
A Review of Resource Reusing Paradigm
in Serverless Computing System

1st Donghyeon Kim
Department of Computer Science and Engineering

Chung-Ang University
Seoul, South Korea

dhkim@cslab.cau.ac.kr

2nd Mingyu Jo
Department of Computer Science and Engineering

Chung-Ang University
Seoul, South Korea

mgjo@cslab.cau.ac.kr

3rd Dogyun Kim
Department of Computer Science and Engineering

Chung-Ang University
Seoul, South Korea
ehrbs1101@cau.ac.kr

4th Sangoh Park
Department of Computer Science and Engineering

Chung-Ang University
Seoul, South Korea

sopark@cau.ac.kr

Abstract—Serverless computing has emerged as a revolution-
ary paradigm in cloud computing, allowing developers to focus
on code development without managing the underlying infras-
tructure. However, the cold start problem remains a significant
challenge and can negate many of the benefits of serverless
computing. This paper comprehensively reviews three different
reuse techniques, namely container reuse, data caching, and
function reuse, which are resource reuse paradigms in serverless
computing systems, to mitigate the cold start problem and opti-
mize performance. This review paper emphasizes the importance
of resource reuse strategies in improving the efficiency and
responsiveness of serverless applications, enabling wider adoption
of serverless computing in more areas.

I. INTRODUCTION

Cloud computing has revolutionized the way applications
are developed and deployed, and in recent years, serverless
computing has emerged as a new paradigm [1] [2] [3] [4] [5].
The evolution of cloud technology can be categorized into two
generations. The first generation of cloud technology, which
emerged in 2010, relieved the burden of system management
and maintenance through server consolidation and centralized
data centers. The second generation of cloud technology was
focused on further reducing the burden of developing cloud-
native applications on programmers and solution architects.

Serverless computing provides developers with high-level
software abstractions, such as Functions-as-a-Service (FaaS),
deployed transparently, allowing users to remain unaware of
the underlying server infrastructure. Modern software engi-
neering methodologies, such as DevOps and continuous in-
tegration/continuous delivery (CI/CD) pipelines, have rapidly
adopted this model to facilitate the rapid development of
cloud-native applications. These methodologies encourage the
partitioning of applications into multiple functions that are
invoked periodically or in response to events.

However, serverless computing faces a significant challenge:
the cold start problem [6] [7]. When a function is activated
after a period of inactivity or activated for the first time, it

requires significant time to configure and initialize the proper
execution environment. This delay significantly increases func-
tion execution time and reduces system efficiency. As the
number of requests increases and more functions need to be
started, the cold start delay also increases, negating many of
the benefits of serverless computing. Due to the nature of
serverless computing, which executes at the function level,
the overall workflow is typically divided into lightweight
functions that can be completed within a short time frame.
These functions are then registered and utilized accordingly.
However, because of this cold start issue, preparing the exe-
cution environment takes up most of the total execution time
rather than the actual function execution. The delay caused by
cold starts degrades the user experience and negatively impacts
the system’s overall performance.

Various approaches have been proposed to mitigate the
cold start problem in serverless computing, including pre-
dictive provisioning, utilizing ephemeral storage, intelligent
scheduling, traffic prediction, and resource reuse [8] [9]. These
techniques aim to minimize cold start latency and reduce
the time required for function initialization. Various reuse
techniques are being studied in serverless computing [12] [13].
Container reuse recycles previously initialized containers to
serve new requests. Task caching stores and reuses the results
of previously executed tasks. Data caching keeps frequently
accessed data in memory for quick access. Function caching
reuses previously compiled function code to save compilation
time. Each technique reuses resources at different levels to
optimize performance.

This review paper aims to provide a comprehensive
overview of the resource reuse paradigm in serverless com-
puting. We aim to provide a comparative analysis of different
reuse techniques, evaluate the strengths and weaknesses of
each approach, and identify the limitations of current research.
In doing so, we hope to provide researchers and practitioners in
serverless computing with a unified view of resource reuse and

142979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

suggest future research directions. This paper is organized as
follows. First, we provide background on serverless computing
and the cold start problem. Next, various resource reuse tech-
niques are described in detail and compared. Then, we discuss
the limitations and challenges of the current research, and
finally, we present future research directions and conclusions.

II. BACKGROUND

A. Serverless Computing

Serverless computing is a new computing paradigm based
on cloud computing that allows developers to develop and run
applications without having to manage server infrastructure
directly. This paradigm gained popularity following the intro-
duction of AWS Lambda in 2014 and is now an essential part
of cloud-native applications.

Serverless computing combines Function-as-a-Service
(FaaS) and Backend-as-a-Service (BaaS). FaaS allows
developers to write and deploy code as individual functions,
while BaaS provides backend services such as databases,
authentication, push notifications, and more.

Serverless computing has the following key characteristics:
• Event-driven: Functions registered in a serverless system

are executed in response to specific triggers, such as
HTTP requests, database changes, or scheduled events.

• Automatic scaling: Unlike the traditional Serverfull
paradigm, users do not need a load balancer because
the serverless platform automatically scales resources up
or down based on the number of requests. This ensures
reliable performance even during traffic spikes.

• On-Demand billing: Users are charged based on the time
of functions run and the functions of the resource use.
In the traditional Serverfull paradigm, users pay even
when the server is not working, whereas serverless is
economical because users do not pay for idle time.

• Stateless: Functions running on serverless systems do
not store state by default and must use external storage
if necessary. This ensures independence and scalability
of the function, but the external storage can introduce
overhead.

These features of serverless computing provide several im-
portant benefits. It frees developers from managing servers and
running infrastructure, allowing them to focus on developing
core business logic, significantly improving productivity. In
addition, automatic scaling capabilities can effectively respond
to traffic fluctuations, making the system more reliable and
scalable. The pay-as-you-go billing model provides cost effi-
ciency, especially for volatile workloads, and the deployment
of individual functions allows for rapid development iterations
and updates. These characteristics allow organizations to re-
spond to market changes more quickly and flexibly.

However, serverless computing does have some drawbacks.
One of the biggest is the cold start phenomenon, the delay that
occurs when a function is called for the first time or after a
long period of inactivity. This can negatively impact the user
experience. Complex applications can be composed of many

small functions, complicating management and debugging,
and function execution timeouts can make them unsuitable
for long-running tasks. In addition, the stateless nature can
introduce additional complexity to application development
that requires state management.

Cold start is one of the most significant technical challenges
in serverless computing environments. It is a delay that occurs
when a function is called for the first time or after a long
period of inactivity. This issue stems from the inherent nature
of serverless architectures and directly impacts user experience
and application performance.

A multi-step initialization process often causes cold starts:
1) Create a container or execution environment: Create a

new isolated environment for running a function. This
process uses operating system-level virtualization or
container technology and can be time-consuming.

2) Initialize the runtime: Load and initialize the program-
ming language runtime (e.g., Node.js, Python, Java) re-
quired to run the function. This process takes particularly
longer for heavier runtimes such as Java.

3) Loading function code and dependencies: Loads the
actual function code and any necessary libraries, frame-
works, and other dependencies into memory. Depending
on the size of the function and the complexity of its
dependencies, the loading time can vary.

4) Execution of function initialization code: This happens
before the actual business logic is executed and performs
tasks such as establishing database connections, loading
environment variables, and initializing external service
clients. Executing this initialization code can also cause
delays.

Function execution time depends on a variety of factors.
The choice of programming language and runtime has an
impact. For example, interpreter languages like Node.js or
Python typically start faster than compiled languages like Java
or .NET. The complexity and size of the function are also
essential factors: the larger and more complex the codebase
is and the more external dependencies the function has, the
longer cold start time will be. The cloud provider and region
can also make a difference in cold start performance; each
serverless platform has its own characteristics. Network setup
is also essential, especially for functions running inside a VPC,
which can require additional time to set up network interfaces
and further exacerbate cold start delays.

The problems caused by cold starts significantly impact the
overall performance and user experience of serverless appli-
cations. The most prominent issue is poor user experience,
especially in interactive applications, where long response
times can significantly reduce user satisfaction. The lack of
consistency in performance can also make it difficult to predict
the entire system’s performance, as the same function call can
have significantly different response times at different times.
Cost efficiency can be compromised, as keeping functions
warm to reduce cold starts can reduce cost efficiency, a
key benefit of serverless. In addition, long cold start times
can cause function execution to time out or cause problems

143

with integration with other connected services, which can
affect the stability and reliability of the overall system. These
issues can challenge serverless technology for latency-sensitive
applications or large enterprise systems.

Cloud providers offer a variety of technical solutions, in-
cluding provisioning to support concurrency, function snap-
shots, and runtimes optimized for serverless architectures.
Developers are also working to reduce the impact of cold
starts by optimizing function design, minimizing dependen-
cies, and warm-up strategies. Addressing or minimizing this
issue remains a crucial challenge for the wider adoption and
success of serverless technologies and is the subject of ongoing
research and innovation in academia and industry.

III. REUSING PARADIGMS IN SERVERLESS COMPUTING

In serverless computing, resource reuse is emerging as a
key strategy for optimizing performance and improving cost
efficiency by reducing execution delays caused by cold starts.
Resource reuse refers to utilizing computing resources once
initialized or created across multiple requests or executions.
Resource reuse is significant in serverless environments where
the execution of functions is transient and stateless in nature.

There are three main approaches to resource reuse. First,
container image reuse recycles the image that creates the
container, the environment in which functions run. This saves
time on container initialization. Second, data reuse is a way to
cache data used in previous runs and utilize it in subsequent
calls. This can reduce costly operations such as large database
queries or calls to external storage. Third, function instance
reuse is a strategy for maintaining and recycling function
instances that have already been initialized. This minimizes the
execution of the function’s initialization code, which speeds up
response times.

A. Container Image Reusing

Container image reuse has emerged as a key strategy for op-
timizing performance and solving cold start issues in serverless
computing environments. This approach aims to dramatically
reduce initialization time by efficiently managing and reusing
the container images needed to run functions. Container image
tiering allows multiple functions to share a common base layer,
which reduces storage and network usage and speeds up image
loading times. Caching frequently used images allows them
to be loaded quickly on subsequent function calls, which is
especially effective for multiple functions that use the same
runtime or library.

Several strategies can be utilized to implement container
image reuse effectively. Efficiency can be enhanced by creating
optimized base images with common dependencies, which
can be reused across multiple functions. It is also essential
to effectively leverage Docker to reduce build time and use
container registries for efficient image storage and deployment.
Using multi-stage builds to minimize the final image size and
removing unnecessary packages and files to reduce image size
are also effective ways to reduce image size.

Efficient container image reuse requires an automated man-
agement system. This includes managing image versions, de-
ploying updates, and monitoring usage. An automated system
enables consistent image management and rapid updates, even
in large serverless environments. Furthermore, developing
intelligent systems that use usage pattern analysis to predict
and pre-cache frequently used images is a promising area of
future research.

Container image reuse strategies have the potential to im-
prove the performance and efficiency of serverless computing
significantly. However, their effective implementation requires
careful planning and continuous optimization. Important topics
for future research include more lightweight container tech-
nologies, image optimization techniques specific to serverless
environments, and efficient image management strategies in
multi-cloud environments.

B. Data Reusing

Data reuse is an important strategy for optimizing perfor-
mance and streamlining resource usage in serverless comput-
ing. By effectively managing and recycling the data that a
function uses at runtime, this approach minimizes repetitive
data loading and processing and reduces overall execution
time. The core idea of data reuse is to retain data that is
loaded or generated once in memory or local storage for reuse
in subsequent function calls. This is especially effective for
computationally expensive data, such as large database queries
and files from external storage.

There are many ways to implement data reuse in a serverless
environment. One of the most common is in-memory caching,
where data is stored in memory and reused. This provides fast
access times, but the limitation is that data is lost when the
system shuts down and has less capacity than storage. Another
approach is to utilize local ephemeral storage. Many serverless
platforms provide functions with a limited amount of local
storage, which can be utilized to store and reuse data. This
method can handle larger data than in-memory caching, but
access is relatively slow.

There are a few things to keep in mind when implementing
a data reuse strategy. First, it is important to maintain data
consistency. If the data being reused does not reflect the latest
state, it can lead to incorrect results. Therefore, an appropriate
cache invalidation strategy and data refresh mechanism are
necessary. Second, careful management of storage usage is
essential. Excessive data caching can exceed the memory or
storage limits of a function or cause performance degradation.
Third, from a security perspective, it is imperative to exercise
caution when reusing sensitive data. Data encryption and
access control should be used to ensure the safety of the data.

C. Function Reusing

Function reuse is one of the key strategies for optimizing
performance and solving cold start issues in serverless comput-
ing. This approach means recycling a function instance already
initialized and ready to run across multiple requests. The
main objectives of function reuse are to reduce a function’s

144

initialization time, speed up its overall execution time, and
optimize resource usage.

In serverless environments, function reuse is primarily
implemented through the concept of warm instances. The
instance created when a function is first called is kept in
memory for a certain amount of time, and if additional requests
come in during this time, the instance that was kept in memory
(the warm instance) is reused to process them. This allows the
function logic to be executed immediately without repeating
the runtime environment setup, code loading, initialization,
and so on, significantly reducing response time.

However, there are a few things to consider when imple-
menting function reuse. First, we need to be careful with
state management. If the reused function instance improperly
maintains the state from the previous execution, it can cause
unexpected behavior. Second, we need to manage memory
usage efficiently. Maintaining too many function instances
can increase the resource usage of the entire system. Third,
we need to maintain proper isolation between functions from
a security perspective. When recycling a previously used
instance, it should be able to run in isolation from the previous
execution.

Various strategies can be considered to reuse functions
effectively. For example, we can analyze a function’s usage
patterns to set the appropriate instance retention time or use
predictive scaling to prepare function instances in advance.

IV. CONCLUSION

This review paper comprehensively examines serverless
computing systems’ resource reuse paradigm. Serverless com-
puting is an innovative cloud computing model that relieves
developers of the burden of infrastructure management, but
performance degradation due to cold start issues remains a
major challenge. Various resource reuse techniques have been
proposed to solve this problem, and in this paper, we have
divided them into three categories: container image reuse, data
reuse, and function reuse.

Container image reuse is a method that can significantly re-
duce initialization time by efficiently managing and recycling
images that comprise the function execution environment. Data
reuse is a strategy to minimize repetitive data loading by
caching and recycling data used during function execution.
Function reuse is an approach that directly addresses the cold
start problem by maintaining and recycling already-initialized
function instances.

Each of these reuse techniques has advantages and dis-
advantages and can be used in combination for maximum
effectiveness. Effective resource reuse techniques require com-
prehensive consideration of the application’s characteristics,
workload patterns, and performance requirements. It is also
important to minimize the security risks of reuse and optimize
resource usage efficiency.

In conclusion, the resource reuse paradigm is an important
approach that can significantly improve the performance and
efficiency of serverless computing. Mitigating cold start issues
and maximizing the benefits of serverless computing have the

potential to accelerate the adoption of serverless technology
in more applications and workloads. With continued research
and innovation, serverless computing will evolve into a more
mature and powerful cloud computing paradigm.

ACKNOWLEDGMENT

This paper was partly supported by the National Re-
search Foundation of Korea(NRF) grant funded by the Korea
Government(MSIT)(RS-2024-00345869) and Korea Institute
for Advancement of Technology(KIAT) grant funded by the
Korea Government(MOTIE) (P0020632, HRD Program for
Industrial Innovation)

REFERENCES

[1] Y. Li, Y. Lin, Y. Wang, K. Ye and C. Xu, ”Serverless Computing:
State-of-the-Art, Challenges and Opportunities,” in IEEE Transactions
on Services Computing, vol. 16, no. 2, pp. 1522-1539, 1 March-April
2023.

[2] P. Vahidinia, B. Farahani and F. S. Aliee, ”Cold Start in Serverless Com-
puting: Current Trends and Mitigation Strategies,” 2020 International
Conference on Omni-layer Intelligent Systems (COINS), Barcelona,
Spain, 2020, pp. 1-7.

[3] H. Shafiei, A. Khonsari, P. Mousavi. ”Serverless Computing: A Survey
of Opportunities, Challenges, and Applications,” in ACM Comput. Surv.,
vol. 54, no. 11s, 2022.

[4] T. Kalaiselvi, G. Saravanan, T. Haritha, S. Babu, M. Sakthivel, and
Sampath Boopathi, “A Study on the Landscape of Serverless Com-
puting,” Advances in systems analysis, software engineering, and high
performance computing book series, pp. 260–282, Apr. 2024.

[5] V. Goar and Nagendra Singh Yadav, “Exploring the World of Serverless
Computing,” Advances in systems analysis, software engineering, and
high performance computing book series, pp. 51–73, Apr. 2024.

[6] P. Vahidinia, B. Farahani and F. S. Aliee, ”Cold Start in Serverless Com-
puting: Current Trends and Mitigation Strategies,” 2020 International
Conference on Omni-layer Intelligent Systems (COINS), Barcelona,
Spain, 2020, pp. 1-7.

[7] Anup Mohan, undefined., et al, ”Agile Cold Starts for Scalable Server-
less,” in 11th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 19), 2019.

[8] Mustafa Daraghmeh, A. Agarwal, and Yaser Jararweh, “Optimizing
serverless computing: A comparative analysis of multi-output regres-
sion models for predictive function invocations,” Simulation modelling
practice and theory, vol. 134, pp. 102925–102925, Jul. 2024.

[9] P. Silva, D. Fireman, T. Pereira, ”Prebaking Functions to Warm the
Serverless Cold Start,” in Proceedings of the 21st International Middle-
ware Conference, 2020, pp. 1–13.

[10] G. Adzic and R. Chatley, “Serverless computing: economic and ar-
chitectural impact,” Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering - ESEC/FSE 2017, 2017.

[11] N. Akhtar, A. Raza, V. Ishakian and I. Matta, ”COSE: Configur-
ing Serverless Functions using Statistical Learning,” IEEE INFOCOM
2020 - IEEE Conference on Computer Communications, Toronto, ON,
Canada, 2020, pp. 129-138.

[12] H. D. Nguyen, Z. Yang, and A. A. Chien, “Motivating High Performance
Serverless Workloads,” Proceedings of the 1st Workshop on High
Performance Serverless Computing, Jun. 2020.

[13] I. Müller, R. Marroquı́n, & G. Alonso, ”Lambada: interactive data
analytics on cold data using serverless cloud infrastructure”, Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data, 2020.

145

