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Abstract—This paper proposes a Q-learning-based task alloca-
tion approach for wireless coded distributed computing systems
with heterogeneous worker nodes. Task allocation in such systems
is challenging due to the heterogeneity in computation and
communication capabilities, leading to non-identically and inde-
pendently distributed processing times across nodes. By modeling
the task allocation problem as a Markov decision process and
applying Q-learning, the master node learns to allocate tasks
effectively, adapting to node heterogeneity and minimizing the
average processing time. This approach highlights the potential
of reinforcement learning to optimize distributed computing in
heterogeneous environments.

Index Terms—Q-learning, task allocation, wireless distributed
computing.

I. INTRODUCTION

The rapid growth of applications like machine learning
and big data analytics has heightened demand for distributed
computing systems, which must efficiently process large-
scale data. However, system performance is often hindered by
stragglers (i. e., nodes that experience delays in data process-
ing), creating bottlenecks that increase overall data processing
times. To address these issues, coded distributed computing
has emerged as a powerful approach, introducing redundancy
in task allocation by encoding tasks across multiple nodes [1].

Coded distributed computing was invented to mitigate
computation stragglers [2], and the integration with wireless
communication enhanced scalability [3]. Despite these ad-
vances, communication stragglers remain a persistent chal-
lenge in wireless environments because dynamic channels
can introduce unpredictable communication delays. Although
achievable data rate was incorporated into communication
latency and emphasized the importance of jointly optimizing
computation and communication [4], the study relies on a
communication protocol in a time-division manner, which may
be suboptimal to implement high-speed distributed computing
frameworks.

To overcome the limitations of previous studies, we herein
propose a novel Q-learning-based task allocation strategy
to address the challenges of heterogeneous wireless coded
distributed computing systems. We focus on both computation
and communication stragglers by incorporating a frequency
division multiple access communication protocol [5]. Within

This work was supported by the National Research Foundation of
Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-
2022R1G1A1010641).

this framework, we model the task allocation problem as a
Markov decision process (MDP) and employ Q-learning to
enable the master node to learn effective task allocation policy
for reducing the average processing time. Simulation results
demonstrate the potential of reinforcement learning to handle
system heterogeneity and optimize task allocation, facilitating
high-speed distributed computing systems.

The remainder of the paper is organized as follows. In
Section II, we introduce the system model for a heterogeneous
wireless coded distributed computing framework and analyze
the data processing time. Section III presents the proposed Q-
learning-based task allocation method, aimed at minimizing
average processing time. In Section IV, we evaluate the
performance of the proposed method, demonstrating the ability
to reduce processing time by adapting to node heterogeneity.
Finally, we conclude the paper in Section V.

II. PRELIMINARIES

A. System Model

We consider a distributed computing system based on a
master-worker setup in a heterogeneous wireless cluster, with
a master node and J worker nodes. For uplink communica-
tion, the total available bandwidth W is equally divided into
orthogonal subbands, one for each worker node. The wireless
channels between the j-th worker node and the master node
are modeled as quasi-static fading channels, which remain
constant during the completion of a distributed computing task.
The channel fading coefficient from the j-th worker node to
the master node is represented as hj .

In the distributed computing setup, we consider a scenario
where a matrix-vector multiplication Ax is computed, where
A is a matrix of size k × c, and x is a vector of length c.
To mitigate the impact of stragglers, the maximum distance
separable (MDS) coding is employed to encode A before
distributing its rows among the worker nodes [2]. For n > k, a
generator matrix G of size n×k generates the encoded matrix
Ã = GA of size n× c. This encoding enables the system to
tolerate up to (n − k) stragglers since the master node can
recover the final result using any k out of the n local results.
After partitioning Ã into J subblocks, each is assigned to one
of the J worker nodes. Specifically, the j-th worker node is
allocated a local subblock Ãj of size nj × c, consisting of nj

rows of Ã.
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The coded distributed computing procedure involves several
steps to efficiently perform distributed computation over a
wireless environment. First, task allocation is conducted by
pre-patching the encoded subblocks {Ãj} at each worker
node. Then, the master node broadcasts x to all worker
nodes. Upon receiving x, each worker node performs local
computation by calculating nj inner products based on Ãj ,
resulting in a local output x̃j = Ãjx. These local results are
then transmitted to the master node via uplink communication.
Thanks to the MDS property, the master node can reconstruct
the original computation by decoding as soon as it receives
the first k inner products.

B. Processing Time

Let ζj be the computation time of an worker node j, which
is modeled as a two-parameter shifted exponential random
variable [6], [7]. The cumulative distribution function (CDF)
of ζj is given by

P{ζj ≤ t} = 1− exp
(
−µj

nj
(t− ajnj)

)
, (1)

for t ≥ ajnj , where µj is the straggling parameter and aj is
the shift parameter. The computation time increases with the
number of allocated tasks, as reflected by the dependence on
nj . Specifically, larger nj leads to longer computation times
because the worker needs to process more computing tasks.
This model captures the heterogeneous nature of the worker
nodes, where some nodes may experience straggling due to
processing capabilities {µj , aj}.

The communication time ξj refers to the time required for
worker node j to transmit the local computation results x̃j to
the master node via uplink, which is given as follows [4]:

ξj =
njb
Rj

. (2)

Here, b is the number of bits required to express each local
computation result (i.e., an inner product), and Rj is the
transmission rate of worker node j, represented as

Rj = Wj log2

(
1 +

|hj |2
Wjσ2

)
, (3)

where Wj is the allocated bandwidth for worker j (i.e.,
Wj = W/J). Thus, the communication time ξj also depends
on the number of allocated tasks nj , and the channel fading
coefficients {hj} reflects the heterogeneous nature of the
wireless transmissions.

Based on the wireless coded distributed computing proce-
dure, the processing time T represents the total time required
for the master node to collect a sufficient number of local
results for successful decoding, which is defined as

T = ν th min
j∈{1,...,J}

(ζj + ξj) , (4)

where ν is the minimum number of worker nodes from which
the master node must receive results to enable successful de-
coding. Specifically, the MDS property guarantees successful
decoding if the total number of x̃j received from these ν
nodes meets or exceeds k. Therefore, the processing time T
is determined by the ν-th smallest sum of ζj and ξj , ensuring

the master node obtains sufficient local computation results
for decoding.

III. Q-LEARNING-BASED TASK ALLOCATION METHOD

The optimal task allocation strategy is designed to distribute
the rows of the encoded matrix Ã among the J worker nodes
to minimize the average processing time E[T ]. By assigning
rows of Ã to each worker node based on both computation and
communication capabilities, the system achieves a balanced
load across the nodes, allowing for high-speed distributed
computing. In this context, for the task allocation vector
n = [n1, n2, . . . , nJ ], the optimal task allocation problem can
be formulated as follows:

n∗ =arg min
n

E[T ] (5a)

subject to:
J∑

j=1

nj = n. (5b)

The heterogeneity of the system makes the task allocation
problem highly challenging. Since T is the ν-th order statistic
of non-identically and independently distributed (non-i.i.d.)
random variables, the objective function is difficult to express
in closed form, adding difficulty to the optimization. To
address these challenges, we propose a reinforcement learning-
based task allocation algorithm. Reinforcement learning pro-
vides a promising approach by enabling the master node
(i.e., agent) to dynamically learn an optimal allocation policy
through interactions with the wireless coded distributed com-
puting system (i.e., environment). This approach effectively
handles system heterogeneity, thereby reducing the average
processing time. To this end, we formulate the task allocation
problem as a Markov decision process (MDP) as follows:

• State (sk): At time step k, the state is defined by the
current task allocation vector across the J worker nodes,
i.e., sk = (n1, n2, . . . , nJ), where nj represents the
number of tasks assigned to the j-th worker node.

• Action (ak): The agent modifies the task allocation
by increasing the task count for one worker node and
decreasing it for another, ensuring that the total number
of tasks remains constant.

• Reward (rk): At time step k, the reward is defined
as rk = exp(−Tk), where Tk is the processing time
observed after taking ak. This reward design encourages
minimizing processing time because a larger reward is
given for shorter processing times while lower rewards
are given if the processing time increases.

To learn the optimal policy π∗(sk) that minimizes the pro-
cessing time, we apply the Q-learning algorithm. Q-learning
maintains a Q-value function Q(sk, ak), which estimates the
expected cumulative reward for taking action ak in state sk.
At each time step, the master node observes the current state,
selects an action using an exploration-exploitation strategy,
receives a reward based on the processing time, observes the
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next state, and updates the Q-value function. The Q-value
update is computed as follows:

Q(sk, ak) ← Q(sk, ak)

+ α

[
rk + γmax

ak+1

Q(sk+1, ak+1)−Q(sk, ak)

]
, (6)

where α is the learning rate and γ is the discount factor. This
process repeats until a set number of episodes is reached,
allowing the agent to iteratively improve the task allocation
policy.

IV. SIMULATION RESULTS

To validate the effectiveness of the proposed Q-learning-
based task allocation method, we evaluate the average pro-
cessing time in a wireless coded distributed computing system
with one master node and four heterogeneous worker nodes.
The computation parameters {µj , aj} for each worker node
are uniformly distributed between 0.5 and 10, and the wireless
channels are modeled as static Rayleigh fading channels with
a 20 dB SNR, introducing heterogeneity in both computation
and communication times. Applying the MDC coding, four
computing tasks are encoded into 8 tasks, with each local
result represented in 16 bits, and the total 1 MHz bandwidth
is equally allocated across the worker nodes.

The proposed Q-learning-based task allocation method was
trained over 1000 episodes, each consisting of 200 timesteps,
with a learning rate of 0.1 and a discount factor of 0.9. To en-
hance exploration, an epsilon-decay strategy was implemented,
gradually reducing the epsilon value to balance exploration and
exploitation as training progressed. These parameters allowed
the master node to efficiently learn the optimal task allocation
policy by interacting with the environment and progressively
minimizing average processing time.

Fig. 1 compares the average processing time of the proposed
Q-learning-based task allocation method with that of the
uniform task allocation strategy, which evenly distributes tasks
across all worker nodes. While the uniform allocation shows
significant fluctuations and processing times exceeding 2.3
seconds, the proposed method converges within 250 episodes,
stabilizing at approximately 1.9 seconds and consistently
achieving lower and more stable performance. This result
demonstrates the effectiveness of the proposed approach in
dynamically adjusting task allocation, effectively handling the
heterogeneity and significantly reducing processing times.

V. CONCLUSION

In this work, we addressed the challenge of efficient task
allocation in wireless coded distributed computing systems by
introducing a Q-learning-based strategy. The heterogeneity in
computation and communication capabilities results in non-
i.i.d. processing times across worker nodes, complicating the
optimization of task allocation. By formulating the problem
as an MDP and applying Q-learning, the master node learns
a task allocation policy that minimizes average processing
time. The proposed Q-learning-based method significantly
outperforms the uniform task allocation strategy, achieving a
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Fig. 1. Comparison of average processing time between the proposed Q-
learning-based task allocation method and the uniform task allocation strategy
over 1000 episodes.

reduction in processing time by dynamically handling node
heterogeneity and minimizing delays. These results reveal
the potential of reinforcement learning in optimizing task
allocation to enable high-speed wireless distributed computing
systems.
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