979-8-3315-0694-0/25/$31.00 ©2025 IEEE

Performance Analysis of Knowledge Tracing
Models with Mixed Precision: A Comparative
Study on Server and Raspberry Pi Environments

Junhyeong Park, Chengxing Zou, Inseo Kim, Myung Gyu Park, and Jinsung Kim
School of Computer Science and Engineering
Chung-Ang University
Seoul, Republic of Korea
{acorn0415, zcx787924758, inse0764, audrb1999, kimjsung} @cau.ac.kr

Abstract—With the recent advancements in artificial intelli-
gence (AI) and the improved performance of mobile devices,
Knowledge Tracing (KT) models have gained significant attention
in the education area, where they play a crucial role in tracking
students’ learning progress and providing personalized learning
experiences. This study aims to compare the performance of KT
models on a Raspberry Pi and a GPU server while examining
the feasibility of model lightweighting using the Mixed Precision
technique in low-power environments. Specifically, we performed
fine-tuning and inference of pretrained models on both low-
power devices and high-performance servers. The experimental
results showed minimal performance differences in terms of AUC
between the two environments, while accuracy (ACC) varied
across models. Additionally, Attention-based models experienced
significantly longer inference times when AMP was applied on
low-power devices, indicating that complex computations require
more resources on such devices. Based on these findings, applying
AMP to the DKT+ model was identified as the most suitable
option for low-power environments.

Index Terms—Knowledge Tracing, Mixed-Precision, low-power
device

I. INTRODUCTION

With the recent advancements in artificial intelligence (Al),
the performance of mobile devices has significantly improved,
leading to the release of various Al-powered mobile appli-
cations. In particular, Al-based learning apps such as Santa
TOEIC have gained significant attention in the education
sector. Among these, Knowledge Tracing (KT) models play
a crucial role in assessing students’ levels and providing
personalized learning content. The importance of KT models
continues to grow, and if these models could be trained
and inferenced on mobile devices, they could offer more
personalized learning experiences.

By performing KT models on mobile devices, the reliance
on communication with central servers can be reduced, alle-
viating traffic congestion, and ensuring stable services even
with a large number of users. In this context, this study
proposes the training and inference of KT models on mobile
and low-power devices, while also verifying the feasibility of
lightweighting models using Mixed Precision techniques. We
conducted experiments with various KT models to evaluate
their performance.

684

II. RELATED WORK

A. Knowledge Tracing

Knowledge Tracing (KT) is a model that predicts the likeli-
hood of a student answering the next question correctly based
on their learning history of correct and incorrect responses.
This model measures the student’s understanding or mastery
level of a particular skill associated with the question. KT
models have evolved in various forms to track individual
students’ learning progress and offer personalized learning
experiences.

The initial form of KT, Bayesian Knowledge Tracing (BKT)
[1], used a Bayesian network to track a student’s learning
progress. However, BKT had limitations in adequately reflect-
ing past data in the student’s learning history. To address this
issue, the DKT (Deep Knowledge Tracing) model [2], based
on LSTM (Long Short-Term Memory) [3], was introduced.
DKT provided improved performance in KT tasks by account-
ing for long-term dependencies in learning sequences.

Following DKT, DKT+ (Deep Knowledge Tracing Plus)
[4] was developed to further address the limitations of DKT.
While DKT demonstrated strong performance, it lacked the
ability to deeply capture the interaction between students and
specific problems and underutilized the complexity of input
data. DKT+ enhanced the input data by incorporating metadata
such as problem IDs, difficulty levels, and concept tags to
provide richer contextual understanding. It also introduced
input reconstruction regularization and prediction consistency
regularization to improve inference performance. These en-
hancements allowed DKT+ to achieve higher accuracy and
deliver more consistent predictions compared to DKT.

Subsequent advancements in KT models introduced mem-
ory mechanisms, such as in the DKVMN (Differentiable
Key-Value Memory Network) [5]. This model enhanced the
storage and retrieval of past information, allowing more accu-
rate predictions of student performance. Following DKVMN,
the SAKT (Self-Attention Knowledge Tracing) model [6]
emerged, which applied the Self-Attention mechanism [7].
This mechanism offered more flexibility and faster perfor-
mance in processing and predicting learning data. The self-

ICOIN 2025

attention mechanism was instrumental in overcoming the
limitations of LSTM models by dynamically reflecting the
importance of learning history.

Recent studies have highlighted the MAMBA model [8] as
the next-generation successor to transformers, and with the
introduction of MAMBA4KT [9], learning performance and
efficiency have been significantly improved. MAMBAA4KT,
in particular, excels in the field of Knowledge Tracing by
processing learning data more effectively. Compared to pre-
vious models, it provides faster and more accurate results,
demonstrating a groundbreaking improvement in learning per-
formance. Despite the development of these advanced models,
collecting and processing data on central servers can lead
to network bottlenecks. This problem becomes particularly
severe when large numbers of students access the system
simultaneously.

To solve this network bottleneck issue, one approach is to
enable the models to perform training and inference directly on
mobile or low-power devices. This approach allows real-time
performance improvements on each device, reduces reliance
on central servers, and alleviates traffic issues. Moreover, it can
provide a more personalized learning environment for students.

In this study, we compare the performance of LSTM-
based models such as DKT and DKVMN, and attention-based
models like SAKT. Specifically, we evaluate the inference
performance of these models after fine-tuning them on low-
power devices such as the Raspberry Pi, and compare this to
the performance on GPU servers. Additionally, we investigate
the effect of model lightweighting using Mixed Precision
techniques, analyzing the performance differences to assess the
effectiveness of these models on low-power devices. Through
this analysis, we explore the practical viability of performing
training and inference on mobile environments.

B. Mixed-Precision

Mixed Precision is a technique that reduces the precision
of floating-point operations from 32-bit to 16-bit to improve
the speed of deep learning model training and inference,
while also reducing memory usage. This allows for faster
computations with fewer resources, making it particularly
effective in low-power devices or constrained hardware en-
vironments. By applying Mixed Precision, some operations
are processed in 16-bit instead of 32-bit, maximizing both
speed and memory efficiency. In this experiment, we utilized
PyTorch’s AMP (Automatic Mixed Precision) functionality
to implement Mixed Precision. AMP automatically selects
the optimal precision during the computation process, aiding
in model lightweighting, and it allows the use of Mixed
Precision with minimal code modifications. In this study, we
hypothesized that applying Mixed Precision would reduce the
model size, making it more suitable for low-power devices,
and decrease inference time. Based on this hypothesis, we
conducted experiments comparing the performance of models
with and without Mixed Precision.

II1. EXPERIMENT
A. Experimental Environment

This experiment was conducted in two different environ-
ments. The first environment was a GPU server, where an
NVIDIA RTX 4090 graphics card was used for training, fine-
tuning, and inference using PyTorch. This high-performance
hardware setup provided fast computations and high accuracy,
ideal for demanding tasks.

The second environment was a low-power device, specif-
ically the Raspberry Pi 400 based on the Raspberry Pi 4
model. To ensure smooth execution of the experiment, we
installed Ubuntu 22.04 as the operating system and optimized
the environment for seamless use of Python libraries. The
Raspberry Pi had a total storage capacity of 32GB and 4GB
of RAM, providing a constrained resource setting to evaluate
model performance in low-power conditions. On the server,
we utilized the GPU for training and inference, while on the
Raspberry Pi, all fine-tuning and inference were conducted
using the CPU. The ASSISTMENT2009 dataset was utilized
to evaluate the performance during both training and inference.

B. Result and Analysis

TABLE I
COMPARISON OF AUC AND ACC BETWEEN RASPBERRY P1 AND GPU
SERVER.
GPU Raspberry Pi
Model AUC ACC AUC ACC
dkt 0.7818 0.7430 | 0.7837 0.7438
dkt_amp 0.7805 0.6942 | 0.7825 0.6953
dkt+ 0.8085 0.7630 | 0.8066 0.7618
dkt+_amp 0.7996 0.5325 | 0.8005 0.5364
dkvmn 0.8084 0.7660 | 0.8088 0.7643
dkvmn_amp | 0.8067 0.7649 | 0.8070 0.7647
sakt 0.7936 0.7566 | 0.7942 0.7574
sakt_amp 0.7908 0.7588 | 0.7917 0.7582

Inference Time Comparison by Model and Environment
3.2309

3.2478
—e— GPU
—e— Raspberry Pi

@
=)

m
g
025
v
b
—2.0
[}
.E 1.511.3871
g
c 1.0
Q
o
“_,_:_ 0.5
- 0.0686 0.0671 0.0689 0.0677 0.0652 0.1004 0.0678 0.1011
o N x Q & L Nag Q
& £ & &£ & & P &
&7 X7 & o7 &7
& NS & P
&
Models

Fig. 1. Inference Time Comparison by Model with and without AMP.

In this study, we conducted experiments comparing the fine-
tuning and inference performance on a Raspberry Pi [10] and
a GPU server. The experimental setup utilized the CPU of the
low-power Raspberry Pi and the high-performance GPU server

685

to evaluate the performance of the same models. Specifically,
pretrained models were fine-tuned and subsequently evaluated
in both environments to compare the results.

Table 1 summarizes the comparison of AUC (Area Under
the Curve) and ACC (Accuracy) for each model between
the Raspberry Pi and GPU server. This comparison clearly
highlights the effects of AMP (Automatic Mixed Precision)
application and the performance differences across the two
environments. In most models, the AUC differences between
the GPU and Raspberry Pi were within +0.26%, indicating
that high performance can be maintained even on low-power
devices. However, in terms of ACC, some models exhibited
significant differences. Notably, the DKT+ model showed a
significant 30% decrease in ACC when AMP was applied,
whereas the other LSTM-based model, DKT, showed a smaller
difference of approximately 6.5%, demonstrating relatively
stable performance. In contrast, Attention-based models (e.g.,
SAKT and DKVMN) exhibited minimal ACC differences of
less than 0.3%, regardless of AMP application.

Additionally, when models trained on the GPU were fine-
tuned on the Raspberry Pi and evaluated on the CPU, most
models exhibited minimal performance degradation. The AUC
differences between the two environments were mostly within
+0.26%, and ACC differences were similarly small across
most models. However, in some cases, such as the DKT+
model, applying AMP resulted in a noticeable drop in ac-
curacy.

Figure 1 illustrates the inference time comparison of each
model between the GPU server and the Raspberry Pi. On the
GPU server, applying AMP resulted in approximately a 50%
increase in inference time for Attention-based models (e.g.,
SAKT, DKVMN), while LSTM-based models (e.g., DKT,
DKT+) exhibited a relatively stable increase of within 2%.
This is likely due to the additional data transformation and
precision adjustment overhead caused by AMP, which more
significantly affects the complex computations of Attention
mechanisms on GPUs.

When comparing the inference time between the Raspberry
Pi and the GPU, all models showed significantly longer
execution times on the Raspberry Pi. For Attention-based
models (e.g., SAKT, DKVMN), the Raspberry Pi had up to
a 4000% increase in inference time compared to the GPU.
This dramatic difference can be attributed to the computational
complexity of Attention mechanisms, which rely heavily on
parallel processing, a feature that is limited in low-power CPU-
based environments. For LSTM-based models (e.g., DKT,
DKT+), the difference was smaller but still significant, with
the Raspberry Pi showing up to a 2000% increase in inference
time compared to the GPU. This highlights the computational
constraints of the Raspberry Pi relative to the GPU.

Additionally, the effect of AMP on inference time varied
depending on the model type. On the Raspberry Pi, LSTM-
based models showed a more noticeable increase of up to 10%,
whereas Attention-based models demonstrated only minor
differences of between 0.5% and 2%. This can be explained
by the fact that Attention-based models inherently have longer

baseline inference times, making the percentage impact of
AMP-related overheads appear smaller. Moreover, in low-
power CPU environments, the benefits of parallel optimization
offered by AMP are limited, resulting in a smaller overall
impact on inference time for Attention-based models.

In summary, the impact of AMP application and the dif-
ferences between the GPU and Raspberry Pi environments
depend significantly on the model structure (LSTM vs. At-
tention). On the GPU, AMP application led to significant
increases in inference time for Attention-based models, while
LSTM-based models remained relatively stable. Conversely,
on the Raspberry Pi, Attention-based models had longer
baseline execution times compared to LSTM-based models,
but AMP application caused only minimal differences in their
inference times. These results highlight the distinct hardware
characteristics and computational behaviors of GPUs and
CPUs.

IV. CONCLUSION

The impact of AMP (Automatic Mixed Precision) applica-
tion and the performance differences between the GPU and
Raspberry Pi varied significantly depending on the model
structure (LSTM vs. Attention). In the GPU environment,
applying AMP resulted in a roughly 50% increase in inference
time for Attention-based models (e.g., SAKT, DKVMN),
while LSTM-based models (e.g., DKT, DKT+) showed a
relatively stable increase of within 2%. This can be attributed
to the data transformation and precision adjustment overhead,
which had a more pronounced effect on the complex compu-
tations of Attention-based models.

In contrast, in the Raspberry Pi environment, Attention-
based models exhibited longer baseline inference times com-
pared to LSTM-based models, but the percentage increase
due to AMP application was minimal, ranging from 0.5%
to 2%. LSTM-based models, on the other hand, showed
a more noticeable increase of up to 10%, which can be
explained by the limited parallel optimization benefits in CPU-
based environments. Additionally, when comparing inference
times between the GPU and Raspberry Pi, Attention-based
models showed up to a 4000% increase, while LSTM-based
models exhibited up to a 2000% increase, highlighting the
computational constraints of low-power CPU environments.

In summary, AMP application had varying effects depend-
ing on the environment. On GPUs, the complex computational
structure of Attention-based models resulted in increased in-
ference times when AMP was applied. Conversely, on the
Raspberry Pi, Attention-based models, despite having longer
baseline execution times, showed minimal differences in in-
ference times due to AMP. These results reflect the distinct
hardware characteristics and computational behaviors of GPUs
and CPUs, demonstrating that the impact of AMP application
is highly dependent on both the model structure and the
computational environment.

In future research, we plan to expand our experiments
beyond the Raspberry Pi to include a variety of widely
used mobile devices, enabling a broader evaluation of model

686

performance in low-power environments. Furthermore, by
applying not only mixed precision techniques but also various
other optimization methods, we aim to effectively narrow the
performance gap between high-performance GPUs and low-
power devices.

ACKNOWLEDGMENT

This work was partly supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIT) (No. NRF-2022R1G1A1013586) and Ko-
rea Institute for Advancement of Technology(KIAT) grant
funded by the Korean Government(MOTIE) (P0020632, HRD
Program for Industrial Innovation).

REFERENCES

[11 A. T. Corbett and J. R. Anderson, “Knowledge tracing: Modeling the
acquisition of procedural knowledge,” User modeling and user-adapted
interaction, vol. 4, pp. 253-278, 1994.

[2] C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami, L. J. Guibas,
and J. Sohl-Dickstein, “Deep knowledge tracing,” Advances in neural
information processing systems, vol. 28, 2015.

[3] A. Graves and A. Graves, “Long short-term memory,” Supervised se-
quence labelling with recurrent neural networks, pp. 37-45, 2012.

[4] C.-K. Yeung and D.-Y. Yeung, “Addressing two problems in deep knowl-
edge tracing via prediction-consistent regularization,” in Proceedings of
the fifth annual ACM conference on learning at scale, 2018, pp. 1-10.

[5] J. Zhang, X. Shi, I. King, and D.-Y. Yeung, “Dynamic key-value memory
networks for knowledge tracing,” in Proceedings of the 26th international
conference on World Wide Web, 2017, pp. 765-774.

[6] S.Pandey and G. Karypis, “A self-attentive model for knowledge tracing,”
arXiv preprint arXiv:1907.06837, 2019.

[7]1 A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[8] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with
selective state spaces,” arXiv preprint arXiv:2312.00752, 2023.

[9] Y. Cao and W. Zhang, “Mambadkt: An efficient and effective mamba-
based knowledge tracing model,” arXiv preprint arXiv:2405.16542, 2024.

687

