979-8-3315-0694-0/25/$31.00 ©2025 IEEE

P4-based implementation of traffic engineering
with service priority

Kouji Hirata*, Takumi Tabuchi*, Hideyoshi Miura*, and Shohei Kamamura'
*Faculty of Engineering Science, Kansai University, Osaka 564-8680, Japan
TFalculty of Science and Technology, Seikei University, Tokyo 180-8633, Japan
Email: {hirata, k720081, k846996 } @kansai-u.ac.jp, shohei-kamamura@st.seikei.ac.jp

Abstract—With the growth of network services in recent
years, the integrated design of service-guaranteed virtual private
networks and traditional best-effort networks has been required.
For such integrated design, traffic engineering is an important
technology in order to accommodate the rapidly increasing traf-
fic. In the past, a traffic engineering method considering service
priority has been proposed, which determines routing paths of
traffic for each network service, assuming that various types of
services are deployed on an integrated network. In this paper, we
examine the implementation of the traffic engineering method,
using P4 language which can describe data plane operations in
software-defined networking. We confirm the operation through
demonstration experiments.

I. INTRODUCTION

With the growth of network services in recent years, the
network traffic has been rapidly increasing. In order to effi-
ciently accommodate the network traffic, the integrated design
of service-guaranteed virtual private networks in addition
to traditional best-effort networks has been required. Traffic
engineering [7], [8] is an important factor in order to determine
the routing paths of each network traffic according to the
network state for the integrated design. The recent develop-
ment of Software-Defined Networking (SDN) [6] enhances the
feasibility of dynamic traffic engineering that can dynamically
change the routing paths. Because it is difficult for us to predict
the variation of traffic demands, the utilization of network
resources generally becomes unbalanced with the time elapsed.
Applying the dynamic traffic engineering could resolve such
unbalanced situations.

We can efficiently utilize the network resources with the
traffic engineering. On the other hand, the traffic engineering
could cause the temporary quality degradation of network ser-
vices due to the dynamic change of routing paths. Therefore,
the traffic engineering may not be necessary for clients requir-
ing mission-critical communications such as crucial meeting
and remote surgery. In order to resolve this problem, the
author in [5] has proposed a traffic engineering method that
aims to dynamically determine a routing path for each service
according to the service priority, assuming environments where
multiple services are deployed. This traffic engineering method
changes only the routing paths for general services. Mean-
while, it uses the fixed routing paths for important services
such as remote surgery, treating them as Very Important Packet
(VIP) traffic.

613

SDN controller

Servigg Provider !\Vlgtwork

=

El

Traffic engineering

Common traffic

Commoner &
*//Q\
YN
Q{@%

VIP traffic
Provider Edge Router @ Provider Router

Internet/Cloud

Fig. 1. System model.

This paper examines the implementation of the traffic engi-
neering method including a service priority control mechanism
based on [5]. In [5], the concept and implementability of
the traffic engineering method using Programming Protocol-
independent Packet Processors (P4) [4], which enables us to
describe the behavior of data planes in SDN environments, has
been just discussed. However, it has not provided ways of the
practical implementation. Therefore, in this paper, we discuss
the practical implementation of the traffic engineering method
according to service priority using P4. Through demonstration
experiments, we verify the behavior of the implementation.

II. TRAFFIC ENGINEERING CONSIDERING SERVICE
PRIORITY [5]

Before explaining the practical implementation, we here
briefly discuss the traffic engineering method considering
service priority, which has been proposed in [5]. Fig. 1 shows
the system model assumed in the traffic engineering method.
There exists a service provider network which consists of
provider edge routers and provider routers. The provider
edge routers are controlled by an SDN controller. VIP and
commoner users connect to the service provider network
and inject VIP and common traffic, respectively, into the
network. We assume that the VIP traffic has the priority over
the common traffic. The header in each packet of VIP and
common traffic has the information on the priority identifi-
cation. The provider edge router performs traffic engineering
to forward the packet to an appropriate output port based on
the information. Specifically, the VIP traffic uses the fixed

ICOIN 2025

SDN Controller

1 |
| i
‘ Parse H Match H Action
P4 Switch
Commoner VRF C | /7o
< 2 ‘Q" Route 1
VRF B | (Tg
viP R A |\Route?
[: (= (Fixed
J Commercial Router Route

Fig. 2. Edge router construction.

routing path while the common traffic is distributed to routing
paths that are optimized by the traffic engineering method. The
intermediate provide routers perform the general IP routing
process based on the header information of each packet, and
as a result, the packet arrives at the egress edge router.

Fig. 2 illustrates the configuration of an edge router assumed
in this paper. The edge router consists of a P4 switch and
a commercial router. The commercial router forwards each
arrival packet from input ports to the P4 switch. The header
information of the arrival packet is extracted to determine the
routing path based on the destination address and the priority
of the packet. Then it transfers the packet to the commercial
router. The commercial router forwards the packet to the
output port for the routing path decided by the P4 switch. We
assume that Virtual Routing and Forwarding (VRF) [1] is used
for forwarding the packet to the corresponding routing path.
As shown in Fig 2, in the router, we construct the same number
of VRFs as routing paths needed for the traffic engineering. By
allocating the VLAN ID corresponding to each VRF to the P4
switch, the commercial router can forward incoming packets to
appropriate output ports. The match and action fields in the P4
switch are controlled by the SDN controller, which collects the
traffic information, determines the optimal routing path, and
performs the periodic path construction. The SDN controller
determines the optimal routing path, i.e., the distribution
ratio of common traffic, by solving the optimization problem
based on Linear Programming (LP) discussed in [5]. The
optimization problem minimizes the maximum link utilization,
to distribute load on each path. In order to save the space on
the paper, we omit the detailed explanation on the optimization
problem.

III. P4-BASED IMPLEMENTATION

In this paper, we examine the practical implementation of
the traffic engineering method. In this implementation, we
focus only on the operation of the traffic engineering method
in the P4 switch. We do not consider the operation of other
technologies in the commercial router such as VRF. Further-
more, we do not consider the functions of an SDN controller
such as the optimal routing path calculation. Therefore, in
what follows, we explain how to realize the traffic engineering

header ipv4_t {
bit<4> version;
bit<4> ihl;
bit<6> diffserv;
bit<2> priority;
bit<l6> totallen;
bit<16> identification;
bit<3> flags;
bit<13> fragOffset;
bit<8> ttl;
bit<8> protocol;
bit<16> hdrChecksum;
ip4Addr_t srcAddr;
ip4Addr_t dstAddr;

Fig. 3. Definition of the IP header.

Incoming packet

Common
Classification

Path decision
IP forwarding

TE forwarding

l Packet forwarding

Fig. 4. Procedure of the implementation.

method using only the function of the P4 switch, assuming that
a routing table is manually prepared in advance. Specifically,
we first explain the header configuration for identifying the
service priority and the operation of the traffic engineering
based on the service priority. We then explain how to create
the match-action table for performing the traffic engineering.

A. Header information

As shown in Fig. 2, in the P4 switch, the header of an
incoming packet is first extracted to be analyzed in the parser.
The input match-action table receives the extracted header
field. It consists of parameters, reference keys (such as IP
address and MAC address), actions (such as drop and forward).
The match-action table processes the packet header based on
the actions and reference keys, which can be changed by
programming, and determines the output port. Before being
forwarded to the output port, the packet header is further
forwarded to the output match-action table, which can also be
programmed to define actions. After the output match-action
processing, the packet is finally forwarded to the output port.

P4 can define the header for each layer such as Ethernet, IP,
and TCP. In this paper, we use the Type of Service (TOS) field
in the IP header to distinguish VIP traffic and common traffic.
Fig. 3 shows the definition of the IP header in the P4 program.
The lowest two bits of the TOS field (i.e., bit(2) priority)
are defined as the priority field, which indicates the priority
identifier. Note that other six bits of the TOS field is defined
as the diffserv field. The value of the priority field is set to 1
for VIP traffic and O for common traffic, which are determined
by the application of sender hosts. The P4 switch refers to the
priority field of the incoming packet and selects the routing

614

apply{
if (hdr.ipv4.isValid()) {
if (hdr.ipv4.priority==1) {
ipv4_lpm.apply () ;
}
else if (hdr.ipv4.priority==0) {
compute_hashes (hdr.ipv4.srcAddr,
hdr.ipv4.dstAddr,
(bit<16>)hdr.ipv4.srcAddr,
(bit<16>)hdr.ipv4.dstAddr) ;
det_vid.apply();
vid.apply();

Fig. 5. Traffic classification.

path according to the appropriate routing table. Specifically,
VIP traffic uses a pre-configured fixed routing path while
common traffic is distributed to routing paths according to
the distribution ratio calculated by the optimization method.

B. Implementation of traffic engineering

Fig. 4 shows the procedure of the implementation at the
P4 switch. A packet arriving at the P4 switch at the ingress
edge router is first identified whether it is VIP traffic or
common traffic depending on the value of the priority field
to execute corresponding processes. Fig. 5 shows an example
of the implementation of this function using P4. First, the
value of the priority field in the IP header is checked. If the
value is 1, the packet is judged as VIP traffic and normal
IP routing using the IP forwarding table (ipv4_lpm.appply())
is applied to the packet. If the value is 0O, the packet is
judged as common traffic. Then, a hash value is calculated
based on the combination (source IP address, destination IP
address, source port number, destination port number) in the
packet header. Depending on the hash value, the routing
path number corresponding to the VLAN ID is determined
using the path decision table (det_vid.apply()), and the actual
forwarding process is executed using the TE forwarding table
(vid.apply()).

The IP forwarding table (ipv4_lpm.apply() in Fig. 5) per-
forms a normal process that performs routing based on the
destination IP address, which is defined as shown in Fig. 6.
On the other hand, the path decision table (det_vid.apply()
in Fig. 5) is implemented as shown in Fig. 7. Here, common
traffic flows are distributed according to the traffic distribution
ratio given by solving an optimization problem based on LP
discussed in [5]. In this optimization problem assuming that
there exist M routing paths, the traffic distribution ratio R,,
(Z%Zl R, =1,0< R, <1)is calculated for each routing
pathm (m=1,2,..., M).

In our implementation, a hash table of size 100 is prepared
for mapping the traffic distribution ratios to the hash table.
Note that traffic distribution ratios are normalized to the integer
values such that the sum of them is 100. For example, we
assume the situation where R; = 0.272, Ry = 0.364, and
R3s = 0.364 are calculated for M = 3. In this case, the
normalized integer values are 27, 36, and 37 for Ry, Rs, and

action drop() {
mark_to_drop (standard_metadata);

}

action ipvé4_forward(macAddr_t dstAddr,

egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.ethernet.srcAddr

= hdr.ethernet.dstAddr;

hdr.ethernet.dstAddr = dstAddr;
hdr.ipvé4.ttl = hdr.ipv4.ttl - 1;

}

table ipv4_lpm{
key = {

hdr.ipv4.dstAddr:
}

actions = {

ipv4_forward;

drop;

NoAction;

}

size = 1024;
default_action = drop();
}

lpm;

Fig. 6. IP forwarding table.

action set_vid(bit<6> val) {
hdr.ipvéd.diffserv = val;
}

table det_vid {

key = { get_position : range; }
actions = { set_vid; }
const entries = {

0 .. 26 : set_vid(1);

27 .. 62 : set_vid(2);

63 .. 99 : set_vid(3);

}
}

Fig. 7. Path decision table.

R3, respectively. In this case, as shown in Fig. 7, if the hash
value is between 0 and 26, the packet is forwarded to the first
route using VLAN ID 1. If it is between 27 and 62, the packet
is forwarded to the second route using VLAN ID 2. Also, the
packet is forwarded to the third route using VLAN ID 3 if it
is between 63 and 99. The selected route is recorded in the
upper 6 bits of the TOS field (i.e., the diffserv field in Fig. 3).

As shown in Fig. 8, the TE forwarding table (vid.apply() in
Fig. 5) determines the output port based on the route recorded
in the diffserv field (hdr.ipv4.diffserv) to forward common
traffic to the corresponding routing path. In this way, different
routing tables are prepared for VIP traffic and common traffic,
and routing for common traffic is performed based on the
value of the diffserv field, instead of the IP address. Note
that the routing tables are expected to be prepared by the
SDN controller, but the routing table is created manually in
this paper because this implementation focuses on checking
the data plane operation, i.e., P4 switch. We leave the control
plane implementation as future work.

IV. DEMONSTRATION EXPERIMENTS

In this paper, we verify the operation of the traffic en-
gineering method considering service priority implemented

615

action vid2port (macAddr_t dstAddr,
egressSpec_t port) {
standard_metadata.egress_spec = port;
hdr.ethernet.srcAddr

= hdr.ethernet.dstAddr;

hdr.ethernet.dstAddr = dstAddr;
hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

table vid {
key = {hdr.ipvé4.diffserv :
actions = {
vid2port;
drop;
NoAction;
}
}

exact; }

Fig. 8. TE forwarding table.

TABLE I
RATIO OF TRAFFIC VOLUME.

Path | Hash value | Distribution ratio | Ave. measured traffic ratio
1 0-26 0.27 0.211
2 27-62 0.36 0.360
3 63-99 0.37 0.429

by P4 through demonstration experiments using Mininet [3].
Mininet is a network emulator that can virtually build an SDN
environment by combining hosts, switches, and routers. We
use iPerf [2] to generate packets. Fig. 9 shows the network
implemented in the experiments. In the network, 10 hosts (hl
to h10) acting as senders are connected to switch s1, and 10
hosts (h11 to h20) acting as receivers are connected to switch
s5. We assume that a common traffic flow is generated between
each sender and receiver pair, i.e., 100 distinct traffic flows
are totally generated. There are three routing paths. Common
traffic flows are distributed to each routing path according
to the distribution ratios. In the experiments, the distribution
ratios of the routing paths are set to R; = 0.272, Ry = 0.364,
and R3 = 0.364, assuming that there exists VIP traffic using
the routing path 1.

Fig. 10 shows the total volume of common traffic flows on
each routing path in the case where the common traffic flows
of 0.1 [Mbps] are generated between 10 pairs of sender and
receiver hosts every 11 seconds for 10 seconds (for a total
of 110 seconds). Also, Table I shows the average ratio of the
traffic volume measured over all the time intervals. As we can
see from Fig. 10, common traffic flows are distributed to each
routing path at each time interval. Note that the distribution
ratio differs depending on the time intervals because there is
a bias in the hash values. On the other hand, as shown in
Table I, the ratio of the average traffic volume is roughly close
to the distribution ratio. Because there are only 100 sender
and receiver pairs (i.e., 100 traffic flows), it does not strictly
correspond to the distribution ratio. It is expected that the ratio
of average traffic volume approaches the distribution ratio as
the number of flows increases.

Path1 (R; = 0.272) Receivers
h11]

S &2 =
: s s3] 1
Path 2 (R, = 0.364)
Ihzo]

_— [—]

Path 3 (R; = 0.364)

Fig. 9. Network environment built on Mininet.
1.0t ‘ Path 1 -=== Path2 —'— Path3
|| .
=)
0.8 T ANA RARAL ~Ah
Q) T "

\
oY)
W2, A
|

1l i I |

! o
!s'“'-;"‘%’f""!‘r\ rﬁ‘iﬁﬂ.' !
[!
i fpveesd

20610 L1
S|
2 0.47 bon
0.2t
()‘()--: t t t t t
0 20 40 60 80 100
time [sec]

traf

Fig. 10. Traffic volume on each path.

V. CONCLUSION

In this paper, we implemented the traffic engineering
method considering the service priority, using P4. Through
demonstration experiments, we confirmed the operation of the
traffic engineering implementation. In this paper, we focus
on the behavior of the data plane. As future work, we
will examine the operation of the control plane such as the
construction of routing tables.

Acknowledgement This research was partially supported by
JSPS KAKENHI Grant No. 21K11857 and 24K14921.

REFERENCES

[1] RFC 7246, “Multipoint label distribution protocol in-band signaling in
a virtual routing and forwarding (VRF) table context,” 2014.

[2] iPerf, https://iperf.fr/

[3] Mininet, http://mininet.org/

[4] P. Bosshart et al., “P4: Programming Protocol-independent Packet Pro-
cessors,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 3, pp. 88-95, 2014.

[5]1 S. Kamamura, “Dynamic traffic engineering considering service grade
in integrated service network,” IEEE Access, vol. 10, pp. 79021-79028,
2022.

[6] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, and T. Turletti,
“A survey of software-defined networking: Past, present, future of
programmable networks,” IEEE Communications Surveys & Tutorials,
vol. 16, no. 3, pp. 1617-1634, 2014.

[71 N. Varyani, Z.-L. Zhang, and D. Dai, “QROUTE: an efficient Quality of
Service (QoS) routing scheme for software-defined overlay networks,”
IEEE Access, vol. 8, pp. 104109-104126, 2020.

[8] Z. Xu et al., “Teal: learning-accelerated optimization of WAN traffic
engineering,” in Proc. ACM SIGCOMM 2023 Conference, Sep. 2023,
pp. 378-393.

616

