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Abstract—We propose a framework for converting relational
databases (RDB) into hypergraphs to adjust and output various
PageRank (PR) correlations by weighting hyperedges and nodes.
While analyzing PR of converted graphs can reveal multifaceted
information about relationships in the data, conventional methods
struggled to balance the correlations between node PR and degree
(NPR correlation) and edge PR and shared field records (EPR
correlation). Our approach introduces two exponential weighting
parameters: α for edge size, influencing EPR correlation, and β
for node degree, influencing NPR correlation. By adjusting these
parameters, various PR correlations can be obtained. Evaluation
using real-world data demonstrate that our model can convert
RDBs into hypergraphs with flexibility.

Index Terms—Graph, Hypergraph, Database, PageRank

I. INTRODUCTION

In recent years, there has been increasing interest in con-
verting relational databases (RDBs) into graph databases for
centrality index analysis, which can provide new insights into
the relationships between data [12], [13]. Traditional RDB
queries are limited in scope, as they focus on retrieving data
directly rather than analyzing the connections between records.
By transforming RDBs into graphs, it becomes possible to dis-
cover significant data relationships and perform secure analysis,
as graphs allow data to be concealed by using node IDs rather
than exposing full records. This approach enables users who
do not have administrative access to analyze the data securely
and gain insights into the database’s structure.

PageRank (PR) centrality [10], which evaluates the impor-
tance of nodes and edges based on random walks (RW), is
widely used in real-world applications such as social network
analysis [11], recommendation systems [8], and community
detection [5]. When RDBs are converted into graphs, PR
can provide a valuable measure of the influence of specific
records or fields. However, in existing methods, controlling
the NPR correlation (node PR and degree correlation) and
EPR correlation (edge PR and shared records correlation)

has been challenging. Fields with a large number of records,
such as those representing frequently appearing values, tend to
dominate the PR analysis, inflating NPR and EPR values. As
a result, top-ranked nodes and edges tend to be biased toward
such fields, limiting the utility of the PR results.

To address this limitation, we propose a framework for trans-
forming RDBs into hypergraphs, where weights are applied to
nodes and edges to control NPR and EPR correlations. Hy-
pergraphs, unlike conventional graphs, allow for the inclusion
of multiple nodes in a single edge, and the weighting of these
elements can be tailored to adjust the influence of specific fields
on PR. By introducing exponential weighting parameters, α for
edges and β for nodes, the proposed method adjusts the strength
of these relationships, allowing for finer control over NPR and
EPR correlations. For instance, to mitigate the impact of fields
with many records, the weights for nodes and edges associated
with these fields can be reduced, lowering their influence on
PR without disregarding them entirely.

The framework was evaluated using real-world datasets, and
the results showed that adjusting the α and β parameters al-
lowed for the generation of weighted graphs with varying NPR
and EPR correlations. Specifically, edge weighting primarily
reduced EPR correlation, while node weighting contributed to
the reduction of NPR correlation. This flexibility in controlling
the PR correlations can produce more balanced and informative
results, enabling deeper insights into the relational structure of
the data. Moreover, applying other RW-based centrality mea-
sures, such as Random Walk Betweenness Centrality (RWBC)
or Personalized PageRank (PPR) [4], [7], to the weighted
hypergraphs could yield new perspectives, further expanding
the analytical capabilities of graph-based RDB analysis.

II. PRELIMINARIES

A hypergraph is a type of graph in which edges can connect
more than two nodes. In addition to edge weighting, which
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is commonly used in standard graphs, hypergraphs also allow
for node weighting, enabling more advanced levels of analysis
compared to traditional graphs. We refer to the number of nodes
contained within an edge e as the edge size Se.

Random walk on a hypergraph is executed in two phases [4]:
the edge selection phase and the node selection phase. In edge
selection phase, the random walker selects an edge containing
the current node with a probability proportional to the edge
weights. The probability Pei that edge ei is selected is:

Pei =
wei∑
we

(1)

where wei is the weight of edge ei, and
∑

we is the sum of the
weights of all edges that include the current node. As shown in
Equation 1, the probability of transitioning to a higher-weight
edge is greater, while the probability of transitioning to a lower-
weight edge is smaller.

In the node selection phase, a node contained within the
selected edge is chosen with a probability proportional to the
node weights. The probability Pvi that node vi is selected is:

Pvi =
wvi∑
wv

(2)

where wvi is the weight of node vi, and
∑

wv is the sum of the
weights of all nodes contained within the selected edge. The
probability of transitioning to a higher-weight node is greater,
while the probability of transitioning to a lower-weight node is
smaller. Finally, the random walker moves to the selected node,
which becomes the new current node, and the edge selection
process is repeated.

PageRank centrality is a metric that assigns higher values
to nodes and edges that are more frequently reached by a
random walker. The PR of a node is determined by the stay
probability of the RWer at each node, while the PR of an edge
is based on the stay probability at each edge. Unlike a standard
RW, PR incorporates a termination probability, denoted as α.
This termination prevents the RWer from getting trapped in
loop structures within the graph, which would otherwise create
biases in stay probabilities. In this paper, node PR is referred
to as NPR, and edge PR as EPR.

III. RELATED WORK

Converting relational databases (RDBs) into graphs offers
two significant advantages: the ability to derive new insights
and the possibility of secure data analysis. Traditional RDB
queries focus on individual data points and lack the capability
to uncover deep relationships between data. Graphs, on the
other hand, excel at identifying important data and discovering
strong connections between records, revealing value that cannot
be achieved through conventional RDB queries. Additionally,
graph analysis allows for secure handling of sensitive informa-
tion by replacing data with IDs, enabling non-administrative
users to perform analyses without requiring full data disclosure.

In methods where NPR (node PR and degree correlation) and
EPR (edge PR and shared record correlation) are high, such

as clique expansion (CE) [12], [13], records sharing the same
field in an RDB are connected by edges, and RW transitions
between connected nodes are equally probable. This leads to
high NPR and EPR correlations, especially for fields with large
numbers of records, resulting in nodes or edges from these
fields dominating PR rankings. This method prioritizes degree,
a single metric, limiting the ability to explore other features
of the data, which can be problematic for users seeking more
multifaceted insights.

On the other hand, hypergraph transformation [4] offers a
method with low NPR and EPR correlations. Here, records are
connected via hyperedges that correspond to field sizes, and
transitions in RW are equally probable among edges and nodes.
This method allows for the discovery of non-degree-based
features, but the extremely low NPR and EPR correlations
make it difficult for PR to reflect degree, an essential metric
for graph analysis. As a result, users seeking degree-related
insights may find this method unsatisfactory.

As such, existing methods for RDB-to-graph conversion ex-
hibit polarized NPR and EPR correlations, limiting the diversity
of information that PR can provide. We address this issue by
proposing a method that adjusts NPR and EPR correlations
through weighted transformations of nodes and edges. By
introducing flexible weighting parameters, the proposed method
enables PR to capture a wider range of correlations, offering
more balanced insights compared to previous approaches.

IV. MODEL

A. Overview

We now describe our proposed method, which extends
the existing hypergraph transformation technique. The method
converts the relational database (RDB) into a hypergraph and
applies weighting to adjust the NPR and EPR correlations,
thereby outputting a weighted graph with various PR corre-
lation values.

Weighting Edges: The proposed method weights edges
based on their size. To reduce both PR correlation values, the
weights of larger edges are decreased, as these edges typically
originate from fields with a high number of records. By altering
the flow of the random walker, the influence of large edges
on PR can be adjusted, allowing for the output of weighted
graphs with varying PR correlations. Directly weighting larger
edges will decrease the EPR correlation, and since nodes
associated with larger edges tend to have high degrees, this also
contributes to lowering the NPR correlation. This edge-focused
weighting is expected to significantly impact the reduction of
EPR correlation.

Weighting Nodes: Similarly, nodes are weighted according
to their degree. To lower both PR correlation values, the
weights of high-degree nodes are reduced. High-degree nodes
often stem from fields with a large number of records, and
adjusting the RWer’s flow can modulate the influence of these
nodes on PR, resulting in the generation of weighted graphs
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(a) Example of a hypergraph with
edge weighting

(b) Example of a hypergraph
with node weighting

Fig. 1: Examples of hypergraphs to illustrate weighting of
edges and nodes.

with different PR correlation values. By directly applying
weights to high-degree nodes, the NPR correlation is decreased.
Additionally, since high-degree nodes are likely to be included
in larger edges, this also contributes to reducing EPR correla-
tion. This node-focused weighting is anticipated to particularly
aid in lowering NPR correlation.

Given the user inputs for weighting parameters α and β
for edges and nodes respectively, our model proceeds in the
following manner: 1) The records of the RDB are transformed
into nodes. Records that share the same field or fall within
a specified numerical range in each column are connected by
edges to create a hypergraph. 2) Edge and node weighting is
applied based on the input parameters α and β. This process
allows for the adjustment of NPR and EPR correlations, leading
to a more nuanced analysis of the graph structure. 3) PageRank
is computed on the transformed weighted hypergraph.

B. Weighting Nodes and Edges

1) Weighting Edges: We now describe in details how
weights are assigned to edges. Since edge weights are deter-
mined based on the size of the edge, the weight wek for an
edge ek is:

wek = (Sek − 1)1−α (3)

where Sek is the size of the edge, and α is the edge weighting
parameter, with 0 ≤ α ≤ 1. Since the random walker here does
not transition from the current node back to itself, the transition
probability for an edge is proportional to Sek − 1. By Eq. 1,
the probability Pek of transitioning to edge ek is:

Pek =
(Sek − 1)1−α

∑
(Sen − 1)1−α

(4)

where
∑

(Sen − 1)1−α is the sum of the weights of all edges
containing the current node.

Figure 1a provides an example of a hypergraph with edge
weighting. Let the current node be the black node, and assume
that only edges ea and eb contain the current node. In this
example, edge ea has a size of 4, and edge eb has a size of 2,
leading to the following weights for edges ea and eb:

wea = 31−α, web = 11−α (5)

(a) Correlation between α and
edges ea,eb

(b) Correlation between β and
nodes vA,vB ,vC

Fig. 2: Correlation between each parameter and edges / nodes

Thus, the probability Pea of transitioning to edge ea is:

Pea =
31−α

31−α + 11−α
(6)

Similarly, the probability Peb of transitioning to edge eb is:

Peb =
11−α

31−α + 11−α
(7)

Figure 2a shows the relationship between the edge weighting
parameter α and the weights of edges ea and eb. As the
figure indicates, applying weights causes the relative weight
of edge ea (the larger edge) to decrease compared to that of
edge eb (the smaller edge), reducing the flow of the random
walker toward the larger edge. This enables us to balance the
flow between edges of different sizes. As the edge weighting
parameter increases, the difference in flow between edges of
different sizes becomes smaller, and the two PR correlation
scores decrease. In particular, when α = 0, the weights for
edges ea and eb are:

wea = 3, web = 1 (8)

Therefore, the transition probabilities Pea and Peb are:

Pea =
3

4
, Peb =

1

4
(9)

Since the random walker transitions proportionally to the
edge size, it will transition to all adjacent nodes with equal
probability. As a result, the random walker tends to transition
to larger edges, resulting in the highest PR correlation.

When α = 1, the weights for edges ea and eb are:

wea = 1, web = 1 (10)

Thus, the transition probabilities Pea and Peb are:

Pea =
1

2
, Peb =

1

2
(11)

In this case, the walker transitions equally to all edges con-
taining the current node, which reduces the probability of
transitioning to nodes in larger edges. Thus, the PR correlation
is minimized. By adjusting the edge weighting parameter
between 0 and 1 based on user requirements, the proposed
method can output random walks with various PR correlation
values.
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Fig. 3: Example of random walk transition in a weighted hypergraph.

2) Weighting Nodes: We now describe how weights are
assigned to nodes. Since the weights are assigned to nodes
based on their degrees, the weight wvk

for a node vk is:

wvk
= d−β

vk
(12)

where dvk
is the degree of node vk, and β is the node weighting

parameter, with 0 ≤ β ≤ 1. From Eq. 2, the probability Pvk

of transitioning to node vk is given by:

Pvk
=

d−β
vk∑
d−β
vn

(13)

where
∑

d−β
vn

is the sum of the weights of all nodes contained
in the current edge.

Figure 1b shows an example of a hypergraph with node
weighting. Let the nodes vA, vB , vC contained in the current
edge have degrees of 6, 3, and 4, respectively. From Eq. 12,
the weights of nodes vA, vB , vC are:

wvA
= 6−β , wvB

= 3−β , wvC
= 4−β (14)

Thus, the probability of transitioning from the current edge to
node vA, considering the weights of other adjacent nodes, is:

PvA
=

6−β

6−β + 3−β + 4−β
(15)

Similarly, the probabilities PvB
and PvC

of transitioning to
nodes vB and vC are:

PvB
=

3−β

6−β + 3−β + 4−β
, PvC

=
4−β

6−β + 3−β + 4−β
(16)

Figure 2b illustrates the relationship between the node
weighting parameter β and the weights of nodes vA, vB , vC .
As seen in the figure, applying weights causes the weight
of the higher-degree node vB to become relatively smaller
compared to that of the lower-degree nodes vA and vC than
before the weighting. This reduces the flow of the random
walker to high-degree nodes compared to before weighting,
thereby diminishing the difference in flow due to node degree.
Moreover, increasing the node weighting parameter reduces the
difference in flow between nodes of different degrees, leading
to lower PR correlation between two nodes. In particular, when
β = 0, the weights of nodes vA, vB , vC are:

wvA
= 1, wvB

= 1, wvC
= 1 (17)

Thus, the probabilities PvA
, PvB

, PvC
of transitioning to nodes

vA, vB , vC are:

PvA
=

1

3
, PvB

=
1

3
, PvC

=
1

3
(18)

Since the transition probabilities to all nodes are equal, the ran-
dom walk transitions to adjacent nodes with equal probability,
resulting in the highest PR correlation.

On the other hand, when β = 1, the weights of nodes
vA, vB , vC become:

wvA
=

1

6
, wvB

=
1

3
, wvC

=
1

4
(19)

Thus, the probabilities PvA
, PvB

, PvC
of transitioning to nodes

vA, vB , vC are:

PvA
=

2

9
, PvB

=
4

9
, PvC

=
1

3
(20)

Since it becomes less likely for the random walker to transition
to high-degree nodes, the PR correlation is minimized.

C. Transition of RW on Weighted Hypergraphs

In the hypergraph shown in Figure 3, let node A be the
current location. The edge weighting parameter α is set to 0.4,
and the node weighting parameter β is set to 0.3. Node A is
assumed to belong only to edges ea and eb.

Consider the case of transitioning from node A to node B. In
the random walk from node A to node B, the edge selection
phase involves selecting edge ea from the edges containing
node A, and the node selection phase involves selecting node B
from the nodes contained in edge ea. The probability PA→ea of
selecting edge ea in the edge selection phase of the hypergraph
RW is:

PA→ea =
3−0.6

3−0.6 + 1−0.6
(21)

The probability Pea→B of selecting node B in the node
selection phase of the hypergraph RW is:

Pea→B =
6−0.3

6−0.3 + 8−0.3 + 4−0.3
(22)

The probability PA→B of transitioning from node A to node
B is the product of the probability PA→ea of selecting edge
ea in the edge selection phase and the probability Pea→B of
selecting node B in the node selection phase. Therefore, from
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Eq. 21 and Eq. 22, the probability PA→B of transitioning from
node A to node B is:

PA→B =
3−0.6

3−0.6 + 1−0.6
· 6−0.3

6−0.3 + 8−0.3 + 4−0.3
(23)

V. EXPERIMENT

A. Setting

We now assess the effect of weighting both edges and
nodes. Both α and β are varied between 0 and 1. We plot the
changes in NPR correlation and EPR correlation when α and
β are varied between 0 and 1, and evaluate whether combining
the two parameters further reduces the two PR correlations.
Additionally, by observing the NPR and EPR correlations for
various combinations of α and β, we examine which parameter
more strongly contributes to each PR correlation.

The evaluation method for PR correlations uses Spearman’s
rank correlation coefficient ρ [6]. Spearman’s rank correlation
coefficient ρ is a measure of the correlation between the ranks
of two variables and is computed as:

ρ = 1− 6
∑

D2

N3 −N
(24)

where D is the difference in ranks between the two variables,
and N is the total number of nodes. NPR correlation is defined
as the rank correlation coefficient between NPR and degree, and
EPR correlation is defined as the rank correlation coefficient
between EPR and edge size.

We evaluate the proposed method using three real-world
graph datasets. Rakuten Recipes [1] is a relational database
(RDB) that transforms recipe names into nodes and connects
them with edges representing related tags and ingredients,
consisting of 1,000 nodes and 1,563 edges. JAST Medical
[3] is an RDB derived from prescription data where patients
serve as nodes, while edges represent information related to the
patients, such as diagnoses and age, making up 1,000 nodes
and 1,071 edges. LIFFLE HOME [2] is an RDB constructed
from property information where properties are represented
as nodes, with edges connecting them to information such as
municipalities, train stations, and structural features, adding up
to 1,000 nodes and 1,125 edges.

B. Results

Figures 4a, 4b, 4c show the relationship between α and β
when the EPR correlation is fixed, and the relationship between
α and β when the NPR correlation is fixed for each dataset. It is
shown that for all datasets, combining edge weighting and node
weighting further decreases the PR correlations. Additionally,
it was found that increasing the values of the two weighting
parameters results in a greater decrease in both PR correlations.

Figure 5a , 5b, 5c show the relationship between α and the
EPR correlation, and between β and the EPR correlation when
the NPR correlation is fixed, and the relationship between α
and the NPR correlation, β and the NPR correlation when the
EPR correlation is fixed. It is clear that in all datasets, when

(a) Correlation between α and β with EPR fixed (left), and with NPR
fixed (right) for [1]

(b) Correlation between α and β with EPR fixed (left), and with NPR
fixed (right) for [3]

(c) Correlation between α and β with EPR fixed (left), and with NPR
fixed (right) for [2]

Fig. 4: Correlation between α and β with EPR / NPR fixed.

the NPR correlation is fixed, the EPR correlation decreases
monotonically with respect to α, while it increases monotoni-
cally with respect to β. This indicates that α contributes more
significantly to the decrease in EPR correlation compared to β.
Furthermore, when EPR correlation is fixed across all datasets,
the NPR correlation decreases monotonically with respect to β,
while it increases monotonically with respect to α, indicating
that β contributes more significantly to the decrease in NPR
correlation compared to α.

From the distribution of the weighting parameters when the
PR correlation is fixed, it is clear that increasing the values of
the weighting parameters α and β further decreases the two PR
correlations. Furthermore, from the distribution of α and the
EPR correlation when the NPR correlation is fixed, it is shown
that α contributes more to the decrease in EPR correlation
compared to β. Additionally, from the distribution of β and the
NPR correlation when the EPR correlation is fixed, it is shown
that β contributes more to the decrease in NPR correlation
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(a) Correlation between the parameter and EPR / NPR for [1]

(b) Correlation between the parameter and EPR / NPR for [3]

(c) Correlation between the parameter and EPR / NPR for [2]

Fig. 5: Correlation between each parameter and EPR / NPR

compared to α.

VI. CONCLUSION & FUTURE WORK

This paper proposes a framework for converting relational
databases into hypergraphs and applying edge and node weights
to adjust NPR and EPR correlations, enabling the output
of weighted graphs with varying PR correlations. Previous
approaches suffer from lack of outcome controllability, leading
to one-dimensional or less useful information. Our framework
introduces weighting parameters based on edge size and node
degree to fine-tune the correlations. Evaluation with real-
world data showed that edge weighting primarily reduces EPR
correlation, while node weighting reduces NPR correlation.
New insights may be obtained by applying this approach to
other metrics, such as Random Walk Betweenness Centrality
[9] and Personalized PageRank (PPR) [7] for more diverse
graph analysis.
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