979-8-3315-0694-0/25/$31.00 ©2025 IEEE

Transferability Analysis of Adversarial Examples in
CNN-based SAR Image Classification

Minjae Kim, Haksu Han, Gyeongsup Lim, Yehyeong Lee, Sanghun Sim, Junbeom Hur
Department of Computer Science and Engineering,
Korea University,
Seoul, South Korea
{mjkim, hshan, gslim, yhlee, shsim, jbhur} @isslab.korea.ac.kr

Abstract—Recently, CNN-based Synthetic Aperture Radar
(SAR) Automatic Target Recognition (ATR) systems have re-
ceived increasing attention for adversarial examples as a cy-
bersecurity threat. SAR images consist of target, shadow, and
speckle regions that are different from optical images due to
their unique imaging mechanism. Recent studies on adversarial
examples for SAR-ATR have developed black-box attacks suitable
for real-world environment by focusing perturbation on target-
region using surrogate model. However, if an attack is focused
only on the target area, the attack may be overfitted to surrogate
model, and may become unsuitable for the target model. In
this paper, we derived three research questions. RQ1: “Does an
attack focused only on a target show superior performance in
transferability?”’, RQ2: “Is the transferability also affected by the
other areas in SAR images?”’, and RQ3: “If physical attacks are
feasible not only on the target but also on the shadows, how does
transferability change?” Seeking the answers to these research
questions, we conducted comparative experiments of attacks
focused on both each individual region and their combinatorial
regions diversely. For the analysis, we used 8 models (including 1
surrogate model and 7 target models) trained under the MSTAR
dataset. In addition, we used four algorithms (FGSM, CW,
DeepFool, and PGD) to create adversarial example and SAR-
Bake dataset to divide SAR regions. Specifically, we measured
the transfer attack success rate when perturbations were applied
to each specific region (all pixels, target, shadow, speckle and
target+shadow). Furthermore, we utilized Grad-CAM to visu-
alize the impact of these specific regions on model outcomes
to interpret the experimental result intuitively. Our findings
highlight that targeting only the target area is insufficient and
extending perturbations to shadow regions effectively enhances
transferability.

Index Terms—Adversarial example, Synthetic Aperture Radar,
Convolutional Neural Networks, Transferability.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) image is a high-resolution
radar image created by emitting microwaves into the ground
or surface of a target, and obtaining the reflected signal [1].
The SAR Automatic Target Recognition (ATR) system is
designed to automatically identify and classify targets from
SAR images, and actively used in military, geography, and
civilian applications [2]. The SAR-ATR mainly have relied
on features extracted from experts’ knowledge [3], which thus
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restricted its efficiency and applicability in practice [4]. Due to
the recent improvement of feature extraction ability using Con-
volutional Neural Networks (CNNG), the performance of target
recognition has significantly enhanced [5]. However, CNN was
found to be vulnerable to the attack with adversarial examples
[6], which injects small and imperceptible perturbations into
the input image to mislead a well-trained model, making CNN-
based SAR-ATR also vulnerable to the attack [7].

Unlike optical images, SAR images can be divided into
three areas: target, shadow and speckle [8]. Target is the
object in the input image; shadow is the black area caused by
the physical shadow of the target; and speckle is the portion
of the background. Each region affects the performance of
CNN-based SAR-ATR differently. Especially, the target area
affects its performance most significantly, because the amount
of information in the target is more highly related to the object
compared to the other regions [9].

Recent studies have focused on two main directions to
develop attacks suitable for real-world environments. One
is the attacks focusing on the target region, since it is the
only part in which the attacker can physically create the
transformation required for the adversarial example [10]-[12].
In the real world, however, it is a very challenging task because
the attacker must have the domain knowledge of how the SAR
images are acquired in order to actually implement the desired
adversarial example. Since the target region is less affected by
the physical environments than the other regions, recent attacks
have focused on the target region.

The other direction is the black-box attacks. Because gain-
ing information (such as model structure or image prepro-
cessing process) about the CNN model of a SAR-ATR can
hardly be achieved by attackers in the real world [7], [13],
[14], black-box attacks are considered more practical senarios.
In the black-box attack, specifically, the attacker trains another
model called a surrogate model using the inputs and outputs
of the target model [15], and create an adversarial example of
the surrogate model to compromise the target model. In this
setting, transferability, the ability that adversarial examples
generated from the surrogate model are effectively applied to
the target model, is the vital factor in a black box attack [16]-
[19].

Concerning the fact that recent researches on adversarial
examples in the SAR-ATR domain focus on target region and
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transferability, we pose three new research questions (RQs).

1) RQI: “Does an attack focused only on a target show
superior performance in transferability?”

2) RQ2: “Is the transferability also affected by the other
areas in SAR images?”

3) RQ3: “If physical attacks are feasible not only on the
target but also on the shadows, how does transferability
change?”

These research questions stem from the environment when
utilizing a surrogate model in the black box setting. If an
attack is focused only on the target area, the attack may be
overfitted to the surrogate model, and may become unsuitable
for the target model. For RQ1, we compare attacks on the
entire SAR image versus target-focused attacks under black-
box conditions to see how transferability is changed. For RQ2,
we also examine transferability for attacks on the other regions
to analyze how each region affects transferability. For RQ3,
we analyzed the transferability of the attacks combining target
and shadow areas. For the analysis, we trained eight different
models (including 1 surrogate model and 7 target models) on
the Moving and Stationary Target Acquisition and Recognition
(MSTAR) dataset [20], and divided the SAR image into target,
shadow, and speckle regions using SAR-Bake dataset [8]. To
create adversarial example, we utilize the four most common
attacks in the Al vision domain, i.e. Fast Gradient Sign Method
(FGSM) [6], DeepFool [21], Projected Gradient Descen (PGD)
[22], and Carlini&Wagner (CW) [23].

Grad-CAM effectively visualizes how different regions of
an image contribute to the classification process, thereby
enhancing the interpretability of models. By applying adver-
sarial perturbations to each distinct region (i.e., target, shadow,
and the entire image), we examined how these contributions
shifted to better understand the results of our experiments by
observing Grad-CAM. Our analysis reveals that targeting per-
turbations solely at the target area is inadequate for improving
transferability. Instead, we discovered that including shadow
areas in the perturbations significantly boosts transferability.
This observation highlights the necessity of applying broader
spatial perturbations to facilitate more effective adversarial
attacks.

II. RELATED WORK

In this section, we introduce the recent work and back-
ground of adversarial examples in SAR-ATR.

A. SAR-ATR

SAR-ATR is designed based on feature-based methods [24]
or model-based methods [25]. The former requires expert
knowledge to extract features for target recognition, while the
latter identifies the target by simulating the electromagnetic
scattering process. Upon the development of CNN, SAR-ATR
has greatly been improved by employing a robust feature
extraction capability [26]. Recently, the performance of SAR-
ATR has been further improved using various deep learning
techniques such as unsupervised methods [27] and transfer
learning [28].

B. Adversarial example

An adversarial example aims to cause a model to misclassify
samples by inserting a perturbation that is too small to be
perceived by the human eye into the input image [29]. An
adversarial attack is a method to generate adversarial exam-
ples. Although numerous adversarial attack methods have been
proposed so far, we select the four most commonly used attack
schemes in Al vision, i.e., Fast Gradient Sign Method (FGSM)
[6], DeepFool [21], Projected Gradient Descent (PGD) [22],
and Carlini&Wagner (CW) [23] in this study.

The above attack methods considers white-box settings,
where the attackers are allowed to access information about
the structure, input, output, and weights of the target model.
However, in a black-box attack scenario, the attacker can only
access the input and output of the target model [15]. Thus,
instead of attacking the target model directly, the attacker first
trains a surrogate model separately. A white-box attack is then
carried out on the surrogate model, and the target model is
compromised using the generated adversarial example.

C. Adversarial examples in SAR images

Recently, several studies have been conducted on adversarial
example in the SAR-ATR system in two main directions to
develop attacks suitable for real-world environments [7], [10]-
[14].

1) Focusing on target region: Several studies [10]-[12]
proposed attack methods with a focus on physically vulner-
able target areas. These methods involve the generation of
adversarial perturbations in the form of electromagnetic wave
scattering responses, taking into account the characteristics of
the actual attack environment.

For example, a Scattering Model Guided Adversarial
(SMGA) attack generates adversarial examples in the form
of electromagnetic scattering responses [10]. An Attributed
Scattering Center Spatial Transformation Attack (ASC-STA)
method utilizes the SAR image characterization function of
ASC model [11]. Also, an attack that generates perturbations
near the target using a parametric model of the camouflage
structure was developed [12].

2) Transferability in SAR Image: Adversarial examples
generated for SAR-ATR should have high transferability
across the CNN models, since there is no chance to modify
perturbations after they are captured on the device [7]. Ad-
ditionally, transferability is desperately required in SAR-ATR
as it is difficult for attackers to directly access CNN-based
SAR-ATR in the real world. Therefore, in recent efforts, attack
methods have been developed to improve transferability. For
instance, the speckle-variant-attack improved transferability by
reconstructing the speckle-noise pattern [13], and the Scatter-
ing Center Model Attack (SCMA) enhanced transferability by
designing it based on the target scattering distribution [14].

III. EMPIRICAL EVALUATION

In this section, we conduct an experiment to evaluate
transferability of each attack based on different SAR regions,
and discuss their implications.
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Fig. 1. Divided SAR image regions using SARBake

A. Datasets and Experimental Setup

1) Dataset and Models: We carried out our experiments on
the Moving and Stationary Target Acquisition and Recognition
(MSTAR) dataset released by the Defense Advanced Research
Projects Agency (DARPA) [20]. It contains SAR images for
10 different types of armored vehicles and tanks.

We trained eight CNN models using MSTAR dataset. For
the eight models, specifically, we used VGGI16 [30] as a
surrogate model; and Alexnet [31], Densenet [32], Inception
[33], Mobile [34], Resnet50 [35], Resnext [36], and Shuffle
[37] as target models.

SARBake [8], a public MSTAR segmentation annotation,
was used to divide the SAR image into target, shadow, and
speckle as Fig.1.

2) Metric and Details: Considering the black-box attack,
we created adversarial example for surrogate model using
four most commonly used attacks, FGSM, CW, DeepFool,
and PGD. We used default value for attack parameter, which
determines the strength of the attack. (e = 8/255, iteration = 1
in FGSM; iteration = 50 in CW; ¢ = 8/255, iteration = 10 in
PGD; and iteration = 50 in DeepFool.)

We selected 100 adversarial examples per class which are
misclassified in the surrogate model, and calculated attack
success rate for seven target models as transfer attack success
rate to assess transferability.

B. Transferability Comparison between Target and All Pixels

Responding to RQ1, we compare the average transfer attack
success rate between the attack focused on target and the
attack focused on all pixels as shown in Fig. 2. Each attack
algorithm shows different transfer attack success rates. In
FGSM and PGD attacks, the average transfer attack success
rate for all pixels was 61.05% higher than the one focused on

only the target. This result shows that when the attack focuses
on the target region, the adversarial example is overfitted to
the surrogate model, thereby the transfer attack success rate
falls. In CW and DeepFool attacks, the average transfer attack
success rate for all pixels was 2.23% higher than the one
focused on only the target. It implies that these attacks were
overfitted to the surrogate model while going around more
iteration than the previous attacks. As a result, even in the
case of all pixels, the transfer attack success rate was low, and
even lower in the target-focused case. A detailed analysis of
this experiment result will be given in Section III-E1.

70 A I ALL
Target

Transfer Attack Success Rate (%)

o] |

FGSM PGD DeepFool cw
Attack Type

Fig. 2. Transfer attack success rate (all pixels and target) (%)

C. Impact of Target, Shadow, Speckle on Transfer Rate

Responding to RQ2, we compare the impact of each region
on transferability individually. Fig. 3 shows the averaged
transfer attack success rates of the four attacks in each of the
7 target models (‘Alexnet’, ‘Desenet’, ‘Inception’, ‘Mobile’,
‘Resnet50’, ‘Resnext’, and ‘Shuffle’) as well as the averaged
success rates of all models (‘Average’). In terms of the transfer
attack success rate on average, Speckle shows the highest rate
of 33.32%, followed by Shadow (8.64%) and Target (4.88%).
It implies that more information about objects are included
in the order of target, shadow, and speckle; and actually
affects model performance in the same order in SAR images
[9]. Since the adversarial example also generates perturbation
according to the model performance, the more information the
region has, the more likely it is to be overfitted. Through this
experiment, we confirmed that the attack focused on the target
area with more information was actually overfitted, resulting
in the lowest transfer attack success rate.

D. Transferability of Target and Shadow

Responding to RQ3, we conducted an experiment on the
transferability of a new attack that creates perturbations fo-
cused on the target and shadow regions simultaneously. Fig.
4 shows the result of the experiment, which was measured in
the same manner as Fig. 3.

As the figure shows, performing adversarial attacks against
both target and shadow increases transferability. It implies that
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Fig. 3. Transfer attack success rate (target, shadow, and speckle) (%)
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Fig. 4. Transfer attack success rate (target + shadow) (%)

the transferability of adversarial attacks can be enhanced by
focusing on target and shadow at the same time. A detailed
analysis of this result will be given in Section III-E2.

E. Analysis of Transferability by Grad-CAM

Grad-CAM [38] is a technique utilized to visually repre-
sent the regions in an image that significantly influence the
prediction of a specific class within a CNN. Its algorithm is
designed to generate an activation map, commonly referred to
as a heatmap, utilizing gradient information. This technique
facilitates the interpretation of the decision-making process of
the CNN model, providing insights into which image regions
significantly influenced the class prediction. The diverse colors
in the heatmap serve as indicators of the influence of a specific
region on the decision outcome, where red color signifies a
significant contribution from that region to the decision, while
blue color denotes a contrasting effect.

Using Grad-CAM, we conducted an in-depth analysis in
order to understand the experiment results in Section III-B
and III-D. Specifically, we compared the changes of model
decision with different attacks in order to check how region-
specific perturbations of each attack affect the model decisions
differently. In addition, we compared model decision changes
of surrogate model (vgg) and target model (Alex) to check how
the same perturbation affects the model decisions differently.
Fig. 5 and Fig. 6 contain the original image and the attacked
images by region in different rows; and the model’s decisions
for each image and the corresponding Grad-CAM.

1) All-pixel and Target: As shown in Fig. 5, both the
surrogate model (vgg) and the target model (Alex) classified
the original image with a label of 2S1 correctly. In the attack
that applied perturbation on all pixels (‘adv-all’ in the figure),
it can be seen that both models’ decisions were changed
to T62. When comparing Grad-CAM in the original label
(2S1) and the misclassified label (T62) with the original
image’s Grad-CAM (easily, comparing the first and second
rows), we could observe the color-changes in overall pixels.
It demonstrates the perturbation applied to all of the pixels
changed both models’ results by changing the contributions
of many pixels.

On the other hand, as for the attack that applied perturbation
only on target region (‘adv-target’ in the figure), we can see
that the results of the surrogate model (vgg) and the target
model (Alex) are conspicuously different, as well as the Grad-
CAM (first and third rows). In the case of the surrogate model,
changes in the target area are noticeable; while in the case
of the target model, there is little change. This means that
the perturbation applied to the target region affected only the
surrogate model, not the target model. In other words, the
adversarial example (‘adv-target’ in the figure) is overfitted to
the surrogate model, resulting in poor transferability.

2) Target and Combining Target and Shadow: When com-
paring the original image with the adversarial example which
focused on target in Fig. 6 (first and second rows), as done in
Fig. 5, we can see that the adversarial example is overfitted to
the surrogate model. To understand the experiment result in
Section III-D, it is necessary to analyze Grad-CAM of target
model (Alex) in the target+shadow case (third row). Compared
to the original image (first row), there was a big change in
both the original label (2S1) and the wrong label (BRDM_2),
unlike the previous case (first and second rows). It implies
that when perturbation was applied only to the target (second
row), it was overfitted such that it affected only the surrogate
model. However, by applying perturbation to the target and
shadow simultaneously (third row), it was not overfitted such
that it could affect the target model (Alex), increasing the
transferability.

IV. CONCLUSION

In this paper, we investigated how the transferability of
adversarial examples can be affected by each different region
in SAR images. As a result of our experiments, we found (1)
the attack focused on only the target region is overfitted to
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Fig. 5. Grad-CAM images with individually different perturbed regions in surrogate model and target model

the surrogate model, resulting low transfer attack success rate,
(2) transferability varies depending on the regions including
information about object, (3) the transferability increases by
attacking the target and shadow areas simultaneously com-
pared to attacking only the target area. To the best of our
knowledge, this is the first work that investigated the effect of
each different region of SAR image on the transferability.
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