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Deep Joint Source-Channel Coding for
Two-Way Relay Channels

Hyerin Uhm, Doyun Lee, and Hoon Lee, Member, IEEE

Abstract—This paper proposes a deep joint source-channel
coding (DeepJSCC) scheme for two-way relay channels (TWRC)
where two source nodes exchange image samples by means
of a cooperative relay node. Unlike conventional DeepJSCC
approaches developed for one-way relay channels (OWRC), the
proposed DeepJSCC-TWRC facilitates self-interference cancel-
lation at source nodes, thereby utilizing time resources more
efficiently. We propose to share identical encoder and decoder
models at source nodes so that they can observe a number of
image samples during the training step. The effectiveness of the
proposed method is demonstrated through numerical results.

I. INTRODUCTION

Recently, deep learning-based wireless transceiver designs
have got great attention owing to their capability of optimizing
end-to-end communication systems [1]–[4]. In particular, deep
joint source-channel coding (DeepJSCC) approaches have
been regarded as promising solutions to resource-constrained
wireless communication networks [1]–[3]. This framework
leverages deep neural network (DNN) models that combine
source and channel encoder/decoder modules. Such an inte-
grated design successfully addresses the inefficiency of tra-
ditional separated source-channel coding schemes in a short
block length regime. As a result, the data recovery perfor-
mance can be fairly improved under strict resource constraints.

Albeit its potential, the DeepJSCC framework has been
mostly confined to point-to-point communication systems
where a source node conveys information to a destination
node. However, in harsh environments, a direct communication
link between source and destination nodes might not exist
due to the long distance and obstacles. This issue has been
recently tackled by [3] which develops the DeepJSCC method
for one-way relay channels (OWRC). A cooperative relay node
helps forward signals conveyed from a source to a destination,
thereby establishing reliable communication links.

In practice, a destination node can also act as a source
node since it also wishes to send data symbols. The OWRC
is not suitable for realizing such a two-way communication
as it requests a number of time resources to build two-
way data transmissions. To this end, two-way relay channels
(TWRC) were proposed where a relay node supports data
exchange between two source nodes [5]–[7]. In the TWRC,
two source nodes simultaneously transmit their signals to a
relay node. Then, the relay broadcasts its received signal back
to the source nodes. With self-interference cancellation (SIC),
individual source nodes can perfectly recover the data symbols
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Fig. 1. System of Two way relay network.

of others. Compared to the OWRC which requires four time
slots for the data exchange, we only need two time slots by
using the TWRC protocol.

This paper studies the deepJSCC-TWRC method which em-
ploys DNN-aided transceivers for source nodes in the TWRC.
In particular, image transmission scenarios are considered
where two source nodes wish to exchange their image samples
through a cooperative relay. We propose to use channel atten-
tion (CA) techniques that allow encoder and decoder models to
seamlessly adapt to varying propagation environments [2]. To
further enhance the system performance, the parameter sharing
approach is adopted where encoder and decoder models at
two source nodes are realized with identical DNNs. As a
result, the image recovery performance can be improved
compared to conventional schemes that use dedicated encoder
and decoder models. Simulation results verify the advantage
of the proposed deepJSCC-TWRC over existing deepJSCC-
OWRC [3]. It is confirmed that the proposed scheme achieves
a better peak signal-to-noise ratio (PSNR) performance in all
SNR regimes.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a cooperative network
consisting of two source node S1 and S2 and a relay node R.
Each Si (i = 1, 2) wishes to exchange its image data with the
aid of the coordination of the relay. To this end, we adopt the
two-way relay protocol [5]–[7]. First, in the multiple access
channel (MAC) phase, the source nodes convey their encoded
signals to the relay. Next, in the subsequent broadcast channel
(BC) phase, the relay amplifies and forwards the received
signal to the source nodes. Without loss of the generality, it is
assumed that the total time resources are given as 2K, which
are evenly allocated to the MAC and BC phases, respectively.
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A. MAC Phase

Let Xi ∈ R3×H×W be an image sample transmitted by
Si, where 3 stands for the RGB colors and H and W
respectively indicate the height and width. In the MAC phase,
each Si encodes its image Xi by using an encdoer DNN
fθi : R3×H×W → CK with trainable parameter θi. Then,
the corresponding encoding process can be written by

si = fθi(Xi, SNR), (1)

where si ∈ CK accounts for the complex transmit symbol and
SNR ≜ [SNR1r, SNR2r]

T denotes the SNR vector collecting
SNR values SNRir, ∀i, between Si and R, which will be
defined shortly. The transmit power constraint at Si is given
by

∥si∥2 = Pi, (2)

where Pi represents the transmit power budget at Si. The
source nodes send their encoded signals s1 and s2 to R over
the same time-frequency resources. Thus, the received signal
at R, denoted by yr ∈ CK , becomes

yr =
√
α1rs1 +

√
α2rs2 + nr, (3)

where nr ∼ CN (0K , σ2IK) ∈ CK is the AWGN at the
relay node, σ2 is the noise power and αir is the channel gain
between Si and R. Then, the SNR value SNRir can be defined
as

SNRir =
αir

σ2
. (4)

B. BC Phase

The amplify-and-forward (AF) protocol is adopted at R.
Assuming that s1 and s2 are independent, the power of the
received signal yr is given as

E∥yr∥2 = α1rP1 + α2rP2 + σ2. (5)

Therefore, the transmitted signal at the relay, denoted by sr ∈
CK , is derived as

sr =

√
Pr

β
yr, (6)

where Pr is the transmit power budget at the relay node and
β = α1rP1 + α2rP2 + σ2 indicates the power scaling factor.

The received signal at Si becomes

yi =
√
αirsr + ni, (7a)

= αir

√
Pr

β
si +

√
Prαir

β
(
√
αīrsī + nr) + ni (7b)

where ni ∼ CN (0, σ2I) accounts for the Gaussian noise at Si

and ī = 1 if i = 2 and 2 otherwise. Provided that Si knows the
power scaling factor β and channel gains αir, it can remove
the self-interference αir

√
Pr/βsi from the received signal yi

in (7a). After the self-interference cancellation, the received
signal at Si is obtained as

ỹi = yi − αir

√
Pr

β
si =

√
Prαir

β
(
√
αīrsī + nr) + ni, (8)

With ỹi at hands, Si retrieves the image Xī by using its
decoder DNN. Let gϕi

: CK → R3×H×W be the decoder
DNN at source node Si with parameter ϕi. Then, the resulting
recovered image X̂ī ∈ R3×H×W is written by

X̂ī = gϕi(ỹi, SNR). (9)

In this paper, we aim to identify the optimal encoder
and decoder DNNs fθi and gϕi

, ∀i, that can minimize the
image reconstruction error. To this end, we consider the mean-
squared-error (MSE) measure defined as

MSE(Θ) = E

[
2∑

i=1

∥Xi − X̂i∥2F

]
, (10)

where Θ ≜ {θ1, θ2, ϕ1, ϕ2} is the collection of trainable
parameters and the expectation is taken over the distribution
of images Xi, ∀i, Gaussian noise vectors nr and ni, ∀i, and
SNR values SNRir, ∀i.

III. PROPOSED METHOD

In this section, we present the proposed DNN models for
the encoder and decoder, which is followed by the proposed
training algorithm.

A. Encoder

Fig. 2 illustrates the proposed encoder DNN architecture
which comprises several residual blocks (ResBlock), channel
attention (CA), ResBlock downsampling (ResBlock-Down),
and power normalization at the output layer. The image Xi

is first processed by ResBlock consisting of two convolutional
layers with kernel size of 3 × 3, denoted by Conv 3 × 3,
and the leaky rectified linear unit (LeakyReLU) activation.
All convolutional layers in the ResBlock have Cfeat output
channles. We adopt the skip connection from the input of the
ResBlock to its output. When the number of input channels
are not the same with that of the output layer, we employ Conv
1× 1 to the input feature.

After the second ResBlock, we adopt the CA module [2]
which leverages the SNR vector SNR as side information.
This module is cruicial to achieve the generalization ability to
arbitrary given channel gain αir, ∀i, in the test environment.
The CA module first applies the global average pooling to
the output of the previous ResBlock which yields average
pixel values for individual input channels. Thus, the output
dimension of the global average pooling equals Cfeat. We
append the SNR vector SNR to the output of the global
average pooling layer, which is further processed by two sub-
sequent linear layers with the LeakyReLU hidden activation.
The output of the second linear layer is fixed to Cfeat, which
is followed by the sigmoid activation that produces attention
values within [0, 1]. It is then multiplied to the output of the
previous ResBlock across the channel dimension. By doing so,
hidden features can capture SNR values between the source
nodes and the relay.

The subsequent ResBlock-Down module aims to downsam-
ple the height and width of image samples. More precisely, it
reduces the size of input features by the factor of 4. To this
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Fig. 2. Proposed DNN architecture.

end, we set the stride of Conv 3×3 at the first layer and Conv
1 × 1 in the skip connection to 2. The output of the second
Conv 3×3 is post-processed by using the generalized divisive
normalization (GDN), which has been known to be powerful
in image compression tasks [8]. After the ResBlock-Down,
we further employ the CA, ResBlock, and ResBlock-Down
modules.

To accommodate the transmit power constraint at the source
node (2), the output of the last CA module is handled by the
power normalization layer. After the reshape operation and
the complex representation, the input to the power normaliza-
tion layer can be represented by the complex-valued vector
s̃i ∈ CK . Then, the power normalization layer produces the
transmitted signal vector si as

si =
√
Pi

s̃i
∥s̃i∥

. (11)

B. Decoder

Next, we explain the decoder DNN structure shown in Fig.
1. Compared to the encoder DNN in Fig. 2, ResBlock upsam-
pling (ResBlock-Up) modules are newly introduced. This unit
is dedicated to upsample the low-dimensional received signal
ỹi ∈ CK to the associated estimate X̂ī ∈ R3×H×W .

To this end, the source node first reshapes the complex-
valued signal vector ỹi into a real-valued tensor of size 32K

HW ×
H
4 × W

4 . It is then processed by using several ResBlock and
CA modules. We upsample the output of the third ResBlock

of size Cfeat × H
4 × W

4 by using the ResBlock-Up module.
More precisely, 3 × 3 sub-pixel convolution with the upscale
factor r = 2 rearranges the input tensor to a tensor of size
Cfeat × H

2 × W
2 [9]. It is then followed by Conv 3 × 3 with

Cfeat output channels and the inverse GDN (IGDN) layer. As
a result, the output size of the ResBlock-Up becomes Cfeat ×
H
2 × W

2 .
Subsequently, we apply the CA module and ResBlock,

whose output size is given as Cfeat × H
2 × W

2 . To retrieve
the estimated image X̂ī ∈ R3×H×W , the ResBlock-Up with
r = 2 is employed where the number of output channels of all
convolutional layers is set to 3. Finally, the last CA module
produces X̂ī.

C. Training and implementation

We provide the training strategy of the proposed DeepJSCC-
TWRC. The mini-batch stochastic gradient descent (SGD)
algorithm, e.g., the Adam optimizer, is employed to train
the encoder DNNs and decoder DNNs jointly. The associated
parameter update rule at each training epoch is written as

Θ ← Θ− η∇Θ
1

B

B∑
b=1

2∑
i=1

∥X(b)
i − X̂

(b)
i ∥2F , (12)

where η > 0 stands for the learning rate, ∇Θ represents
the gradient operator with respect to Θ, B is the batch size,
and X

(b)
i and X̂

(b)
i respectively denote the b-th image in the

mini-batch set transmitted at Si and its recovery at Sī. The
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Fig. 3. Average PSNR performance of various schemes with respect to test
SNR.

SGD update (12) is repeated until the predetermined maximum
number of epochs.

In the training procedure, we adopt the random SNR sam-
pling where the SNR values SNRir, ∀i, are uniformly gener-
ated within a range, i.e., SNRir ∼ U(SNRmin, SNRmax), where
SNRmin and SNRmax account for the minimum and maximum
SNR values, respectively. Once trained, the optimized encoder
DNNs and decoder DNNs are installed on associated source
nodes to carry out real-time image exchange applications. In
this test step, the proposed DeepJSCC-TWRC can be applied
to an arbitrary given test SNR.

IV. SIMULATION RESULTS

In this section, we assess the proposed DeepJSCC-TWRC
for CIFAR-10 dataset containing 60, 000 images of size
3× 32× 32. We use 50, 000 and 10, 000 images for the train-
ing and test, respectively. The proposed DeepJSCC-TWRC
is trained by using the Adam algorithm with learning rate
η = 10−4 and batch size B = 32. For simplicity, the SNR
values of two communication links are set to be the same
as SNR = SNR1r = SNR2r. In the training, the SNR is
uniformly sampled within [2, 10] dB, whereas it is fixed at
a certain vavlue for the test.

We set the channel per pixel (CPP), which is defined as
K

3HW = K
3072 , to 0.25, thereby resulting in total 2K = 1536

time resources in the MAC and BC phases. To this end, the
convolution layers are realized with Cfeat = 256 output chan-
nels. For a fair comparison, the total number of time resources
of the DeepJSCC-OWRC [3] is set to 4K = 1536, which
leads to the CPP of 0.125. Therefore, the compression rate
of the conventional DeepJSCC-OWRC becomes half of that
of the proposed DeepJSCC-TWRC, which poses significant
reconstruction errors.

To evaluate the image reconstruction quality, we leverage
the peak signal-to-noise ratio (PSNR) between Xi and X̂i

defined as

PSNR(Xi, X̂i) = 10 log10

(
(maxm,n[Xi]mn)

2

||Xi − X̂i||2F

)
, (13)

where [U]mn stands for the (m,n)-th element of a matrix U.

Fig. 4. Average PSNR performance of proposed DeepJSCC-TWRC with
respect to test SNR.

Fig. 3 depicts the average PSNR performance of various
schemes with respect to the SNR. The performance of the
proposed DeepJSCC-TWRC is plotted for two different cases,
i.e., with parameter sharing and without parameter sharing.
When the parameter sharing policy is adopted, the source
nodes reuse the identical encoder and decoder DNNs as
fθ = fθ1 = fθ2 and gϕ = gϕ1

= gϕ2
. Such a technique is

beneficial for enhancing the generalization ability of the DNN-
based transceivers [4]. Our results confirm that the proposed
parameter sharing approach exhibits a performance gain over
the method without the parameter sharing. In addition, it can
be seen that the proposed DeepJSCC-TWRC outperforms the
conventional DeepJSCC-OWRC. Such a gain is achieved due
to the increase in the CPP and self-interference cancellation.

To see the impact of the random SNR sampling in the
training step, Fig. 4 presents the average PSNR performance
of the proposed DeepJSCC-TWRC with various training SNR
values, denoted by SNRtrain. The PSNR performance of the
random SNR sampling approach generally performs better
than that of the fixed training SNR setups. The DeepJSCC-
TWRC with fixed training SNR works well only at the
identical test SNR, whereas its PSNR performance degrades
at other test SNR values. In contrast, the proposed random
SNR sampling provides a good average PSNR performance
over all simulated test SNR values. This demonstrates the
generalization ability of the proposed scheme for arbitrary
given channel quality in the test environment.

V. CONCLUSIONS

In this paper, we have proposed the DeepJSCC approach
for the TWRC where the image data exchanges between two
source nodes are assisted by a relay node. The source nodes
employ DNN-based encoders and decoders to compress and
retrieve image samples, respectively. The CA module has
been adopted to train efficient encoders and decoders robust
to arbitrary SNR ranges. Also, we have proposed to reuse
identical DNN models for two source nodes so that they can
share image samples during the training procedure. Numerical
results have demonstrated the superiority of the proposed
DeepJSCC-TWRC over conventional OWRC counterparts. As
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a future research direction, it would be interesting to realize
the relay operation using distinct DNNs.
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