
Adaptive Energy and Latency Optimization in
Multi-Tier Networks via DDPG-Based

Multi-Objective Control
Vitou That, Vanda Yorn

Department of Intelligent Energy Industry Convergence
Chung-Ang University
Seoul, South Korea

vitou1707@cau.ac.kr, vandayorn@cau.ac.kr

Jung-Ryun Lee (Senior Member IEEE)
School of Electrical and Electronics Engineering

Department of Intelligent Energy and Industry
Chung-Ang University
Seoul, South Korea

jrlee@cau.ac.kr

Abstract—With the increasing computational demands of In-
ternet of Things (IoT) applications, air-ground integrated net-
works (AGIN), leveraging the capabilities of Unmanned Aerial
Vehicles (UAVs) and High-Altitude Platform (HAP), provides an
essential solution to these challenges. In this paper, we propose
a framework that facilitates local computing at IoT devices
and offers the flexibility to offload tasks to aerial platforms
when necessary. Specifically, we formulate a multi-objective
optimization model aiming at simultaneously minimizing energy
consumption and reducing task latency by adjusting control
variables such as transmit power, offloading decisions, and UAV
placement in a distributed network of IoT devices. Our proposed
framework employs Deep Deterministic Policy Gradient (DDPG)
techniques to dynamically optimize network operations, allowing
for efficient real-time adjustments to network conditions and
task demands. The performance of the proposed algorithm
is compared to traditional algorithms, including the Whale
Optimization Algorithm (WOA), Gradient Search with Bar-
rier, and Bayesian Optimization (BO). Simulation results show
that this approach significantly minimizes energy consumption
and latency, outperforming conventional optimization methods.
Additionally, scalability tests confirm that our framework can
efficiently integrate an increasing number of IoT devices and
UAVs.

Index Terms—Unmanned Aerial Vehicles, deep reinforcement
learning, multi-tier networks, multi-objective functions, multi-
parameters control.

I. INTRODUCTION

In many disaster-affected areas, the absence of traditional
communication infrastructure complicates the deployment of
conventional emergency response strategies [1]. In these scen-
arios, the deployment of Internet of Things (IoT) technologies
is invaluable due to their quick deployability across various
environments. Nonetheless, these devices often face significant
limitations in computational power and battery life, which can
delay critical emergency responses [2].

This work was supported in part by the Ministry of Science and ICT
(MSIT), South Korea, through the Information Technology Research Center
(ITRC) Support Program, supervised by the Institute for Information and
Communications Technology Planning and Evaluation (IITP), under Grant
IITP-2020-2018-0-01799, and in part by the National Research Foundation
of Korea (NRF) Grant funded by the Korean Government (MEST) under
Grant NRF-2020R1A2C1010929.

On the other hand, Unmanned Aerial Vehicles (UAVs) are
recognized for their agility, low cost, and ease of deploy-
ment, making them suitable for on-demand mobile network
applications. Moreover, the high-altitude and flexible posi-
tioning of the High-Altitude Platform (HAP) allows them to
handle high data traffic and maintain continuous coverage
[3]. By integrating UAVs and HAP, edge computing can
be dynamically adjusted to meet user demands and optim-
ize resource utilization efficiently. Additionally, incorporating
Non-Orthogonal Multiple Access (NOMA) communication
enhances uplink capabilities from IoT devices to both UAVs
and HAP, increasing spectral efficiency [4].

In the realm of IoT, two critical performance metrics are
energy consumption and task latency. Optimizing these metrics
is important not only for enhancing the operational efficiency
of IoT devices but also for extending their functional lifespan
and reliability. Lower energy consumption leads to longer
battery life while minimizing latency is equally important.
Mobile Edge Computing (MEC) has emerged as a key solution
to support such computation-intensive tasks. However, relying
solely on terrestrial infrastructure may not always ensure ro-
bust performance [5]. To address these challenges, integrating
HAP and UAVs as part of the MEC and IoT system is seen as
a valuable approach to extending the capabilities of terrestrial
networks.

To maximize the network’s effectiveness, a well-coordinated
and integrated design between ground and aerial networks is
essential. This includes optimizing transmit power, offloading
decisions, and UAV placements.

This paper addresses the challenges of optimizing IoT
systems that incorporate both UAV-based and HAP-based
edge computing networks, focusing specifically on minimizing
energy consumption and task latency. The major contributions
of our work are summarized as follows:

• We propose a joint optimization framework that simul-
taneously integrates multi-parameter such as UAV place-
ment, mode selection, offloading ratio, and transmit
power, specifically for multi-objective optimization in a
multi-tier network. This framework is designed to address

131979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

HAP Computing Resouce

Offloading Task

IoT-HAP Link
UAV Computing Resouce

IoT-UAV Link

Figure 1. System Model

the dual objectives of minimizing energy consumption
and latency through a weighted sum cost function while
considering Quality of Service (QoS) constraints and the
added complexity from real-time dynamics of wireless
channel gains, interference.

• We employ a Deep Deterministic Policy Gradient
(DDPG) algorithm to effectively solve our complex,
multi-objective optimization problem. Our work com-
bines the optimization of multi-parameters into a com-
prehensive framework, handling both continuous and
discrete parameters. Recognizing the mixed integer and
continuous nature of the optimization variables, we ap-
ply state-action normalization to effectively handle these
integer and discrete decision variables that can refine the
input and output of the DDPG algorithm.

• Through extensive simulations, our framework demon-
strates high performance in reducing both energy con-
sumption and latency, outperforming traditional optim-
ization methods such as Whale Optimization Algorithm
(WOA), Gradient Search with Barrier (GS), and Bayesian
Optimization (BO). These results highlight the effective-
ness of our approach in practical IoT scenarios, offering
a significant improvement over existing methods.

II. SYSTEM MODEL

As illustrated in Fig. 1, we consider an AGIN system that
consists of a set of terrestrial IoT devices with fixed position,
denoted by I = {1, 2, ..., I} , a set of UAVs, denoted by
U = {1, 2, ..., U} , and a HAP H = {0}. For simplicity,
let j ∈ J = U ∪ H denote the set of edge server. In
our model, both UAVs and the HAP serve as robust aerial
base stations and are equipped with edge servers. We define
the operational time frame of the system in discrete time
slots, indexed by T = {1, 2, . . . , t}. In each time slot, each
IoT device has computational tasks, expressed as M [t] =
{m1 [t] ,m2 [t] , ...,mi [t]}, and they can be processed either
locally or offloaded to the UAV or the HAP for remote com-

puting. However, each device can select only one offloading
option per time slot.

A. Communication Model

1) Channel Model: Let gi,u denote the channel gain from
IoT device i to UAV u. We assume that the communication
involves direct line-of-sight (LoS) link and the quality of the
channel therefore depends on the distance between commu-
nication devices. The channel gain gi,u can be modeled using
free-space path loss formula

gi,u =

(︃
λ

4πdi,u

)︃2

, (1)

where di,u denotes the distance from IoT device i to UAV u
and λ = c/fc is the wavelength with c, fc are the speed of
light and carrier frequency respectively.

Let gi,h denote the channel gain from IoT device i to HAP
h. In emergency scenarios, such as in dense forests or conflict
zones, the signal from the IoT devices to HAP encounters
various forms of attenuation. The channel gain is given as

gi,h =

(︃
λ

4πdi,h

)︃2
1

gclutter

1

gatm , (2)

2) Signal Transmission: For network connectivity, each IoT
device has several connectivity options to the edge servers,
either through a HAP or one of multiple UAVs. These options
are encoded as j = {0, 1, . . . , u}, where j = {0} links the data
to the HAP and j = {1, . . . , u} represents the link to different
UAV, indicated by a unique index. Without loss of generality,
the channel gains of I devices are ordered as |g1,j | ≤ |g2,j | ≤
· · · ≤ |gi,j |.

The effectiveness of signal transmission in this sytem is
quantified by the signal-to-interference-plus-noise (SINR). For
an IoT device i transmitting to edge server link j at time t,
the SINR is obtained as

SINRi,j [t] =
pi [t] gi,j∑︁I

v=i+1 pv [t] gv,j + σ2
, (3)

where pi is the transmit power of device i and σ2 is the noise
power density.

The achieved data rate for an IoT i at edge server link j
can then be calculated as follows:

Ri,j [t] = Bi,j log2(1 + SINRi,j [t]), (4)

where Bi,j represents the bandwidth allocated to the commu-
nication link between device i at edge server link j.

B. Energy Consumption Model

The selection of the edge server link j for transmitting data
is dictated by ψi = [ψi,0, ψi,1, . . . , ψi,j], which specifies the
mode selection for IoT device i selecting edge server link j.
It is a binary indicator vector where each element corresponds
to the edge server link, therefore ensuring only one connection
at any time t. For example, ψi(t) = [0, 1, 0, . . . , 0] indicates
the selected edge server link j = {1}.

132

The energy consumption for transmitting data by device i
at time t is calculated as follows [2]

Ei,j [t] = ψi[t]pi[t]

(︃
λi[t]mi[t]

Ri,j [t]

)︃
, (5)

where λi is the computational task ratio that IoT device i
offloads to edge server j at time t.

The processing speed of the device is denoted as ωi,
which is measured in CPU cycles per second. The variable
ϕi represents the number of CPU cycles required to process
one bit of data. The data processing rate of an IoT device as
χi = ωi

ϕi . The power consumed per CPU cycle is presented by
κ(ωi)2, where κ is the constant coefficient represents as the
energy efficiency of computing. The energy required for local
processing is expressed as

Ei,loc [t] = κ(ωi)3
(︃
(1− λi [t])mi [t]

χi

)︃
. (6)

The total energy consumption for an IoT device at given
time t is the sum of the energy used for local processing and
transmission, which is given by

Ei [t] = Ei,loc [t] + Ei,j [t] . (7)

C. Computation Model

The model specifically considers the latency of computing
on the device, data transmission latency, computational latency
at the edge server, and transmission latency for feedback.
Compared to computation latency and data offloading latency,
the transmission latency for feedback is relatively minor and
can be disregarded [6].

1) Local Computing Latency: Local computing on an IoT
device involves processing a portion of the task after offloading
part of it to the edge. The latency taken for the process, during
a specific interval t, is defined by

Ti,loc [t] =
(1− λi [t])mi [t]

χi/ϕi
=

ϕi (1− λi [t])mi [t]

χi
. (8)

2) Edge Computing Latency: The task, not processed loc-
ally, is offloaded to an edge server (UAV or HAP), causing
transmission latency. The transmission latency for offloading
data from an IoT device i to edge server link j is written by

Ti,j,trans [t] = ψi[t]
λi [t]mi [t]

Ri,j [t]
. (9)

We consider that offload tasks are processed simultaneously.
The delay for each task is determined by the proportion of
computation resources allocated to it. Let Ωj = cj

ρj represent
the total processing capacity of edge server link j. The
processing capacity is allocated fairly based on the size of
the task, which can be simplified as

ki,j [t] = Ωj λi [t]mi [t]∑︁I
v=1 ψv [t]λv [t]mv [t]

. (10)

Therefore, the latency for each individual task computation

at edge server link j is expressed as

Ti,j,compute [t] = ψi [t]
λi [t]mi [t]

ki,j [t]
. (11)

The total latency for each task at edge server link j is thus
the sum of transmission and computation latency, given as

Ti,j [t] = Ti,j,trans [t] + Ti,j,compute [t] . (12)

Task latency considers the longest latency experienced by
each task, whether it is processed locally or at the edge.

Ti [t] = max(Ti,loc [t] , Ti,j [t]). (13)

III. PROBLEM FORMULATION

The primary aim of this work is to minimize total energy
consumption and total task latency simultaneously in AGIN.
The objective function is expressed in the following

P : min
pi,λi,ψi,xu,yu

T∑︂
t=1

I∑︂
i=1

Ei[t] and min
pi,λi,ψi,xu,yu

T∑︂
t=1

I∑︂
i=1

Ti[t].

(14)
By formulating the problem as a multi-objective optimization,
we highlight our approach of using a weighted sum method to
effectively balance and optimize these two critical performance
metrics [7]. The optimization problem P in our work is
transformed into a single objective optimization problem P0
[8] as follows.

P0 : min
pi,λi,ψi,xu,yu

T∑︂
t=1

I∑︂
i=1

(αeEi[t] + αtTi[t]) (15a)

subject to C1 : 0 ≤ λi ≤ 1 (15b)

C2 : pmin
i ≤ pi ≤ pmax

i (15c)
C3 : ψi,j ∈ {0, 1} (15d)

C4 :
u∑︂

j=1

ψi,j = 1 (15e)

C5 : xmin
u ≤ xu ≤ xmax

u (15f)

C6 : ymin
u ≤ yu ≤ ymax

u (15g)
C7 : Ei ≤ Emax

i (15h)
C8 : Ti ≤ Tmax

i (15i)

where αe = 1
Emax

i
and αt = 1

Tmax
i

are the normalization
factors to balance energy consumption and task latency on a
comparable scale [7]. Constraint C1 ensures that the offloading
ratio for each IoT device remains within a practical range
from 0 to 1. Constraint C2 governs the transmit power of
each device that lies within a operational range specified
by minimum and maximum limits. Constraints C3 and C4
indicate that each IoT device operates with a single edge
server link at any given time t. Constraints C5 and C6 dictate
the allowable positions of UAVs along the x and y axes,
respectively, ensuring UAVs are positioned within strategic
locations to maximize coverage and connectivity. Constraint
C7 sets an upper limit on the energy consumption for each

133

Algorithm 1 DDPG-Based Optimization Algorithm
input : discount factor γ, soft update rate τ ,
learning rates for actor αA and critic αC
output : Optimized policy parameters θA∗, θC∗

1: Randomly initialize actor network weights θA

and critic network weights θC

2: Initialize target networks weights
θĀ ← θA, θC̄ ← θC

3: Initialize replay buffer memory B, batch size b,
number of episodes K and timesteps T

4: for k = 1 : K do
5: Initialize OU-noise N
6: Get initial observation state s[0]
7: for t = 1 : T do

8: Select a[t] = µθA
(s[t])

9: Normalize a[t] to ā[t], execute action ā[t]
10: Observe reward R [t] and new state s[t+ 1]
11: store (s[t], a[t], R[t], s[t+ 1]) in B
12: if Bsize ≥ bsize then
13: sample mini-batch

b = {(s[t], a[t], R[t], s[t+ 1])} from B
14: calculate ytarget by equation (16)
15: calculate ∇θCL

(︁
θC

)︁
by equation (18)

16: update θC by equation (17)
17: calculate ∇θAJ by equation (20)
18: update θA by equation (19)
19: update θĀ, θC̄ by equations (21), (22)

respectively

task. Lastly, constraint C8 addresses task latency, ensuring that
processing times remain within acceptable thresholds.

IV. PROPOSED ALGORITHMS

Our optimization problem P0, is an integer nonlinear
optimization problem. In this scenario, traditional optimiza-
tion methods struggle to achieve ideal outcomes due to the
complexity introduced by the problem’s nonlinearity and the
mixed nature of its variables. Additionally, the dynamic and
unpredictable nature of the environment significantly impacts
the performance metrics of our system, such as channel gains.

A. DDPG Algorithm

To address these complexities, we employ the DDPG al-
gorithm. As detailed in Algorithm 1, the DDPG algorithm
starts by setting up the actor network with weights denoted
as θA and the critic network with weights θC . The target
networks, represented as θĀ and θC̄ , are created with the same
weights as their corresponding actor and critic networks. A
replay buffer B is used to store transitions collected during
training, including states, actions, rewards, and subsequent
states in each entry. This approach allows algorithm to learn
from past experiences.

Each training episode employs an Ornstein-Uhlenbeck (OU)
noise process for action exploration to mitigate the risk of local
minima and balance the exploration of new strategies against

the exploitation of known ones. From line 8 to 11, the actions,
derived from the actor network and normalized, are executed
in the environment to obtain rewards and new states which are
stored in B. Once B contains sufficient data, a mini-batch b is
sampled for network updates. Target values ytarget is computed
as

ytarget = R[t] + γQθC̄
(︂
s[t + 1], µθĀ

(s[t])
)︂
, (16)

using the rewards and the discounted Q-values from the target
critic. The update of the critic network’s weights is guided in
a way to minimize the loss and is expressed as

θC ← θC − αC∇θCL(θC), (17)

where the ∇θCL(θC) is gradient loss function of θC and is
formed as

∇θCL
(︁
θC

)︁
= ∇θCE

[︃(︂
ytarget−QθC

(s[t], a[t])
)︂2

]︃
. (18)

Concurrently, the actor network’s parameters are refined via a
policy gradient method to maximize expected rewards

θA ← θA + αA∇θAJ, (19)

where the policy gradient for the actor network is approxim-
ated as

∇θAJ ≈ E(s,a)∼B

[︂
∇aQ

θC
(s, µθA

(s)) · ∇θAµθA
(s)

]︂
, (20)

while both target networks softly are updated to integrate
changes gradually by

θĀ ← τθA + (1− τ)θĀ (21)

θC̄ ← τθC + (1− τ)θC̄ . (22)

To effectively apply the DDPG algorithm for handling
continuous action spaces and dynamic environments, we first
transform our multi-objective optimization problem into a
Markov Decision Process (MDP). In this section, we will
outline the process of defining the states, actions, and reward
function of our MDP.

MDP Transformation

We denote S and A as sets of states and actions, respect-
ively. In the DDPG algorithm, an action is selected from the
given state space according to a policy π : S → A, which
maps states to their corresponding actions.

Environment State: At each time slot t, the environ-
ment state si [t] ∈ S of IoT device i includes all the
necessary information for decision-making. Specifically, the
state consists of the current task size mi [t], the fixed pos-
itional coordinates the IoT device [xi, yi], and the dynamic
channel state matrix from IoT device i to edge server j,
[gi,0 [t] , gi,1 [t] , . . . , gi,u [t]], which can be defined as:

si[t] = {mi [t] , [xi, yi] , [gi,0 [t] , gi,1 [t] , . . . , gi,u [t]]} . (23)

Therefore, the current state of the AGIN at each time slot t is
expressed as

S [t] = {s1 [t] , s2 [t] , . . . , si [t]} . (24)

134

Action: In our MDP model, the action a[t] at each time slot
t represents the set of operational decisions that respond to the
current state s[t].

For each IoT device, the action ai[t] includes transmit
power, offloading ratio, and mode selection. The action is
denoted as

ai [t] = {pi [t] , λi [t] , ψi [t]} (25)

Similarly, for UAVs, the action au[t] includes the coordin-
ates of UAV u:

au [t] = {xu [t] , yu [t]} . (26)

As shown from (25) to (26), the complete action combines the
actions for IoT device i and actions for UAV u, written as:

A [t] = {{ai [t] |i ∈ I } ∪ {au [t] |u ∈ U }} . (27)

Reward: In our optimization problem, the objective function
aims to minimize the total energy consumption and task
latency. To adapt this with the DDPG framework, which is de-
signed to maximize cumulative rewards, we define our reward
as the negative of the weighted sum of energy consumption
Ei [t] and task latency Ti [t]. This is expressed as follows:

R [t] = −
I∑︂

i=1

(αeEi [t] + αtTi [t] + ξ) , (28)

where ξ is penalty rewards incurred from violating constraints,
ensuring the solution remains feasible within the defined
limits.

V. SIMULATION AND RESULTS

A. Simulation Settings

In our simulation, IoT devices are randomly deployed across
a network area of 1000 m × 1000 m. The UAVs operate at a
height of 300 m, while the HAP is positioned in the center of
network area with a height of 20000 m. Task sizes assigned to
devices are uniformly distributed, ranging between [1.0− 2.0]
MB. The bandwidth is set to 10 MHz with a noise spectrum
density of −174 dBm/Hz. Table I provides the other simulation
parameters used in our simulation runs.

The DDPG algorithm used in our work is configured with
4 fully connected layers including an input layer, an output
layer, and 2 hidden layers. The hidden layers consist of 400,
and 300 neurons, respectively. The Tanh activation function is
used to normalize the output between −1 and 1. The training
process involves over 1000 episodes, each consisting of 500
steps.

B. Results

Table II shows the relationship between energy consumption
and task latency across different strategies in a network with
30 IoT devices. Our proposed method, combining local pro-
cessing with offloading to UAVs and HAP, is compared against
scenarios without these options and models with full or no
offloading. The results indicate that UAVs help reduce energy
consumption due to their proximity and efficiency, while the
HAP is essential for minimizing task latency. Full offloading to

Table I
SIMULATION PARAMETERS

Parameter Value

Speed of Light (m/s) 3 × 10
8

Carrier Frequency (GHz) 2.4
Transmit Power (dBm) 20 − 26

IoT Constant Coefficient 1 × 10
−27

IoT CPU Cycles(cycles/bit) 500
IoT Computing Speed (GHz) 0.5
UAV CPU Cycles(cycles/bit) 270
UAV Computing Speed (GHz) 1
HAP CPU Cycles(cycles/bit) 1100
HAP Computing Speed (GHz) 40
UAV X-coordinate Range 0 − 1000
UAV Y-coordinate Range 0 − 1000
Maximum Task Latency (s) 2

Buffer Size 1 × 105

Batch Size 300
Discount Factor 0.99
Soft Update Rate 0.1

Actor Learning Rate 1 × 10
−3

Critic Learning Rate 1 × 10
−2

Table II
EVALUATION OF OPTIMIZATION METHOD ON ENERGY CONSUMPTION

AND TASK LATENCY

Method Task Latency (s) Energy Consumption (J)

Proposed Method 0.950 0.152
Without UAV 1.20 0.225
Without HAP 1.54 0.195
Full Offloading 1.74 0.241
Without Offloading 1.70 0.212

either UAVs or HAP leads to the highest energy consumption
and latency.

Fig. 2 compares the performance of four optimization tech-
niques: DDPG, WOA, BO, and GS applied in a scenario of 2
UAVs and 1 HAP, differentiated by the number of IoT devices
ranging from 10 to 30. Fig. 2(a) highlights the objective
values under each algorithms, derived from the final converged
value of each algorithm. Fig. 2(b) and (c) illustrate the energy
consumption and task latency, respectively. It can be seen that
as the number of device increases, both energy consumption
and task latency also increase for each method.

Fig. 3 shows the comparative performance of the four
algorithms with different numbers of UAVs: 2, 3, and 4,
in a scenario involving 30 IoT devices and 1 HAP. Fig.
3(a) reveal the objectives value achieved by each method,
demonstrating how each algorithms improves as the number
of UAVs increases, while Figure 5(b) and (c) further explore
the energy consumption and task latency, respectively. It can
be seen that despite the growing number of UAVs, DDPG
maintains lower energy consumption and reduced task latency
compared to other methods.

Fig. 4 shows the strategic deployment of UAVs and system
associated in a 2D plane based on our proposed algorithm.
The figure captures the dynamic assignment of IoT devices
to either UAVs or the HAP depending on their geographical
distribution.

VI. CONCLUSION

This paper presented a comprehensive study on optimizing
energy consumption and latency in an air-ground integrated

135

10 15 20 25 30

Number of IoT devices

0.6

0.7

0.8

0.9

1.0

O
b
j
e
c
t
i
v
e

(a)

DDPG

WOA

GS

BO

10 15 20 25 30

Number of IoT devices

0.08

0.10

0.12

0.14

0.16

0.18

E
n
e
r
g
y

C
o
n
s
u
m
p
t
i
o
n

(
J
)

(b)

DDPG

WOA

GS

BO

10 15 20 25 30

Number of IoT devices

0.7

0.8

0.9

1.0

1.1

1.2

T
a
s
k

L
a
t
e
n
c
y

(
s
)

(c)

DDPG

WOA

GS

BO

Figure 2. Comparative performance of IoT devices. (a) Objective optimization. (b) IoT energy computation. (c) Task latency.

2 3 4

Number of UAVs

0.0

0.2

0.4

0.6

0.8

1.0

O
b
j
e
c
t
i
v
e

(a)

DDPG

WOA

GS

BO

2 3 4

Number of UAVs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

E
n
e
r
g
y

C
o
n
s
u
m
p
t
i
o
n

(
J
)

(b)

DDPG

WOA

GS

BO

2 3 4

Number of UAVs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
a
s
k

L
a
t
e
n
c
y

(
s
)

(c)

DDPG

WOA

GS

BO

Figure 3. Comparative performance of UAVs. (a) Objective optimization. (b) IoT energy computation. (c) Task latency.

0 200 400 600 800 1000
X…(m)

200

400

600

800

1000

Y
…
(m
)

(a)

UAV1
UAV2
HAP

0 200 400 600 800 1000
X…(m)

200

400

600

800

1000

Y
…
(m
)

(b)

UAV1
UAV2
UAV3
HAP

0 200 400 600 800 1000
X…(m)

200

400

600

800

1000

Y
…
(m
)

(c)

UAV1
UAV2
UAV3
UAV4
HAP

Figure 4. Strategic Deployment and Connectivity Patterns of UAVs and HAP
in an IoT Network

network by using a DDPG-based algorithm. We proposed a
novel framework that efficiently manages UAV placement, task
offloading, and power optimization within a multi-UAV and
single HAP environment. Through the simulation results, it can
be seen that integrating UAVs and a HAP allows for dynamic
resource utilization, which is crucial for maintaining robust
network performance under varying conditions.

For future work, we plan to apply federated learning to

our proposed framework. Additionally, we will investigate
the integration of multi-agent deep reinforcement learning to
further enhance system responsiveness and efficiency.

REFERENCES

[1] H. Kang, X. Chang, J. Mišić, V. B. Mišić, J. Fan, and Y. Liu, “Cooper-
ative uav resource allocation and task offloading in hierarchical aerial
computing systems: A mappo based approach,” IEEE Internet of Things
Journal, 2023.

[2] Z. Jia, Q. Wu, C. Dong, C. Yuen, and Z. Han, “Hierarchical aerial
computing for internet of things via cooperation of HAPs and UAVs,”
IEEE Internet of Things Journal, vol. 10, no. 7, pp. 5676–5688, 2022,
publisher: IEEE.

[3] K. An, Y. Sun, Z. Lin, Y. Zhu, W. Ni, N. Al-Dhahir, K.-K. Wong, and
D. Niyato, “Exploiting multi-layer refracting ris-assisted receiver for hap-
swipt networks,” IEEE Transactions on Wireless Communications, 2024.

[4] F. Fang, Y. Xu, Z. Ding, C. Shen, M. Peng, and G. K. Karagiannidis,
“Optimal resource allocation for delay minimization in NOMA-MEC
networks,” IEEE Transactions on Communications, vol. 68, no. 12, pp.
7867–7881, 2020, publisher: IEEE.

[5] C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, and X. Shen, “Deep
reinforcement learning for delay-oriented iot task scheduling in sagin,”
IEEE Transactions on Wireless Communications, vol. 20, no. 2, pp. 911–
925, 2020.

[6] Z. Ding, J. Xu, O. A. Dobre, and H. V. Poor, “Joint power and time
allocation for noma–mec offloading,” IEEE Transactions on Vehicular
Technology, vol. 68, no. 6, pp. 6207–6211, 2019.

[7] H. Wu, H. Lu, F. Wu, and C. W. Chen, “Energy and delay optimization
for cache-enabled dense small cell networks,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 7, pp. 7663–7678, 2020.

[8] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization
methods for engineering,” Structural and multidisciplinary optimization,
vol. 26, pp. 369–395, 2004.

136

