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Abstract—Deep learning (DL)-based medical image classifica-
tion has become a pivotal research area in computer vision,
significantly enhancing the diagnostic process across the medical
field. DL-based image classification can be aided by supplemen-
tary data, further improving its performance. One prominent
example of such data is gaze-points, which involve eye-tracking
techniques to document radiologists’ interaction with images.
Recently, gaze-point data has been used as a pre-processing
method to map an image into a graph, enabling the use of graph
neural networks (GNNs) in computer vision domain. Such tech-
niques have demonstrated significant improvements compared
to conventional convolution neural networks (CNNs); however,
their reliance on human involvement makes them labor-intensive,
thus limiting their applications. To address this, we propose
to leverage DL-based automatic segmentation mask generation
to prepare image data as input for the GNN. This technique
uses the segmentation mask as the attention information to
guide the classifier. The results demonstrate that the proposed
segmentation-aided classification model surpasses conventional
CNN models and delivers the same performance as the existing
supplementary data-aided techniques while reducing manual
labor.

Index Terms—GNN, medical image, classification

I. INTRODUCTION

The recent advancements of artificial intelligence in various
applications such as speech recognition, image classification
etc. can be attributed to the progress made in the deep
learning (DL) over the years [1]. DL, a subset of ML, is
distinguished by its use of multi-layered neural networks,
where the core principle is to abstract features from raw data,
with these features progressively increasing in complexity and
specificity at higher layers. This process reflects aspects of
human cognitive processing, particularly how humans perceive
and interpret vast amounts of information through hierarchi-
cal processing. With the advent of powerful computational
resources and extensive datasets, DL has achieved remarkable
success across various domains, including natural language
processing, computer vision, and medical imaging, profoundly
impacting academic research and industry applications.

In recent years, the use of DL models for image clas-
sification has significantly grown in popularity. Advanced
classification algorithms have been widely adopted, such as
CNNs, SVMs, DNNs, Transformers, RNNs, and Graph Neural
Networks (GNNs) [2] for natural image classification. How-

ever, medical image classification poses distinct challenges [3].
For instance, X-ray images often display minimal contrast in
soft tissues and contain intricate anatomical details that overlap
within a two-dimensional space [4]. In these images, organs
and blood vessels frequently exhibit similar intensities, com-
plicating the classification process. To mitigate these issues,
recent studies have introduced supplementary data such as eye-
gaze points, which are collected via eye-tracking technologies
during radiologist screenings. These gaze points generate
patterns that assist in locating abnormalities in X-rays. The
methodologies employing this data can be categorized into
three main types: Attention Consistency Architecture [5], Two-
Stream Architecture [6], and Gaze Data Input [7]. However,
these approaches rely heavily on human intervention, requiring
radiologists to use eye-tracking devices, thereby introducing a
possibility for human error.

In this paper, we introduce a data-aided method that uses im-
age segmentation mask in preparing an image as an input for a
graph neural network (GNN)-based chest X-ray (CXR) image
classification. A CXR image is initially processed to generate
a masked image where some pixel intensity values are set to
zero, while others remain non-zero [8]. This method eliminates
human intervention in creating data for processing an image
as a graph by using a lightweight U-Net segmentation mask
[9], which is traditionally required. In our proposed system,
the first step is patch embedding, in which the CXR images
are segmented into patches, which are then processed by a
transformer model to extract features from them. Alongside the
patch embedding, positional embedding and mask embedding
are utilized to construct a graph. This graph is subsequently fed
into a GNN, which utilizes the entire graph in what is known
as a graph-level task to make predictions. For comparison, we
evaluate the performance of our model using metrics such as
accuracy, AUC, precision, F1 score, and recall.

II. PROPOSED METHOD

This section outlines the framework of our proposed seg-
mentation aided classification model for disease diagnosis in
chest X-ray (CXR) images using GNNs. Fig. 1 depicts the
overall framework of our proposed system that consists of two
main modules: the graph generation and GNN-based classifi-
cation modules. In the first module, a graph representation for
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Fig. 1: A schematic representation of proposed method. The
process involves feature extraction from X-ray images and
their corresponding masks, followed by patch and position
embeddings for graph construction, and the application of a
graph neural network for disease prediction.

each image is generated by using their actual data and their
corresponding masks. After this step, a GNN is utilized for
classification purposes. Initially, the GNN updates and aggre-
gates data from the nodes to create a comprehensive feature
representation of the entire graph. Predictions are then made
based on these graphs, known as graph-level classification. A
detailed explanation for each step is given below.

A. Graph Representation

For graph representation, the proposed method takes two
types of data as input: the CXR image and its corresponding
mask. The mask data is differentiated from the regular grid
structure of an image by containing only isolated lungs area.
Also, this mask acts as the attention information.To construct a
graph, we embed the mask and image data into feature vectors
by integrating them using the following embedding system.

1) Patch Embedding: In an image IH,W , the number of
rows and columns can be given as the product of two integers
such as H = P×Q rows and W = R×Q columns. Therefore,
the image can be partitioned into N = P ×R square blocks,
each consisting of Q2 pixels [10]. The image I ∈ RW×H is
composed of N patches, B = {b1, b2, . . . , bN}, where each
patch bj ∈ RQ×Q for j = 1, 2, . . . , N . To encode local image
information, a feature vector yIj ∈ RD can be extracted from
each patch bj as [11]:

yIj = G(bj) (1)

where G(·) a function that extracts features from image
patches as proposed in [11]. For computational efficiency, we
treat each patch as a graph node instead of individual pixels.

2) Mask Embedding: This section discusses the mask cre-
ation and embedding techniques utilized in our model. In med-
ical image analysis, segmentation is the process of differentiat-
ing pixels representing lesions or organs from the background
pixels [12]. This work implements U-Net [9] architecture,
a lightweight DL model for automatic segmentation, that
generates a segmentation mask to isolate the lung area in
the CXR images. This isolated region is a focal point for
identifying the area of interest, ensuring that only the relevant
lung region is highlighted and eliminating potential errors
where the model might incorrectly identify regions of interest.
Furthermore, this method eliminates human intervention by
allowing the original image to pass through a machine-learning
model to produce the mask.

Similar to the input image, the dimensions of the masked
image are W × H , subdivided into patches of Q × Q. Let
m(sj ,tj) be a pixel value at position (sj , tj) in the masked
image, we process each patch Bi according to (2) given in
[7] to represent its attention features. Therefore, the processed
mask yTj is obtained as:

yTj =
∑

(sj ,tj)∈Bi

m(sj , tj) (2)

3) Position Embedding: GNN treats features as unordered
nodes during graph processing; therefore, we implement po-
sition embedding technique proposed in [13] to preserve the
positional information of the original images. The positional
embedding method consists of two steps. First, we add a
learnable absolute positional encoding vector, ei ∈ RD, to
the feature vector (ylj +yTj ). Second, we calculate the relative
positional distance between nodes as eTi ej , which is then used
as a distance metric in k-nearest neighbor algorithm to find the
adjacent nodes of a given node for graph construction.

B. Graph Construction

To construct the graph G = {V,E}, with V vertices
and (E) edges. V consist of mask embedding yt, position
embedding yl and graph feature vector vi

vi = yIi + yTi + ei. (3)

To define the edge of the graph we use k-nearest neighbors,

E = {(vi, vj) | vj ∈ K(vi)}, (4)

where K(x) represents the neighbors of vi. Using the vertices
V and edges E we construct the graph G = {V,E}

C. Graph Neural Network

Our model consists of L graph processing blocks which
were inspired by [13], featuring an average pooling layer
as well as a graph classification head, supplemented with
multiple fully connected (FC) layers and a graph convolution
layer (GCN) [18]. If a graph is represented as N , with D-
dimensional feature vectors, and the input of the graph at block
t is V t = [vt1, v

t
2, . . . , v

t
N ] ∈ RN×D, the graph processing

block outputs Zt ∈ RN×D as:

U t = Ω2(Θ(Ω1(V
t))) + V t (5)
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TABLE I: Performance analysis of proposed segmentation-aided classification model with existing deep learning techniques
on the same dataset using different evaluation metrics.

Methods Data Type Accuracy AUC Precision Recall F1-Score Human InterventionNormal CHF Pneumonia Average
Temporal Model [14] - - 0.890 0.850 0.680 0.810 - - - Yes

Cooperative Learning [15] 80.00% 0.953 0.927 0.894 0.925 - - - Yes
U-Net+Gaze [14]

Eye-gaze data

- 0.910 0.890 0.790 0.870 - - - Yes
Densenet121+Gaze [16] - - - - 0.836 - - 0.270 Yes

GazeMTL [17] 78.50% 0.915 0.913 0.833 0.887 0.786 0.781 0.779 Yes
IAA [6] 78.50% 0.915 0.913 0.875 0.900 0.780 0.781 0.779 Yes

EffNet+GG-CAM [5] 77.57% 0.906 0.914 0.843 0.888 0.770 0.773 0.770 Yes
GazeGNN [7] 79.76% 0.938 0.916 0.914 0.923 0.839 0.821 0.823 Yes

Proposed Method Segmentation mask 80.40% 0.905 0.916 0.862 0.892 0.802 0.783 0.787 No

(a) (b) (c) (d) (e) (f)

Fig. 2: Example images for each label from the dataset with
their preprocessing results. The original images are in (a)
and their corresponding masks are in (b), (c) and (d) are
transformed images and masks, (e) shows the segmented
region in the original image while (f) is the mask embedding.
The images and masks are for Normal class in the first, CHF
class in the second and Pneumonia in the third rows.

Zt = Ω4(Ω3(U
t)) + U t (6)

Here, Θ denotes the graph convolution and Ω denotes FC
layers. U t represents the intermediate output after the first
shortcut connection, and M t = Ω1(V

t) is the input for
the graph convolution layer. Hence, the graph convolution
St = Θ(M t) is constructed as:

f t
i = W ·max({mt

i −mt
j | j ∈ K(mt

i)}) (7)

W is the learnable weight matrix for updating the feature
of the node. The aggregation used here is the max function,
which aggregates the maximum features from the i-th node’s
neighbors. Thus, the graph convolution aggregates neighbors’
feature information into the node feature, and finally, the
classification head, which is a series of FC layers with a
softmax function, predicts the probability of each category.

III. SIMULATION RESULTS

A. Experimental Setup

Using PyTorch, the experiment was conducted on a Win-
dows PC equipped with Intel i5 CPU and an NVIDIA RTX
3060 GPU. The AdamW optimizer [19] was selected for

the experiments. For model hyperparameters, we followed
the training setup of [7]. Also, during training, the model
with the highest accuracy was saved as our best model. For
performance evaluation, we considered methods proposed in
[5]–[7], [14]–[17] as baselines.

B. Dataset

The experiments were conducted on a publicly available
CXR image dataset [20], which comprises 1083 samples
divided into three classes: Normal, Congestive Heart Failure
(CHF), and Pneumonia. The original images are of size 3000×
3000, all in grayscale, which were resized to 224× 224 using
random center crop before partitioning them into patches.
Besides random cropping, we applied random flip and rotation
on the training set as our data augmentation technique. Fig.3.
shows example images from our dataset for each class along
with their corresponding masks and preprocessing to obtain
mask embedding. The corresponding mask of each image in
the dataset was obtained using a pre-trained U-Net model.

C. Performance Analysis

Table I summarizes a detailed performance of the proposed
model in terms of accuracy, AUC, precision, recall and F1-
score. For the baseline, we considered conventional methods
[5]–[7], [14], [15], [17] implemented on the same dataset.
These methods are divided into two groups based on their
dependency on supplementary data: techniques [14], [15] does
not require additional data, and techniques [5]–[7], [17] use
eye-gaze data to guide their classification model. These metric
scores are directly reported from [7], except for [7], which we
got by running their available open-source code. Following
the model architecture of [7], our proposed model employs
a transformer model to learn patch embedding, and a GNN
model to process graph representation of an image for the
classification. [7]’s technique relies on eye-gaze data for graph
generation, which requires human intervention thus making it
labor intensive. On the other hand, proposed model leverages
DL-based automatic segmentation mask generation to prepare
image data as an input for the GNN.

From Table I, it is evident that our method surpasses models
that do not require supplementary data in terms of accuracy.
Even though [15] requires human intervention, it falls short of
our model in terms of accuracy. Compared to data aided tech-
niques, our proposed model achieved better classification per-
formance across all metrics. Although GazeGNN outperforms
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(a) (b)

Fig. 3: Performance analysis of proposed model on each class
using confusion matrix and Receiver-Operating Characteristic
(ROC) curves. (a) shows the confusion matrix of proposed
model showing the classification performance across three
categories. The matrix highlights the model’s effectiveness in
predicting the correct labels, with relatively low classification
rates. (b) plots the (ROC) curves comparing the True Positive
Rate against the False Positive Rate for different classes. The
model demonstrates strong discrimination ability, as evidenced
by the high AUC values across all categories.

the proposed method on most evaluation metrics, except for
accuracy, the advantage of our method is that it eliminates hu-
man intervention while still maintaining higher accuracy. Fig.
2(a) displays the confusion matrix of our proposed method,
showing that most instances are correctly classified with strong
results in class 1. Fig. 2(b) presents the Receiver-Operating
Characteristic (ROC) curves, comparing the performance of
different AUC values for various labels, including Normal
(0.905), CHF (0.916), and Pneumonia (0.862). The average
AUC of our proposed model is 0.892, further demonstrating
its robustness in classification performance.

IV. CONCLUSION

This paper proposed a novel segmentation-aided medical
image classification framework leveraging Graph Neural Net-
works (GNN). Our approach utilized chest X-ray images and
corresponding masked images to construct a graph, which the
GNN processes for disease classification. Proposed method
dealt with the fundamental limitation of existing data-aided
techniques for example, they rely on human intervention to
collect the necessary data to construct a graph, by imple-
menting a DL-based automatic technique. Results showed
that proposed model is effective, outperforming classical and
several existing data-aided techniques in terms of accuracy,
precision, recall, F1 score, and average AUC scores.

In the future, we are interested to implement a more efficient
technique to process the mask data for graph representation.
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