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Abstract—Automatic font generation (AFG) is the process of
creating a new font using only a few examples of the style images.
Generating fonts for complex languages like Korean and Chinese,
particularly in handwritten styles, presents significant challenges.
Traditional AFGs, like Generative adversarial networks (GANs)
and Variational Auto-Encoders (VAEs), are usually unstable
during training and often face mode collapse problems. They
also struggle to capture fine details within font images. To address
these problems, we present a diffusion-based AFG method which
generates high-quality, diverse Korean font images using only
a single reference image, focusing on handwritten and printed
styles. Our approach refines noisy images incrementally, ensuring
stable training and visually appealing results. A key innovation
is our text encoder, which processes phonetic representations to
generate accurate and contextually correct characters, even for
unseen characters. We used a pre-trained style encoder from DG-
FONT to effectively and accurately encode the style images. To
further enhance the generation quality, we used perceptual loss
that guides the model to focus on the global style of generated
images. Experimental results on over 2000 Korean characters
demonstrate that our model consistently generates accurate
and detailed font images and outperforms benchmark methods,
making it a reliable tool for generating authentic Korean fonts
across different styles.

Keywords—Korean Font Generation, Diffusion Model,
Text-based Encoder, Perceptual Loss.

I. INTRODUCTION

Writing has arguably been one of the most significant
means of human expression across cultures and languages.
From ancient carvings in stone to the graceful strokes of
calligraphy, each writing style tells a story and reflects the
emotions of its time. The creation of Hangeul in the 15th
century democratized writing for the first time in Korea and
consequently laid the foundation for a tradition of beautiful
handwritten characters. These Handwriting fonts based on
this script share a common heritage of beauty and personal
expression, and reproducing these font styles for over 11,000
Hangeul characters as digital fonts is very challenging. More-
over, Chinese and Japanese languages face similar issues with
even more complex scripts [1]. Creating new fonts is a labour
intensive process and requires a lot of effort and sometimes
takes years to fully capture the true essence of text style.

With the recent advances in machine learning, more and
more avenues of font generation have been opened up,
whereby tools can automatically generate a vast array of styles.
Early Generative Adversarial Networks (GANs) based Auto-
matic Font Generation (AFG) methods [2]–[5] and Variational

Auto-Encoders (VAEs) based AFG made significant strides in
automating the font design process. However, these techniques
were not without their challenges. One of the main issues
with GANs was their notorious difficulty in training; they
often required careful balancing between the generator and
discriminator. This instability could make it hard to achieve
high-quality font generation, leading to missing strokes, style
inconsistency, random artifacts, blurriness, layout errors or
inconsistencies in the generated characters [6]. VAEs, on
the other hand, often faced difficulties capturing the intricate
details required for complex scripts.

Both GANs and VAEs need large amounts of labeled
data to train properly, which can be a significant barrier in
languages with rich and complex character sets like Korean
and Chinese. Even with sufficient data, these models cannot
generate font images consistent in style throughout the entire
character set and are correct content-wise. That became a
big problem regarding scripts with more complex structures,
where the stroke order and subtleties of shape are critical
components of textual authenticity. Thus, while they provided
some ground for the automated font generation that followed,
they often needed to fully capture and preserve the details of
the handwritten characters in languages with a more complex
structure.

Now, with the new diffusion models, we have a new and
improved way to generate high-fidelity images [6]–[12]. They
address all the challenges faced by GANs and VAEs. [1], [13]
Were the first to work on AFG using diffusion models. [13]
was the first such work in diffusion-based AFG, which added
techniques to stabilize and resolve the mode collapse problem
in GAN-based models. The recent work of [1] integrates
multiscale content aggregation and style contrastive learning,
boosting capacities to generate complex characters and man-
aging significant variations within the style. However, even
after all these works, it is often seen that there is much room
for effort in diffusion-based font generation, in particular, the
preservation of nuanced features and stylistic variation. Our
work advances these ideas, developing and pushing diffusion
model capabilities to explore new levels of automated font
design, producing artistically diverse and accurate fonts.

In this paper, we introduce DK-Font, a novel one-shot
diffusion-based model for generating high-quality fonts using
only one reference image. Our approach overcomes some
of the problems of previous models, in particular, com-
ponent misplacement, content loss, and inconsistent style.
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we introduce some novel improvements in font generation
to increase the robustness and preciseness of the generated
font images. The improvements include incorporating a text
encoder that processes phonetic character representations to
boost the model’s content understanding and minimize errors.
Moreover, our improved encoder is able to unify content, style,
and stroke information, which makes it possible to generate
complex structures of characters with higher accuracy. The use
of perceptual loss during training further strengthens the fact
that the generated characters are clean and whole, preserving
both the structure and aesthetic integrity of the fonts. This
additional contextual information further allows DK-Font to
generate complete set of fonts using just a single reference
image. The generated font images are not only visually similar
to the original style but they also consistently maintain the
intended character structure and style in all characters

In summary, We introduce the methodology DK-Font and
present its full-scale evaluation with over 2,000 Korean charac-
ters and benchmarking against the existing model. The results
show that DK-Font is a significant step toward font generation,
in general, and much more so for complex languages like
Korean.

II. RELATED WORK

A. Image-to-Image Translation

Image-to-image (I2I) translation is all about transforming
an image from one type or style to another while keeping its
essential content intact. One of the first approaches to this was
Pix2Pix, which used a type of neural network called GANs to
learn how to translate images, but it needed paired examples
of source and target images, which isn’t always practical [14].

To get around this, CycleGAN introduced a method that
didn’t require paired images [15]. It made sure that if you
translated an image to another style and then back again, you’d
end up with something close to the original, which was a big
step forward.

Building on this, the UNIT framework combined GANs
with another technique called VAEs to create a shared space
where images from different styles could be more easily
translated between each other. Other models like MUNIT and
FUNIT went further by separating the content of an image
from its style, allowing for more flexibility and variety in the
results [3].

More recently, diffusion models have been making waves
in this area. Unlike GANs, which generate images directly,
diffusion models work by gradually refining a noisy image
until it becomes clear. Techniques like ILVR and Palette have
shown that these models can produce high-quality images with
better control over the output [8] [9]. However, generating
fonts is a bit different and more challenging because it’s not
just about changing the style but also about preserving the
specific shapes and structures that define each letter.

Most existing methods focus on visual changes like color or
texture, which doesn’t fully address the needs of font design.
Our work aims to adapt these diffusion models specifically for

font generation, tackling the unique challenges involved and
pushing forward the automation of generating new fonts.

B. Few-Shot Font Generation
Few-shot font generation aims to create a complete set of

fonts using only a small number of reference images. This
approach allows designers to rapidly generate new fonts by
applying the style of a few characters to an entire alphabet or
character set.

Traditional methods for few-shot font generation often use
image-to-image translation techniques, where the style from
a few reference characters is transferred to others. Some
approaches integrate font-specific knowledge, such as stroke
details, to improve accuracy. For example, DG-Font uses de-
formable convolutional layers to capture style more effectively,
while SC-Font incorporates stroke information to maintain
structural correctness [2].

Despite these advancements, many methods rely on GANs,
which can be unstable and produce inconsistent results. To
address this, newer techniques have emerged that avoid using
predefined font knowledge, aiming for greater flexibility. FS-
Font explores spatial relationships between content and style,
and CF-Font introduces an iterative process for refining style
transfer. However, challenges remain in generating complex
characters and handling diverse styles. Our work seeks to
overcome these issues, focusing on more robust and flexible
approaches to few-shot font generation.

C. Diffusion Model
Diffusion models have recently emerged as a powerful tool

in generative modeling, providing an alternative to traditional
methods like GANs and VAEs. These models work by itera-
tively adding noise to an image and then learning to reverse
the process to generate high-quality samples. The concept was
first introduced by Sohl-Dickstein Weiss, Maheswaranathan,
and Ganguli [10] and later refined by Ho, Jain, and Abbeel
[7] with the development of Denoising Diffusion Probabilistic
Models (DDPMs), which have shown remarkable success in
various image synthesis tasks.

Building on these foundations, several advancements have
been made to improve the efficiency and performance of
diffusion models. Nichol and Dhariwal [11] introduced modifi-
cations that reduce the number of steps required for sampling,
making diffusion models more practical for real-world ap-
plications. Additionally, Rombach proposed Latent Diffusion
Models (LDMs), which operate in a lower-dimensional latent
space, further enhancing computational efficiency without
compromising image quality [12].

In the field of font generation, diffusion models are still
quite new but show a lot of potential. The diffusion-based AFG
was first introduced by [13], which stabilized and resolved the
mode collapse problem related to GAN-based models. The
recent work of [1] integrates multi-scale content aggregation
and style contrastive learning, boosting capacities in generat-
ing complex characters and managing significant variations in
style. However, even after all these works, it is often seen that
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Fig. 1: Overview of the Diffusion Model Process. The forward diffusion process (top row) transforms the original image into
a noisy representation by gradually adding noise. The reverse process (bottom row) uses a deep learning model to progressively
remove the noise, ultimately reconstructing the original data. The enlarged section on the right illustrates a single reverse step,
where noise is estimated and removed from the current state xt to approximate the previous state xt−1.

Fig. 2: The framework of our model refines noisy input to generate font images. An Enhanced Character Attributes Encoder
integrates strokes, components, and style features with text embeddings to guide this process.

there is much room for improvement in diffusion-based font
generation, in particular, the preservation of nuanced features
and stylistic variation.

Our work aims to build on these ideas, refining and expand-
ing the capabilities of diffusion models to push the boundaries
of automated font design, generating artistically diverse and
technically precise fonts.

III. METHODOLOGY

In this section, we present our innovative approach to au-
tomated font generation using a diffusion model. Our primary
goal is to generate fonts that are both high-quality and diverse
in style while maintaining the intricate details and structural
consistency crucial in font design.

A. Diffusion Process (Forward Process)
Our method begins with the forward pass, where we

gradually introduce noise to the original font data, denoted

as x0. This process generates a sequence of progressively
noisier versions of the data, labeled as x1, x2, . . . , xT , where
xT represents the fully noisy sample as shown in Fig. 1.

Mathematically, the forward process is modelled as a
Markov chain, where each step xt is sampled from a Gaussian
distribution conditioned on the previous step xt−1. Specifi-
cally, this is expressed as:

xt ∼ q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI), (1)

where, βt is a predefined variance schedule that controls the
amount of noise added at each step, and I is the identity
matrix.

B. Reverse Process (Denoising Process)
After reaching the noisy sample xT , the reverse process

begins. This process aims to gradually remove the noise,
thereby recovering the original font data x0. The reverse
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process is also modelled as a Markov chain, where each step
xt−1 is sampled from a distribution conditioned on the current
step xt: see Fig.1.

xt−1 ∼ pθ(xt−1 | xt) = N (xt−1;µθ(xt, t), Σ θ(xt, t)), (2)

Here, µθ(xt, t) and Σ θ(xt, t) are the mean and covariance
predicted by a neural network parameterized by θ, which
learns to denoise the samples.

C. Gaussian Approximation and Training
If βt is small enough, the forward process can be approxi-

mated as a Gaussian distribution directly conditioned on x0:

q(xt | x0) = N (xt;
√
αtx0, (1− αt)I), (3)

where αt =
∏t

s=1(1− βs).
This leads to an approximation of the posterior distribution
q(xt−1 | xt, x0) as:

q(xt−1 | xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI), (4)

where the mean µ̃t(xt, x0), And variance β̃t are given by:

µ̃t(xt, x0) =

√
αt−1βt

1− αt
x0 +

√
αt(1− αt−1)

1− αt
xt, (5)

β̃t =
1− αt−1

1− αt
βt. (6)

The training process involves teaching a neural network
to predict the noise ϵθ(xt) added to x0. This is done by
minimizing the difference between the predicted noise and the
actual noise introduced during the forward process, based on
the equation:

x0 =
1

√
αt

xt −
√

βt

1− αt
ϵθ(xt). (7)

D. DK-Font: Enhancement and Innovations
Our work is inspired by the framework of Diff-Font while

addressing key issues that we experienced. Firstly, character
shuffling or mixing up the components of the character, leading
to errors where one character might resemble another. Sec-
ondly, content loss where generated characters often appeared
unclear or incomplete, especially with complex characters. The
model had difficulties in maintaining the structural integrity
of these complex characters, resulting in blurred or missing
details. Thirdly, the model was unable to maintain a consis-
tent style across all generated characters. This led to some
characters not matching the intended style, resulting in an
inconsistent appearance of the font. Lastly, despite the use of
stroke guidelines, the model still made errors when generating
characters with challenging, complex, or rare structures.

The proposed DK-Font presents a unique combination of
text encoders and incorporates perceptual loss, so improving
the precision and resilience of the font generation procedure.
This model has been trained using an extensive dataset con-
sisting of 2,350 Korean characters. Every individual character
in this dataset is associated with its corresponding phonetic
representation and stored in a standalone text file. The inclu-
sion of this supplementary information enhances the model’s

comprehension of the content it must produce, so facilitating
the development of characters that are more accurate and
suitable for the given context.

We maintain the foundational U-Net architecture used in
Diff-Font but introduce several key enhancements as shown
in Fig. 2.

Text Encoder: We introduce a text encoder to process
the phonetic representations of the Korean characters. This
encoder transforms the text input into a dense vector that
captures the meaning and structure of the character. By includ-
ing this textual information, the model better understands the
characters, which helps reduce errors like character shuffling
and content loss.

Enhanced Character Attributes Encoder: The character
attributes encoder now incorporates the outputs from the
text encoder along with the usual content, style, and stroke
information. These combined inputs form a comprehensive
latent variable z that the diffusion model uses to generate the
character images. This combination ensures that the model
has multiple sources of information, improving its ability to
accurately replicate complex character structures.

Perceptual Loss: We used perceptual loss during training to
enhance the quality of the generated characters and make the
generated characters less ambiguous and much more complete.
Contrary to a pixel-wise loss, the perceptual loss is designed
to compare a high-level abstraction of the generated image and
the target image with the help of a pre-trained convolutional
neural network. We used VGG-19 as a feature extractor. This
approach helps to ensure that the generated images do not
only look similar to the target images in the basic contour but
also in finer details, which results in more accurate character
generation.

Training Process: We train the model using a combination
of content, style, strokes, and the new text-based inputs. The
diffusion process, guided by the U-Net architecture, gradually
denoises the input images based on the latent variable z, which
now includes the phonetic information. The training objective
is a mix of Mean Squared Error (MSE) loss and perceptual
loss, ensuring that the generated images are both structurally
accurate and visually consistent compared to the target.

IV. EXPERIMENTS

Dataset and Evaluation Metrics
For our experiments, we curated two robust datasets
specifically designed to evaluate the performance of our
diffusion-based font generation model. These datasets focus
exclusively on Korean (Hangeul) characters, comprising
both printed and handwritten styles, providing a diverse and
comprehensive foundation for training and testing.

Hangeul Dataset
We assembled a collection of 210 font styles, comprising 100
handwritten and 100 printed fonts. Each font style contains
2,350 of the most commonly used Hangeul characters, ensur-
ing comprehensive coverage of everyday language needs. For
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Fig. 3: Comparison of our method with Diff-Font and ground truth on handwritten Korean fonts.

Fig. 4: Comparison of our method with Diff-Font and ground truth on printed fonts.

each category, we trained the model separately: 100 handwrit-
ten fonts were used for training, and 5 additional handwritten
fonts were set aside for testing. These 5 handwritten fonts
were not included in the training process, ensuring they are
entirely unseen by the model. Similarly, 100 printed fonts were
used for training, with 5 separate printed fonts reserved for
testing, which the model did not encounter during training.
This setup allows us to rigorously evaluate the model’s ability
to generalize across both familiar and novel font styles within
each category, as summarized in TABLE I

TABLE I: Summary of Hangeul Dataset

Category Characters Fonts Training Testing
Handwritten 2,350 105 100 5
Printed 2,350 105 100 5
Total 2,350 210 200 10

For all datasets, the images were standardized to a size

of 128×128 pixels, which is optimal for our deep-learning
models.

For the handwritten fonts, Figure 3 illustrates a visual
comparison of our method against Diff-Font and the ground
truth. As can be seen, DK-Font produces high-quality
results that closely resemble the original handwritten fonts,
maintaining structural details and style consistency. Diff-
Font, on the other hand, suffers from missing strokes and
inconsistencies.

For printed fonts, the comparison in Figure 4 shows similar
improvements. DK-Font effectively preserves the intricate
details of printed characters and maintains consistency across
the generated fonts. Diff-Font, however, often introduces
artifacts and fails to maintain structural integrity.

Evaluation Metrics To evaluate the effectiveness of our
model, we used several commonly used metrics in image
generation:

664



• SSIM (Structural Similarity Index): Assesses structural
similarity between images, considering luminance, con-
trast, and overall structure to gauge how closely our
generated fonts resemble the target images.

• RMSE (Root Mean Square Error): Measures pixel-by-
pixel differences between generated and target images for
a straightforward accuracy assessment.

• LPIPS (Learned Perceptual Image Patch Similarity):
Evaluates perceptual similarity using deep neural network
features, aligning more closely with human visual percep-
tion.

• FID (Fréchet Inception Distance): FID Measures the
distance between the generated images using and the
distribution of the real images, providing insights into
the quality and realism of the generated fonts.

Implementation Details
Our model was implemented using the AdamW optimizer,

with parameters set to β1 = 0.9 and β2 = 0.999. All
images in the dataset were resized to 128 × 128 pixels to
ensure consistency and optimal processing by the model. Due
to limited computing power, we used a batch size of 16
during training to balance memory usage and computational
efficiency. To prevent over-fitting and improve generalization
of the model, we dropout with probability 0.1. We employed a
diffusion process with 1,000 steps. Initially, we experimented
with a basic linear noise scheduler, but the results were not as
promising. We switched to a cosine noise scheduler to improve
performance, which provided better results due to its more
advanced attributes for managing noise during the diffusion
process. The learning rate was fixed at 0.001 throughout the
training process. We trained the model for 50,000 iterations,
allowing sufficient time to learn and refine its ability to
generate high-quality font images.

TABLE II: Quantitative Comparison of Different Methods

Methods SSIM ↑ RMSE ↓ LPIPS ↓ FID ↓
Diff-Font 0.812 0.196 0.072 10.69
DK-Font 0.857 0.123 0.063 10.446

Quantitative Comparison
In this section, we compare our DK-Font with Diff-Font.

Only one reference character image with the target font is
utilized during the generation process. To ensure a fair and
comprehensive evaluation we selected a diverse set of test
fonts that represent a broad range of styles.

The summarized results are shown in TABLE II, from
which it can be derived that the proposed method generally
outperforms Diff-Font in terms of key metrics, including
SSIM, RMSE, LPIPS, and FID. Most evaluations show
that DK-Font consistently yields the best performance,
demonstrating the strong potential of the proposed solution
for generating high-quality fonts.

V. CONCLUSION

In this paper, we introduced DK-Font, a text-conditioned
diffusion model for high-fidelity font generation method, with
a special emphasis on the challenges of Korean font gen-
eration. Compared to the previous methods such as GANs
and VAEs, our model is able to preserve the structure and
style of each character and generate visually pleasing and
diverse fonts. The use of text encoder and perceptual loss
was effective in enhancing the quality of the generated fonts
for unseen characters. The results of our experiments showed
that DK-Font outperforms other methods in terms of the key
metrics and can be used as an efficient tool for automated font
generation.
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