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Abstract—Vehicular Ad Hoc Networks (VANETS) are signifi-
cant for providing services, applications, and communication to
vehicles, connecting them to the outside world and supporting
Intelligent Transportation Systems (ITS). Inside the car, the in-
vehicle network (IVN), also known as CAN (Controller Area
Network), handles communication between Electronic Control
Units (ECUs) and sensors, ensuring the vehicle’s functionality
and safety. However, external connections make this internal
network vulnerable to unauthorized and malicious access. This
work presents a comparative study of two bio-inspired meta-
heuristics (Bat and Ant Colony Optimization) for use in Intrusion
Detection System (IDS) models. It focuses on machine learning-
based classifiers to detect and classify anomalous and malicious
traffic on the CAN bus.

Index Terms—CAN, Controller Area Network, Machine Learn-
ing, Bat Bio-inspired Algorithm, IDS, IoT, VANET, feature
selection.

I. INTRODUCTION

Modern vehicles have evolved from simple mechanical
machines into complex systems with advanced technologies.
They now feature telematics units with wireless and Global
Positioning System (GPS) connectivity, enabling intelligent
systems to detect issues autonomously. In-Vehicle Networks
(IVNs) connect various subsystems, allowing interaction with
external devices through wireless communications protocols
and through the On-Board Diagnostics Port (OBD-II). While
this connectivity improves functionality, it also introduces
security risks.

The Controller Area Network (CAN) is a communication
standard used in automotive, industrial, and Internet of Things
(IoT) applications. It facilitates efficient data exchange be-
tween controllers and devices through specific rules. Key
features include priority-based identifiers, dominant and reces-
sive bit states, non-destructive arbitration, and fault tolerance.
These characteristics ensure reliable real-time communication,
even in congested networks.

Despite the benefits of using OBD-II, sensors and actuators
in the electronic components (Electronic Control Units -
ECUs), and wireless communications that enhance vehicle ef-
ficiency for Intelligent Transportation Systems (ITS), security
remains highly vulnerable, making these components targets
for malicious actions.

Threats and vulnerabilities in Vehicular Ad Hoc Networks
(VANETS) are greater than in conventional wired networks.
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In addition to traditional attacks like Man in the Middle,
Packet Sniffing, and Denial of Service (DoS), VANETs face
specific threats aimed at disrupting safety and spreading false
information. [1]

IoT represents a global network infrastructure of intercon-
nected devices and systems, enabling seamless communica-
tion and interaction across various domains. As described in
[2], IoT integrates advanced technologies such as sensors,
actuators, and network protocols to monitor, manage, and
optimize systems in real-time. A key application of IoT is in
Smart Grids, where it enhances data collection, analysis, and
predictive management for energy systems. Additionally, [3]
highlights the transformative potential of IoT in connecting
devices to create smarter, more efficient environments, ad-
dressing both operational efficiency and security challenges.

According to [4], IoT is essential in the vehicular industry
through VANETsS, a subset of IoT. However, VANETSs face
significant security issues due to the rapid adoption of IoT
in vehicles, leading to increased cyber threats and delays in
detection. Al techniques, particularly Machine Learning (ML)
and bio-inspired algorithms like Ant Colony Optimization
(ACO) and Bat algorithms (BA), are key for threat detection
and mitigation. Feature Selection (FS) techniques enhance
network data processing, improving communication system
efficiency, accuracy, and reliability. This paper utilizes IoT-
based methods to enhance intrusion detection in vehicular
networks.

Additionally, ML bio-inspired algorithms offer effective
solutions to complex problems by finding optimal out-
comes. These algorithms are gaining prominence in the meta-
heuristics field due to their ability to learn and adapt like
biological organisms, attracting scientific attention for solv-
ing increasingly complex problems in dynamic, constrained
environments.

This paper compares the Bat and ACO algorithms for
detecting anomalies and malicious attacks in IVNs using
bio-inspired ML techniques. By selecting key features, these
algorithms identify sensor behavior patterns in CAN systems,
effectively distinguishing normal message exchanges from
anomalous ones.

This study focuses on improving detection accuracy, scala-
bility, and the reliability of CAN networks to enhance service
protection and security measures.
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The main contributions of this paper are as follows:

1) A comparative study of the Bat and ACO algorithms for
anomaly detection in CAN systems.

2) The implementation of bio-inspired feature selection
techniques to improve the efficiency and accuracy of
ML classifiers.

3) An evaluation of the performance of two supervised ML
classifiers: K-Nearest Neighbors (KNN) and Extremely
Randomized Trees (Extra Trees), for intrusion detection
in CAN networks.

4) A demonstration of the scalability and robustness of bio-
inspired algorithms in identifying malicious messages in
automotive environments.

The remainder of this paper is organized as follows: Section

II presents the existing related work. Section III introduces the
proposed data IDS mechanisms, while Section IV describes
the results of the experiments performed. Finally, Section V
concludes the paper and presents future work.

II. RELATED WORKS

In recent years, the security of IVNS, particularly in CAN,
has become a critical area of focus due to the heightened vul-
nerability of modern connected vehicles to cyber-attacks. Var-
ious studies have introduced techniques for detecting anoma-
lies, failures, and cyber-attacks within the CAN environment.
This summary highlights the most pertinent approaches in the
literature, emphasizing their primary detection methodologies.

The study [5] proposes a novel intrusion detection method
for vehicular networks utilizing survival analysis. It addresses
the rising cybersecurity challenges stemming from the integra-
tion of IT and wireless communication in modern vehicles.
Key contributions include a generalized intrusion detection
approach and the evaluation of multiple attack scenarios on
the CAN system.

The authors in [4] propose an anomaly detection method
for IoT networks using ACO and the Genetic Algorithm (GA)
for feature selection. Their D-ACO/GA system successfully
reduces the feature space while maintaining high detection
accuracy, with ACO achieving 99.37% accuracy and GA
achieving 98.86%. The main contribution is the method’s
ability to lower computational complexity, enhancing the per-
formance of intrusion detection systems in IoT environments.

In [6], the authors improve security in CAN environments
by introducing a Variable Length Message Authentication
Code (MAC). Using the Improved CAN Data Reduction
(ICANDR) algorithm, they compress data to accommodate the
MAC without increasing network load or altering the CAN
frame format. The key contribution is dynamically adjusting
the MAC length based on data size, ensuring confidentiality
and integrity while reducing busload, supported by the Ad-
vanced Encryption Standard 128 (AES-128) and Hash-based
Message Authentication Code (HMAC) for authentication.

The study [7] introduces CANet, a framework using un-
supervised deep learning techniques, including Long Short-
Term Memory (LSTM) networks and autoencoders, to capture
the temporal dynamics of CAN signals. Intrusion detection is

achieved through signal reconstruction and anomaly identifica-
tion based on deviation scores. CANet is the first deep learning
model capable of handling the high-dimensional structure of
CAN bus data with diverse message types and intervals. It
surpasses traditional ML methods in detecting both known and
unknown intrusions, such as signal replay, flooding, and signal
suppression attacks.

This review of related works demonstrates the evolution of
intrusion detection techniques in CAN networks, transitioning
from traditional rule-based and statistical methods to modern
deep learning architectures that can handle high-dimensional,
complex data with varying signal structures. These contribu-
tions have paved the way for more effective anomaly detection
like bio-inspired meta-heuristics.

III. INTELLIGENT BIO-INSPIRED META-HEURISTICS
A. BAT Mechanism

The Bat Algorithm (BA), inspired by bats’ echolocation
behavior, uses the principles of sound pulse emission and
echo analysis to determine object distances and positions,
mimicking their ability to navigate and hunt in darkness [8]. In
BA, artificial bats are characterized by position, velocity, and
frequency vectors, which are iteratively updated to explore
the search space and refine solutions within the continuous
domain.

According to [8], some assumptions about bat echolocation
are made:

1) Echolocation is a universal ability in bats, allowing them
to determine the distance to food sources, prey, and
obstacles, and differentiate between elements in their
environment.

2) When searching for prey, bats perform exploratory
flights with constant speed (v;) and emission frequency,
while gradually adjusting the wavelength (or frequency),
pulse amplitude, and pulse emission rate () based on
the target proximity.

3) The amplitude of sound can vary but generally ranges
from high (A4p) to low values (A,;,), highlighting the
bats’ ability to adapt their sound emissions to their
environment.

The bat algorithm’s pseudo-code begins with randomly cre-
ating bats (line 02), where each bat has its own characteristics
such as pulse emission rate (r;), pulse volume (4;), frequency
(f:), and speed (v;). These attributes are set randomly within
predefined limits. Line 03 sets the initial frequency (f;)
for position (z;). The pulse rate (r;) and amplitude (A;)
are initialized (line 04), and from lines 06 to 15, the bats
evolve over time. Their frequencies, speeds, and positions are
updated, and solutions (the positions of the bats) are evaluated
using an objective function, assigning the best-performing bat
to position ().

At each iteration t, the bat parameters are updated, therefore,
a new frequency f;, speed v; and position z; for each
individual ¢, are modified based on the following equations

[8]:
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TABLE I
RELATED WORK

Reference

Technique

Advantages

Disadvantages

5

Survival analysis applied to CAN messages in vehicular networks

High accuracy,low computational cost, can do real-time detection

May not address all types of attacks, Performance could vary

D-ACO/GA for Feature Selection in IoT Anomaly Detection

High accuracy, Suitable for IoT

Longer processing time for large datasets

Variable Length MAC for CAN

Reduces CAN busload, no modifications to CAN protocol

Additional complexity due to compression and dynamic MAC size

7
6
7

LSTM and autoencoders to model CAN bus data.

handling multiple CAN signals, high accuracy.

High computational resources for training the neural networks.

fi:fmin+(fmax_fmin)ﬁ (])
it = vl 4 (af — 2. fi )
aith = 2t 4ot 3)

The range fuin and fiax represents the frequency of each
bat. 8 € [0,1] is a value randomly generated based on a
normal distribution. After updating the frequency and speed
parameters, the pulse emission rates for each bat are checked.
In line 09 of the algorithm, a comparison is made between
the pulse rate r; and a randomly generated value from a
normal distribution. If 7; is lower than the random value,
it suggests that bat ¢ is likely at a certain distance from its
prey x;. Thus, local exploration is performed by selecting a
promising solution and making slight adjustments to generate
a new solution for bat ¢ (line 11). In step 13, a random
solution is generated, and in the next step, several conditions
are examined to determine its feasibility. If the conditions are
favorable, the newly generated solutions are validated (line
14), the rate r; is increased, and the amplitude A; is reduced
(line 15). Finally, the bats are ranked, and based on this
ranking, the most successful bat is selected (line 17).

Algorithm 1 BAT Algorithm

Objective function f(z), 2 = (21, ..., 24
Initialize bat population z; (i =1,2,...,n) and velocity v;
Define the pulse frequency f; at x;

Initialize pulse rates r; and loudness A;

begin

for (1 < Maximum number of iterations) do

Generate new solutions by adjusting frequency, updat-
ing velocities, and locations/solutions [equations (2.1)
to (2.3)]

if (rand < r;) then

Select a solution among the best solutions Gen-
erate a local solution around the selected best
solution

)T

end

Generate a new solution by flying randomly
if (rand < A; & fix;) < f(x*)) then
Accept the new solutions

Increase 7; and reduce A;

end
Rank the bats and find the best one

en

end

Fig. 1. BAT Algorithm

The primary goal of the BA is to find the optimal solution
to a given problem by adjusting its pulse rate and sound in-
tensity to effectively navigate the search space. The following

parameters are key to the algorithm’s performance and should
be carefully tuned:

o Number of Bats (n): This affects the diversity of the
search. A low number can result in insufficient ex-
ploration, while a high number may increase runtime.
Experiment to balance exploration and exploitation.

o Pulse Rate (r): Controls the intensity of the bats’ move-
ment. Higher values allow for broader movements, but
values too low can cause premature convergence, while
values too high may lead to over-searching.

o Intensity (A): Determines how strong a bat emits a
“call’, that is to attract others. Higher values encourage
exploration, but can also cause large jumps.

o Pulse Emission Rate (a)): Controls the likelihood of a bat
emitting a pulse. Higher values increase exploration but
may make the search less focused.

o Position Update Rate (v): Defines how often the bats
update their positions. Lower values favor exploration,
while higher values focus on local exploration.

o Stopping Criterion: Set a stopping condition, such as a
maximum number of iterations or minimal improvement
in the solution.

Key Considerations:

o Search Space Size: Larger spaces require more bats to
enhance exploration and effectively cover the solution
space.

e Problem Complexity: Complex problems benefit from
higher pulse rates and intensities, enabling better move-
ment and focus on promising solutions.

o Local Minima: A higher position update rate (y) and local
optimization techniques (e.g., 2-opt) help escape local
minima.

« Runtime: Increasing parameter values can result in longer
runtime.

o Exploration vs. Exploitation: Adjusting pulse rates and
intensities balances global exploration with focused local
search.

The BA is a bio-inspired meta-heuristic leveraging bat
echolocation to address optimization problems. Its adaptable
parameters, including pulse emission rate and sound ampli-
tude, enable effective balancing of global and local search.
This flexibility ensures robust solutions, making it well-suited
for anomaly detection and complex optimization challenges.

B. Ant Colony Optimization (ACO) Mechanism

In [4], to ensure IoT security, it is essential to reprocess and
scrutinize data during transmission to remove non-conforming
or redundant information that could compromise security.
Feature Selection (FS) techniques are used to process the vast
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amount of data in the network, enhancing the efficiency and
accuracy of the communication system and preventing errors
and system downtime. In this study, ACO is used as feature
selection approach (FS) to reduce the dimensionality of the
dataset and identify relevant features without compromising
the prediction accuracy.

According to the study of [4], ACO is motivated by the
collective behavior of real ants as they search for food, using
the same principles of cooperation and collaboration to explore
the search space. The agents in this algorithm employ the
bio-nspired strategy based on the principle that ants operate
individually with simple rules. During their journeys, they
deposit pheromones, and collectively, they have the ability to
detect variations in the concentration of these pheromones in
the vicinity. As a result, they tend to move in the direction
where the concentration is higher. The functioning of ACO
can be comprehended through [4] work.

Algorithm 2 ACO Algorithm [4]
Input: matrix of distances between the features
Output: the best subset of features
Procedure ACO:
while nor termination condition is met do
foreach interaction in the application do
init of the parameters: . 3, Q, p,and |y > m=n
— number of ants is equal to the number of towns
for generated ant population do
| calculate partial fitness for each ant
end
bestsolutions < partial fitness
end
update pheromone trails

end

Fig. 2. ACO Algorithm

C. Proposed Technique

The IDS is designed to detect malicious messages within
the CAN bus of in-vehicle environments in autonomous and/or
connected cars. It utilizes bio-inspired meta-heuristics and ML
techniques to enhance detection efficiency. This mechanism
can be implemented on the same bus as other ECUs, and
can function as a Firewall ECU, capable of evaluating the
data packets travelling on the CAN bus and classify them as
attack packets or normal packets. In [9] presents locations for
deploying IDS on the CAN bus system. It can be deployed at
the CAN, or ECU or in the gateways. The IDS will passively
“listen” to the communication in search of malicious content.
The aim of the system is to analyse the message exchanges
between the sensors that control the car’s vital functions.
The proposed system selects characteristics of a CAN bus
sensoring data set of In-vehicle messages from a chosen car,
and applies ML techniques to classify them into attack or
normal categories. To do this, KNN and ExtraTrees classifiers
are used. The performance of the mechanism is evaluated
using these two ML algorithms. As demonstrated in the model
outlined in Figure 3.

Database

Learning Process

70%——>
Data

Feature Selecti

30%
@

Testing Process

Learning Model ‘

¥

Accuracy, Recall, Precision, F1 Score,
Number of Features

‘

Fig. 3. The Bio-inspired Model

D. Data Processing

In this paper we used the same datasets studied at [5]
however in this study we concatenate the 9 files used in the
previous work

According to [10] Data science is commonly defined as
a methodology by which actionable insights can be inferred
from data. The representation of complex environments by
rich data opens up the possibility of applying all the scientific
knowledge we have regarding how to infer knowledge from
data. In this study we want to discover patterns of malicious
behavior in IVNs environments.

The problem of finding a function

H(z):R* - K “4)

that maps an input space in R onto a discrete set of k target
outputs or classes K = 1,..., k. In this setting, the features are
arranged as a vector x of d real-valued numbers.

Still in [4], the effectiveness of the learning algorithm relies
heavily on the nature of the input data it receives. To enhance
the quality of the data, several data pre-processing techniques
are employed, including transformation, normalization, and
sampling. From the ECUs devices, a diverse array of data
is gathered, containing numerous features. However, not all
of these features contribute meaningfully to the classification
task; and some are considered redundant and irrelevant. Con-
sequently, these superfluous and non-informative features are
removed. Additionally, numerical feature values within the
dataset may exhibit fluctuations. To mitigate this, a normal-
ization process is applied to confine these values to a range
between 0 and 1. The dataset may exhibit an imbalance, with
instances of intrusive traffic significantly outnumbering in-
stances of normal traffic. This imbalance adversely impacts the

681



classifiers’ performance, leading to overfitting and distortions
in the model.

To address the discrepancy in class frequency within the
training dataset, in this work, we used the ADASYN (Adap-
tive Synthetic Sampling) Oversampling technique [11]. This
technique is an enhancement of SMOTE (Synthetic Minority
Oversampling Technique). In ADASYN, the density distribu-
tion r; is used as the decision criterion for the number of
synthetic data points to be generated for the minority class.
This criterion places greater emphasis on observations that
are harder to generalize. The calculation of ADASYN can be
represented as equations:

d="s 5)
m
G = (m;—ms) xf8 (6)
Ti:%a 1:17 <oy Mg (7)
T
7 = ~ms . 3
DT
gi =7 x G )

The d represents the imbalance ratio, used to assess whether
applying the technique is necessary. Here, ms and m; repre-
sent the sample sizes of the minority and majority classes,
respectively. G represents the number of synthetic data points
generated, where 5 € [0, 1] regulates the balance level.

The sample weight r; is calculated where A; represents the
number of examples in the K-nearest neighbors of z; that
belong to the majority class. This weight is normalized using
the formula 7;, where ; represents the density distribution.

Finally, g; represents the number of synthetic data points
generated for each minority class observation. If a minority
observation has few neighbors, it will be located in a region
where the minority class is underrepresented.

Utilizing the feature subset derived from the feature selec-
tion phase, we conduct classification and detection tasks using
a ML classifier. In this research, our primary focus is on binary
classification, specifically centered on assessing the likelihood
of an attack occurrence. The classifiers employed in this study
encompass K-Nearest Neighbors (KNN) and Extra Trees. We
present here an overview of these classifiers.

e KNN is a widely used supervised ML classifier that
classifies data based on the proximity of instances using
statistical measures. The "K” refers to the number of
nearest neighbors considered in the classification process.
Instances with similar features are grouped into the same
class, and KNN labels new data points based on patterns
learned from previously labeled data.

o The Extremely Randomized Trees (Extra Trees) algo-
rithm is a supervised ensemble learning method similar to
random forests but often faster. It builds multiple deci-
sion trees using random sampling without replacement,

creating unique datasets for each tree. Additionally, a
random subset of features is selected for each tree. The
key distinction of Extra Trees is its use of randomly
chosen split values for features, instead of computing
optimal splits. This randomness increases the diversity
and reduces the correlation between the trees, enhancing
model performance.

IV. RESULTS

This section shows the evaluation of both BAT-IDS and
ACO. In Figure 4, we compare ACO and BAT-IDS in terms
of the number of features selected per iteration, while 5 shows
the accuracy achieved by the classifiers. In 4, the number
of features selected by ACO and BAT-IDS varies over 25
iterations. ACO, represented by the blue line, shows greater
variability in the number of features selected, ranging from
9 to 11 features across different iterations. In contrast, BAT-
IDS, represented by the red line, demonstrates more stability,
selecting between 8 and 10 features over the iterations.

This behavior reflects the nature of each algorithm: ACO
tends to explore a broader solution space, resulting in more
fluctuation in feature selection, whereas BAT-IDS offers a
more consistent selection process due to its more controlled
parameter adjustment. In Figure 5, the classification accuracy
of the Extra-Trees and KNN classifiers is displayed for the
features selected by both ACO and BAT-IDS.

The findings suggest that both classifiers are highly accurate,
achieving values above 0.94 across all instances. When it
comes to features selected by ACO, KNN slightly edges
out with an accuracy of 0.9993, compared to Extra-Trees at
0.9989. On the other hand, for the BAT-IDS-selected features,
Extra-Trees performed slightly better, reaching an accuracy of
0.9481, compared to 0.9460 for KNN.

These small differences suggest that KNN may benefit
more from the features selected by ACO, while Extra-Trees
is better suited to the feature sets generated by BAT-IDS.
Overall, both BAT-IDS and ACO, when combined with the
classifiers, exhibit strong performance in detecting malicious
messages within the CAN bus of autonomous and connected

Interaction x Features Number

ACO —@—
BATIDS —lli—

Feature Number

0 5 10 15 20 2 20
Iterations

Fig. 4. Features selection x iteractions.
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Fig. 5. Attack Classification

vehicles, making them suitable choices for intrusion detection
systems. The differences in feature selection patterns and
classifier performance highlight the potential for optimizing
these methods depending on specific operational requirements.

The Figure 6 shows how the performance of the ACO and
BAT algorithms improves as iterations progress. In the initial
stages, both algorithms (ACO in blue and BAT in red) show
an increase in accuracy. As iterations continue, they reach
near-perfect accuracy levels, with both stabilizing by the third
iteration.

This performance indicates that both ACO and BAT quickly
attain high accuracy levels within just a few iterations. This
rapid convergence and subsequent stabilization suggest that the
algorithms effectively adapt to the selected features, ensuring
robust intrusion detection. Thus, their reliable performance
confirms their suitability for applications like monitoring ve-
hicle systems.

V. CONCLUSION

As modern vehicles become increasingly connected, the
CAN bus faces significant vulnerabilities, making intrusion
detection essential for ensuring the safety and reliability of

Iteration X Accuracy

Accuracy

ACO —e—
BAT —&—

Iteration

Fig. 6. Accuracy.

in-vehicle networks. In our research, we explored two inno-
vative, nature-inspired algorithms: Bat Algorithm and ACO.
The study examined how these algorithms can be applied to
IDS in CAN bus networks. By employing ML techniques in
conjunction with these bio-inspired algorithms, we were able
to enhance feature selection, improve classification accuracy,
and demonstrate robust detection of anomalies and malicious
messages.

Our results show that both algorithms achieve high accuracy
rates in detecting CAN bus intrusions, with ACO slightly
outperforming Bat in terms of feature selection variability,
while Bat exhibits more consistent performance. The empirical
investigations demonstrate that these algorithms exhibit a
significant degree of adaptability across various operational
scenarios, rendering them as highly viable candidates for
practical implementations of IDS within autonomous and
interconnected vehicular environments.

As future work, we aim to explore additional bio-inspired al-
gorithms to further improve feature selection and classification
accuracy in CAN networks. Expanding the analysis to include
different types of attack scenarios and datasets is another key
direction. Furthermore, implementing the proposed method-
ology on dedicated hardware platforms, such as embedded
systems, will allow for real-time evaluation and validation in
practical vehicular environments.
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