
Distributed Mobile Computing for Deep Learning
Applications

Seunghyun Lee, Haesung Jo, Jihyeon Yun and Changhee Joo∗
Department of Computer Science and Engineering, Korea University

Seoul, Korea
{seunghyunlee, atregy, jihyeonyun, changhee}@korea.ac.kr

Abstract—Distributed computation is the widely used method-
ology to overcome challenges that the application covering
multiple mobile devices mostly experiences, such as the high
complexity of the computation and the resource limitation. By
splitting the required computation and distribute the computation
across the multiple devices, it can achieve lowered computation
time and resource required per device and effective utilization in
terms of the total resource management. This is risen as an ap-
propriate approach to manage problems that recent applications
with deep learning process have. Followed by the generalization
of Internet of Things (IoT) and the development of data collecting
technology, the deep learning process has to handle much larger
dataset which makes it hard to be transferred through the
network. This also leads to more complex computation that a
single device may not be able to operate itself. In this paper, we
consider the distributed computation applied in various fields,
and how it is applied to distribute the deep learning process
through observing researches studying about it.

I. INTRODUCTION

The rapid growth of the artificial intelligence have brought
dramatic changes in a diverse field, which includes au-
tonomous driving, personalized recommendation, and image
recognition/detection. Especially, recent years shows remark-
able advances based on the progress of deep learning.

Deep learning is a subset of machine learning, which uses
artificial neural networks. Through multiple layers of neural
networks consisting of an input layer, an output layer, and
hidden layers, deep learning can learn from enormous sets of
data and use them to model and solve complex problems at
high speed that the human cannot follows. The subject that
how the deep learning can be applied to improve our real
life has been continuously studied [1]. Microsoft applied deep
learning technique to audio recognition, enabling Microsoft
Audio Video Indexing Service (MAVIS) to search audios and
video files through human voices and speeches. Similarly,
Google uses deep learning on big data environment for pro-
viding image search service [2]. Recently chatbot services
like ChatGPT and Bing Chat which are trained through deep
learning based on tremendous data appears. In medical area,
deep learning technique is used for analyzing the microscopy
image [3], reducing human intervention in generating features
in health informatics [4], and in other various ways.

* C. Joo is the corresponding author.
This work was supported by the NRF grant funded by the Korea

government (MSIT) (No. 2022R1A5A1027646).

The development of deep learning technique enables various
applications for mobile devices. For example, for recommend-
ing applications, for optimizing web browsing, monitoring
activity or health information, etc [5]. Such applications in
mobile environment face more problems due to the restriction
that mobile devices commonly have. Compared to the edge
server that usually has performed the overall computation, it
is common that the mobile device suffers from the limited
hardware resources like the battery or CPU. As the recent
applications require the ability to handle more complex tasks,
it becomes the main challenge that the deep learning on mobile
device should overcome.

In this survey, we study how the distributed computation can
be a solution for overcoming such limitations and the literature
studying about distributing learning computation over multiple
devices. In Section II, we introduce the distributed computa-
tion in general use. In Section III, we study how the distributed
computation can be adapted in deep learning process, then
introduce researches that has been studied in two categories
by providing the literature in Section IV.

II. DISTRIBUTED COMPUTATION

As Internet of Things (IoT) be generalized, tremendous
number of devices start to operate as nodes consisting the
network environment, communicating each other by transfer-
ring or receiving data. Each node still has the limitation of
computation and energy resource, thus a single node is usually
not capable of executing tasks required for centralized process.
It is hard to increase the computational resource or energy
capacity for the mobile device due to the realistic limitation,
so the methodology of distributing the required computation
over multiple devices to utilize more resources is considered
as a reasonable approach.

In case of vehicular network, each automobiles becomes
a communicating node consisting the network and researcher
needs to consider their mobility and the connectivity among
them. In [6], authors model a two-dimensional network topol-
ogy regarding each vehicle as a single node, and offload the
task depending on each node’s status including capability,
connectivity, and etc.

Distributed computation is often handled when transmitting
traffic end-to-end. To reduce the transmission delay, packets
might be compressed in the middle of the process or optimal

674979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

route should be found considering each node’s status like
energy cost and channel state. Research [7] proposes the
methodology that can be applied in multi-hop transmission in
IoT networks. In this study, authors consider the situation that
IoT devices transmit short packets to multiple destinations,
while harvesting energy in the middle of the process from
multiple power beacons. According to the study, proposed
scheme shows better performance in terms of throughput,
execution time, reliability, and so on.

Research [8] analyzes the mobile edge computing under
the assumption that the devices are powered wireless. In
this study, authors achieve decentralization of the algorithm
through online learning, and consider both the distributed
computation and energy harvesting through offloading the
computation.

Literature [9] suggests a neural-network-based framework
considering two-dimensional IoT mesh network. The frame-
work considers the energy that each node consumes and the
routing problem, then distribute the data processing over multi-
ple nodes or operate the data aggregation. From the evaluation
through the numerical simulations, the authors succeed to
show the meaningful latency reduction is achieved even in
the realistic environments.

III. DISTRIBUTED COMPUTING IN DEEP LEARNING

As the digital technologies are improved, the larger size of
data collection and storing it are possible, which the modern
application actively use to provide better quality of service.
Therefore, the deep learning model which will be applied
to such applications needs to consider of handling complex
data sets unlike the conventional deep learning models [10].
Moreover, for some kinds of services have to take mobile
environment into consideration, i.e., applications applied to
IoT devices, automobiles, or mobile phones. In these cases,
solving a few restrictions followed by using mobile devices
becomes one of major challenge.

When the deep-learning-based service is provided through
a mobile device, the model takes the dataset collected from
the device as the input. To start the process with the dataset,
there exist two options: proceeding the learning on the mobile
deivce, or transmitting the dataset to the server to let it do
computation. The former faces the challenge of the restricted
computation resource that mobile devices usually have. The
latter is free from such problem, but another challenge oc-
curred by the size of dataset stands. Handing over huge dataset
to the server through unstable wireless channel may result in
severe degradation in the channel condition [11].

Distributed computing can be one solution for this problem.
By offloading some parts of computation process from mobile
device to the server, the mobile device is able to compute
the partial operation which does not exceed its capacity. Also,
because not the entire dataset but the partially computed load
is transmitted, the load that the wireless channel should be
capable of is much smaller.

Except the local computing that all the computation is
processed on the mobile device and the edge computing

that all the computation is processed on the edge server,
the distributed computing methodology used in deep learning
can be classified into two categories: split computing and
early exiting [12]. Split computing indicates that the mobile
device does the partial computation and offload the rest to
the edge server [13]. Early exiting is similar to the split
computing, but there exist several exits in the layers that makes
the computation be terminated when the target confidence is
achieved [14].

IV. APPLICATION OF DISTRIBUTED COMPUTING

To design the deep learning model which takes distributed
computing into consideration, there exist several points that
need to be considered. Depending on the targeted work and
the environment that the model will be applied, the model
may experience different computation complexity, the network
channel condition, available computation resource, and other
factors. Targeted values for various objectives that the model
should achieve are also different.

In this section, we introduce various researches propos-
ing distributed-computing-adopted deep learning models, each
considers different target achievement, network topology, ob-
jective of the model, and etc. According to the methodology
achieving the distribution, we categorized the literature into
two groups: Task distribution and data/model parallelism.

A. Task Distribution

Distributing the learning process is the basic method for
accomplishing the distributed computing. By handing over the
partial task to other devices and utilizing resources from multi-
ple devices, the challenge coming from the practical limitation
to add the hardware for increasing the computational resource
can be solved. There have been many studies taking this
methodology, analyzing the possible challenges and designing
the model.

Reference [15] studies about deep neural networks (DNNs)
for large models, targeting for solving the throughput bottle-
neck occurred by the limited computational resource of mobile
devices. Authors propose a framework named DEFER (Dis-
tributed Edge inFERence) which divides DNNs into several
layers so each can be deployed in each node consisting the
network.

The authors in [16] operates the distributed computing in
order to run a large CNN on a collection of concurrent IoT
sensors. In this research, the proposed model split the model
into multiple small models, and each model is targeted to
specific kind of tasks like voice or speech. Using the model
proposed in the research, authors succeed to reduce the model
size and the inference time without the accuracy loss.

Graph neural networks (GNNs) treat very large sized
dataset, and known as an effective model for graph structured
dataset. Research [17] studies the framework which partition
the large graph into multiple small sub graphs, and computes
them in a distributed manner.

Reference [18] analyzes the methodology that partitioning
DNN into different edge devices. Authors adopt genetic algo-

675

rithm in the partitioning process, achieving the lowered energy
cost and shorter inferencing time.

The authors in [19] propose a DISSEC, a distributed
scheduling strategy for DNN inference on IoT edge clusters.
They describe the approaches that deploy complete DNNs on
resource-constrained edge devices and the search algorithms
used to generate the optimal distributed scheduling strategy.
DISSEC reduces communication overhead by 20% and exe-
cution latency by 9%.

The authors in [20] introduce Distributed Inference with
Sparse Communications which is called DISCO. They train
DNN model using within-layer model parallelism that dis-
tributes the inference of each layer into multiple nodes. How-
ever, since the dependency of each layer can be a bottleneck
to parallel inference, they employ sparse communication to re-
duce the data transfer between nodes while parallel inference.
They achieved a 3.5x latency reduction on 20 models.

B. Data/Model Parallelism

There are several approaches to parallelizing the training of
deep learning model. First, data parallelism divides the training
data into multiple small batches. In addition, it maintains
copies of the DNN model to process each batch at the
same time. Each copy computes the gradient of its batch
and periodically updates the parameters of the model using
gradients. Next, model parallelism split the DNN model and
places it on multiple different devices. A mini-batch of training
data. In this case, forward and backward passes are performed
in a coordinated manner across devices. It induces low device
utilization. Pipeline parallelism has been proposed to utilize
mini-batch more efficiently by combining data and model
parallelism. Similar to model parallelism, it split the model
into stages and assigned it to different devices. Also training
data divide into multiple mini-batches. Different from them,
however, different devices can process different mini-batches
at the same time. Hence it can be used for large models and
large datasets.

The authors in [21] propose effective multi-level model par-
allelism optimization for distributed inference of CNN, which
is denoted as DeCNN. They address the inherent problem of
CNN that tightly-coupled structures. The proposed DeCNN
split the original CNN model into several sub-models. They
achieved higher performance improvement and lower memory
footprint than single-device experiments by using three-level
optimization for model parallelism. Their approaches outper-
formed existing the other methods and can apply to existing
CNN models such as ResNet-50.

The authors in [22] develop an efficient pipeline parallelism
framework that comprises two components. First, is a pipeline
partition and device mapping algorithm that splits a DNN
as partitions over available GPUs. Another one is a pipeline
scheduler that processing over of microbatches over the parti-
tions. They demonstrate the benefits of synchronous pipelining
over earlier pipeline designs and show their approach acceler-
ates the training of DNN model up to 157%.

The authors in [23] introduce a direct-connect DNN training
system that co-optimizes the computation, communication,
and network topology which is called TopoOpt. They analyze
DNN training jobs from production clusters of Meta and
address the communication overhead and traffic pattern of
datacenter. They also discuss the challenges of finding the best
topology and switching techniques for DNN models.

The authors in [24] introduced an open-source library, called
Horovod, which provides a simple, efficient, and flexible
approach to distributed training in TensorFlow. They pro-
posed ring-allreduce algorithm for efficient gradient aggrega-
tion and optimizing communication overhead. They achieved
high-performance multiple GPUs learning with minimal code
changes.

V. CONCLUSION

The development of the deep learning attracted a lot of
interests from various fields due to its possible application,
and it has been accelerated steeply in recent years. With the
improvement in data collection technology, this trend require
larger-sized dataset in the learning process, which in turn
requires more complex computation to be operated. As an
approach to solve this challenge, it has been researched that
distributing the computation needed across the edge devices.

In this work, we overview the studies about adopting the
distributed computing methodology in various fields of re-
search. We discuss about why how this methodology operates
and why this is important to solve specific challenges. We
observe the studies to consult the examples of the construction
of the distributed computing, then introduce how researchers
adopt the distributed computing to the deep learning which
should be different in implementation because of the diverse
in environment of the application.

REFERENCES

[1] P. P. Shinde and S. Shah, “A review of machine learning and deep
learning applications,” in 2018 Fourth international conference on
computing communication control and automation (ICCUBEA). IEEE,
2018, pp. 1–6.

[2] M. Gheisari, G. Wang, and M. Z. A. Bhuiyan, “A survey on deep learn-
ing in big data,” in 2017 IEEE international conference on computa-
tional science and engineering (CSE) and IEEE international conference
on embedded and ubiquitous computing (EUC), vol. 2. IEEE, 2017,
pp. 173–180.

[3] F. Xing, Y. Xie, H. Su, F. Liu, and L. Yang, “Deep learning in
microscopy image analysis: A survey,” IEEE transactions on neural
networks and learning systems, vol. 29, no. 10, pp. 4550–4568, 2017.

[4] D. Ravı̀, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo,
and G.-Z. Yang, “Deep learning for health informatics,” IEEE journal
of biomedical and health informatics, vol. 21, no. 1, pp. 4–21, 2016.

[5] Y. Wang, J. Wang, W. Zhang, Y. Zhan, S. Guo, Q. Zheng, and
X. Wang, “A survey on deploying mobile deep learning applications:
A systemic and technical perspective,” Digital Communications and
Networks, vol. 8, no. 1, pp. 1–17, 2022.

[6] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous driving in
vehicular edge computing and networks,” IEEE Transactions on Intelli-
gent Transportation Systems, 2022.

[7] T.-V. Nguyen, V.-D. Nguyen, D. B. da Costa, and B. An, “Short-packet
communications in multi-hop wpins: Performance analysis and deep
learning design,” in 2021 IEEE Global Communications Conference
(GLOBECOM). IEEE, 2021, pp. 1–6.

676

[8] X. Wang, Z. Ning, L. Guo, S. Guo, X. Gao, and G. Wang, “Online
learning for distributed computation offloading in wireless powered
mobile edge computing networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 8, pp. 1841–1855, 2021.

[9] E. Di Pascale, I. Macaluso, A. Nag, M. Kelly, and L. Doyle, “The
network as a computer: A framework for distributed computing over
iot mesh networks,” IEEE Internet of Things Journal, vol. 5, no. 3, pp.
2107–2119, 2018.

[10] X. Wang, Y. Zhao, and F. Pourpanah, “Recent advances in deep
learning,” International Journal of Machine Learning and Cybernetics,
vol. 11, pp. 747–750, 2020.

[11] Z. Tang, S. Shi, X. Chu, W. Wang, and B. Li, “Communication-efficient
distributed deep learning: A comprehensive survey,” arXiv preprint
arXiv:2003.06307, 2020.

[12] Y. Matsubara, M. Levorato, and F. Restuccia, “Split computing and early
exiting for deep learning applications: Survey and research challenges,”
ACM Computing Surveys, vol. 55, no. 5, pp. 1–30, 2022.

[13] A. Bakhtiarnia, N. Milošević, Q. Zhang, D. Bajović, and A. Iosifidis,
“Dynamic split computing for efficient deep edge intelligence,” in
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2023, pp. 1–5.

[14] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). IEEE, 2016,
pp. 2464–2469.

[15] A. Parthasarathy and B. Krishnamachari, “Defer: Distributed edge infer-
ence for deep neural networks,” in 2022 14th International Conference
on COMmunication Systems & NETworkS (COMSNETS). IEEE, 2022,
pp. 749–753.

[16] J. Chen, D. Van Le, R. Tan, and D. Ho, “Split convolutional neural
networks for distributed inference on concurrent iot sensors,” in 2021
IEEE 27th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2021, pp. 66–73.

[17] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken, “Improving the
accuracy, scalability, and performance of graph neural networks with
roc,” Proceedings of Machine Learning and Systems, vol. 2, pp. 187–
198, 2020.

[18] J. Na, H. Zhang, J. Lian, and B. Zhang, “Partitioning dnns for opti-
mizing distributed inference performance on cooperative edge devices:
A genetic algorithm approach,” Applied Sciences, vol. 12, no. 20, p.
10619, 2022.

[19] Q. Li, L. Huang, Z. Tong, T.-T. Du, J. Zhang, and S.-C. Wang, “Dissec:
A distributed deep neural network inference scheduling strategy for edge
clusters,” Neurocomputing, vol. 500, pp. 449–460, 2022.

[20] M. Qin, C. Sun, J. Hofmann, and D. Vucinic, “Disco: Distributed in-
ference with sparse communications,” arXiv preprint arXiv:2302.11180,
2023.

[21] J. Du, X. Zhu, M. Shen, Y. Du, Y. Lu, N. Xiao, and X. Liao, “Model
parallelism optimization for distributed inference via decoupled cnn
structure,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 7, pp. 1665–1676, 2020.

[22] Z. Luo, X. Yi, G. Long, S. Fan, C. Wu, J. Yang, and W. Lin,
“Efficient pipeline planning for expedited distributed dnn training,” in
IEEE INFOCOM 2022-IEEE Conference on Computer Communications.
IEEE, 2022, pp. 340–349.

[23] W. Wang, M. Khazraee, Z. Zhong, M. Ghobadi, Z. Jia,
D. Mudigere, Y. Zhang, and A. Kewitsch, “TopoOpt: Co-
optimizing network topology and parallelization strategy for
distributed training jobs,” in 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). Boston, MA:
USENIX Association, Apr. 2023, pp. 739–767. [Online]. Available:
https://www.usenix.org/conference/nsdi23/presentation/wang-weiyang

[24] A. Sergeev and M. Del Balso, “Horovod: fast and easy distributed deep
learning in tensorflow,” arXiv preprint arXiv:1802.05799, 2018.

677

