentiation operations over pairing groups to derive a partial
decryption key, our method eliminates this computational cost,
where n represents the dimension of the plaintext vectors
involved in IPFE.

II. BACKGROUND

A. Pairing Vector Spaces

Suppose an additive cyclic group (G = ⟨G⟩,+) of prime
order q. A vector space Gn of dimension n over Zq is defined

569979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

as
{

X = x ·G = (X1 = x1 ·G, . . . ,Xn = xn ·G)|x ∈ Zn
q

}
.

Given two vectors x, y of the same dimension and a ∈ Zq , the
following operations are defined.

x ·G+ y ·G = (x + y) ·G, a · (x ·G) = (a · x) ·G.

Let (G1,G2,Gt, e, G1, G2, q) be a description of pairing
groups, where e is a bilinear map from G1 × G2 to Gt,
G1 and G2 are generators of G1 and G2, respectively. Set
gt = e (G1, G2). We define the following operation with
regard to the pairing vector space as

(x ·G1)× (y ·G2) =
∏
i

e (xi ·G1, yi ·G2)

=
∏
i

gxi·yi

t = gx·y⊤
t = g

⟨x,y⟩
t .

B. (Function-Hiding) Inner-Product Functional Encryption

An IPFE scheme is function-hiding if the functional de-
cryption key, as well as the ciphertext, reveals no additional
information about the underlying vectors beyond their inner
product. A function-hiding IPFE scheme is a tuple of algo-
rithms Π = (Π.Setup, Π.KeyGen, Π.Encrypt, Π.Decrypt)
defined in a message space Zn

q as follows.
− Π.Setup(1λ). Given a security parameter 1λ, the setup

algorithm outputs the public parameter pp and the master
secret key msk, where msk includes pp.

− Π.KeyGen (msk, x). Given msk and a vector x =
(x1, ..., xn), the key generation algorithm outputs the
functional decryption key skx = (sk1, ..., skn).

− Π.Encrypt (msk, y). Given msk and a vector y =
(y1, ..., yn), the encryption algorithm outputs cty =
(ct1, ..., ctn) as a ciphertext.

− Π.Decrypt (pp, skx, cty). Given pp, skx, and cty, the
decryption algorithm outputs ⟨x, y⟩ =

∑
xiyi ∈ Zq or

a special symbol ⊥ indicating a decryption failure.

C. System Model

The IPFE system aims to compute the inner product of two
vectors within its framework. This system consists of a data
provider (DP), a data consumer (DC), and a decryption proxy
(DeP). The DP holds a master secret key msk and derives
a ciphertext cty, which represents the encrypted form of the
vector y. This ciphertext is subsequently stored in the DeP.
It is important to note that in a typical IPFE system without
decryption outsourcing, the DeP may function as an on-line
storage unit, holding the ciphertext and sending it to the DC
when needed.

On the other hand, the DC possesses a vector x. To compute
the inner product between his vector x and the vector y
held by the DeP, the DC requests DP to issue a functional
decryption key skx. Once the functional decryption key is
obtained, the DC may either request the DeP to derive the
desired inner product ⟨x, y⟩ by sending skx to the DeP, or
retrieve the ciphertext cty from the DeP and then perform

the decryption operation by himself. In the first case, ⟨x, y⟩
is trivially revealed in the DeP. It is noteworthy that the
DP and DC may be the same entity. In this case, a single
entity holding msk uploads his dataset {y1, y2, · · · } to DeP
in encrypted form {cty1 , cty2 , · · · }, later issuing a query for
the inner product on x by sending skx.

III. PROPOSED FRAMEWORK

We delve into the details of our proposed framework. In
most pairing-based IPFE schemes, particularly function-hiding
IPFE [3]–[6], denoted as Π, the functional decryption key
skx = (sk1, . . . , skn) and the ciphertext cty = (ct1, . . . , ctn)
are computed pairwise using pairings, where skx ∈ Gn

a ,
cty ∈ Gn

b , with a ̸= b, and a, b ∈ {1, 2}.
In the case where a = 2 and b = 1, the pairwise

computation takes the following form:

T1 = ct1 × sk1 Tn = ctn × skn
= gx1·y1·r1·R

t , · · · , = gxn·yn·rn·R
t ,

where r1, · · · , rn, R ∈ Zq represent random values derived
during the pairings of skx and cty. Significantly, the n random
values r1, · · · , rn are nullified during the computation of∏

i Ti. Consequently, the DC can obtain g
∑

xiyi·R
t .

Additionally, gRt is computed separately. As a result, the
DC can deduce

∑
xiyi ∈ S, where S is a polynomial-sized

subset of the message space. This is achieved by identifying
δ ∈ S such that

∏
i Ti

?
= gR·δ

t .
To enhance the security and efficiency of the framework, we

adopt the transformation approach [10]. Herein, the DC selects
an additional secret key z ∈ Zq and derives the transformation
key tkx = skz

x = (skz
1, . . . , skz

n).
Subsequently, the DC transmits tkx to the DeP, which

performs the following computation and transmits ctout
y back to

the DC as ctout
y =

∏
i

(
ctyi

× skz
xi

)
= g

(
∑

xiyi)·R·z
t . Finally,

the DC cancels out z from ctout
y , enabling the retrieval of ⟨x, y⟩.

From a security standpoint, any attempt by the DeP to
reveal y is reduced to breaking the underlying Π, while
the DeP remains oblivious to x due to the function-hiding
property of Π. Stated differently, from the perspective of the
DeP, tkx is indistinguishable from skz·x. Additionally, the
DeP cannot learn ⟨x, y⟩ as it lacks the knowledge of z.

Regarding efficiency, the O(n) pairing operations initially
assigned to the DC are outsourced to the DeP. Furthermore,
the DeP transmits ctout

y as the result of the transformation,
incurring a constant O(1) outbound bandwidth cost.

However, it is important to note that the DC bears the
additional computation costs, specifically O(n) exponentiation
operations over Ga, when deriving the transformation key
tkx from skx. This additional computational load can be
undesirable in various practical scenarios, potentially offset-
ting the computational benefits obtained through outsourced
decryption. For example, envision a situation where the DC
is provided with a set of vectors (x1, . . . , xm) and intends to
evaluate pairwise inner products with an (encrypted) vector
y. While outsourcing decryption allows the DC to avoid m

570

pairing operations, it still necessitates performing m expo-
nentiation operations to derive distinct transformation keys
for each vector. Hence, the computational advantage achieved
through outsourced decryption is counterbalanced by the over-
head of generating multiple transformation keys, rendering it
less practical.

To address this issue, we allow the DC to submit a modified
vector x⋆ = (z · Gb, x) ∈ Gb × Zn

q instead of receiving
from the DP the functional decryption key skx and then
deriving skz

x. The DP then executes the Π.KeyGen (msk, x)
algorithm, where z · Gb is used in part instead of Gb to
derive skz

x. It should be noted that implementing this modified
approach may require slight adjustments in the implementation
of the Π.KeyGen (msk, x) algorithm. In terms of efficiency,
this approach significantly reduces the computation cost from
O(n) (i.e., deriving skz

x from skx) to O(1) on the DC side.
Importantly, this approach does not introduce additional com-
putation costs on the DP side. Indeed, the only modifications
made on the DP side involve using z ·Gb instead of Gb when
Gb is used.

Interestingly, the storage cost on the DC side can also be
reduced. In other words, the DC only needs to store z locally,
eliminating the necessity to store every skx. This is feasible
because, with tkx outsourced to the DeP, the DC can simply
request the DeP to perform partial decryption when needed.
This property can be particularly advantageous when the DC
possesses multiple transformation keys.

IV. RELATED WORK

Functional encryption is an area of cryptography that allows
fine-grained access control and selective disclosure of en-
crypted data [11]. In recent years, several variants of functional
encryption have been proposed, each with its own set of
properties and applications. One such variant is inner product
functional encryption (IPFE), which specifically focuses on
the evaluation of inner products on encrypted data [12]–[15].

However, decryption can be computationally intensive if
the length of vectors is long. To delegate the decryption to
a resource-powerful server, the functional decryption should
be handed. In this regard, researchers endeavor to design a
function-hiding IPFE [3], [4], [6], which enables the evaluation
of the inner products without revealing the specific function
being computed. To this end, a functional decryption key
is sent to the server which stores ciphertexts. The server
then derives the inner product results between the functional
decryption key and ciphertexts. It is noteworthy that such
a decryption delegation model inherently reveals the inner
product results, which may be sensitive.

V. CONCLUSION

This paper addressed the challenges associated with in-
ner product functional encryption (IPFE). The computational
overhead for decrypting IPFE ciphertexts poses difficulties
for resource-constrained client devices and high-dimensional
vectors. We proposed an efficient and generic framework for
both decryption and key generation outsourcing in IPFE.

ACKNOWLEDGMENT

This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIT) (No. RS-2023-00244079).

REFERENCES

[1] J. Balasch, S. Faust, and B. Gierlichs, “Inner product masking revisited,”
in Advances in Cryptology–EUROCRYPT 2015: 34th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34.
Springer, 2015, pp. 486–510.

[2] W. Chen, Z. Miao, and Q. Qiu, “Inner product-based neural network
similarity,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[3] A. Bishop, A. Jain, and L. Kowalczyk, “Function-hiding inner product
encryption,” in Advances in Cryptology–ASIACRYPT 2015: 21st Inter-
national Conference on the Theory and Application of Cryptology and
Information Security, Auckland, New Zealand, November 29–December
3, 2015, Proceedings, Part I. Springer, 2016, pp. 470–491.

[4] P. Datta, R. Dutta, and S. Mukhopadhyay, “Functional encryption for
inner product with full function privacy,” in Public-Key Cryptography–
PKC 2016: 19th IACR International Conference on Practice and Theory
in Public-Key Cryptography, Taipei, Taiwan, March 6-9, 2016, Proceed-
ings, Part I. Springer, 2016, pp. 164–195.

[5] J. Tomida, M. Abe, and T. Okamoto, “Efficient functional encryption for
inner-product values with full-hiding security,” in Information Security:
19th International Conference, ISC 2016, Honolulu, HI, USA, September
3-6, 2016. Proceedings 19. Springer, 2016, pp. 408–425.

[6] S. Kim, K. Lewi, A. Mandal, H. Montgomery, A. Roy, and D. J. Wu,
“Function-hiding inner product encryption is practical,” in Security and
Cryptography for Networks: 11th International Conference, SCN 2018,
Amalfi, Italy, September 5–7, 2018, Proceedings 11. Springer, 2018,
pp. 544–562.

[7] I. Menache, O. Shamir, and N. Jain, “On-demand, spot, or both:
Dynamic resource allocation for executing batch jobs in the cloud,” in
11th International Conference on Autonomic Computing ({ICAC} 14),
2014, pp. 177–187.

[8] L. Zheng, C. Joe-Wong, C. W. Tan, M. Chiang, and X. Wang, “How
to bid the cloud,” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 4, pp. 71–84, 2015.

[9] H. Yang, Y. Su, J. Qin, and H. Wang, “Privacy-preserving outsourced
inner product computation on encrypted database,” IEEE Transactions
on Dependable and Secure Computing, vol. 19, no. 2, pp. 1320–1337,
2020.

[10] M. Green, S. Hohenberger, B. Waters et al., “Outsourcing the decryption
of abe ciphertexts.” in USENIX security symposium, vol. 2011, no. 3,
2011.

[11] D. Boneh, A. Sahai, and B. Waters, “Functional encryption: Definitions
and challenges,” in Theory of Cryptography: 8th Theory of Cryptography
Conference, TCC 2011, Providence, RI, USA, March 28-30, 2011.
Proceedings 8. Springer, 2011, pp. 253–273.

[12] S. Agrawal, D. M. Freeman, and V. Vaikuntanathan, “Functional encryp-
tion for inner product predicates from learning with errors,” in Advances
in Cryptology–ASIACRYPT 2011: 17th International Conference on the
Theory and Application of Cryptology and Information Security, Seoul,
South Korea, December 4-8, 2011. Proceedings 17. Springer, 2011,
pp. 21–40.

[13] M. Abdalla, F. Bourse, A. De Caro, and D. Pointcheval, “Simple
functional encryption schemes for inner products,” Cryptology ePrint
Archive, 2015.

[14] S. C. Ramanna, “More efficient constructions for inner-product encryp-
tion,” in Applied Cryptography and Network Security: 14th International
Conference, ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings
14. Springer, 2016, pp. 231–248.

[15] S. Agrawal, B. Libert, and D. Stehlé, “Fully secure functional en-
cryption for inner products, from standard assumptions,” in Advances
in Cryptology–CRYPTO 2016: 36th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part III. Springer, 2016, pp. 333–362.

571

