
A Study on Data Circulation Mechanism
in Smart City Architecture

1st Masami Shinoda
Graduate School of System Design and Technology

Tokyo Denki University
Tokyo, Japan

24amj18@ms.dendai.ac.jp

2nd Kanae MATSUI
Graduate School of System Design and Technology

Tokyo Denki University
Tokyo, Japan

matsui@mail.dendai.ac.jp

Abstract—This paper proposes a data circulation mechanism
as a core function of the data collaboration platform essential
for realizing smart cities. According to the definition by the
Cabinet Office of Japan, a smart city is an urban concept aimed
at providing personalized services and enhancing management
across multiple domains. Digital Transformation (DX) is a key
enabler of this advanced urban management. The objective is to
create a framework enabling all citizens to utilize data, addressing
urban challenges and creating new value.

Index Terms—Smart City, Data Circulation Mechanism, Static
and Dynamic Data, Serverless Architecture, Web API Integration

I. INTRODUCTION

The concept of a smart city has various interpretations, but
the Cabinet Office of Japan defines its essence as “providing
personalized services” and “enhancing management across
multiple domains” [1]. This definition is based on three core
principles: “citizen-centricity,” “emphasis on cross-domain and
urban systems,” and “solving challenges and realizing visions.”

“Enhancing management” essentially refers to Digital
Transformation (DX), which aims to enable not only data
owners but all citizens to utilize data, contribute to solving
societal challenges, and create new value. In this study, DX
specifically refers to digitization that enables “data-driven”
decision-making, facilitating more effective processes based
on data.

However, sufficient data collaboration necessary for a data-
driven society is not yet fully realized. This challenge aligns
with the smart city’s emphasis on cross-domain collaboration
and the broader goals of Society 5.0. In Society 4.0 (the
Information Society), data was often confined to individuals
or specific organizations with limited sharing [2].

To address this, there is a need to open data previously
managed in closed systems and enable cross-domain collabo-
ration for all citizens. This study focuses on designing and
implementing a data circulation mechanism that promotes
secure and efficient data sharing across different sectors.

This paper reviews existing research on smart city archi-
tectures and data circulation mechanisms, identifying current
challenges. It then presents the design and implementation of
the proposed mechanism and reports on experiments evaluat-
ing its effectiveness. Finally, the study discusses the results
and future prospects.

II. RELATED RESEARCH

A. Related Research
Research on data circulation mechanisms and urban oper-

ating systems (Urban OS) has gained significant attention in
the context of smart city development. The ability to integrate
and share data securely across multiple domains is critical for
realizing the smart city concept. Various studies have explored
different approaches to achieving this goal.

Aoki et al. [3] proposed an Urban OS architecture designed
to manage and securely share heterogeneous data. Their study
emphasizes key features such as data standardization, API-
based access, and privacy protection, which are essential for
data integration across sectors. This research is closely related
to our work, particularly in terms of secure data management
and sharing.

Several studies have proposed mechanisms for enhancing
data interoperability in smart cities, including approaches to
real-time data integration and privacy-aware data sharing [4],
[5] . These studies underscore the challenges in managing
dynamic data streams and ensuring security, which align with
the objectives of our work.

Japan’s “Super City” initiative leverages the FIWARE plat-
form to enhance data interoperability, security, and collabora-
tion [6], forming the basis for our proposed mechanism.

These studies demonstrate the diverse approaches to design-
ing Urban OS and data circulation mechanisms. Building on
these insights, our work focuses on real-time data processing
and the integration of heterogeneous data to support efficient
and secure data utilization in smart cities.

B. Efforts in Takamatsu City, Kagawa
A notable example of a data-driven initiative is the Smart

Map implemented in Takamatsu City [7]. In this case, various
data tied to the location information of Takamatsu City are
visualized on a map, providing data-driven insights for human
decision-making. The map effectively displays both relatively
static data, such as the locations of disaster prevention facili-
ties, and more frequently updated IoT sensor data, such as tide
levels and precipitation, along with their observation points.
This enables individuals to make informed decisions, such as
choosing evacuation sites during a disaster, by using the map
as a reference.

601979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

As the use of real-time data in such cases increases, the
demand for data collaboration platforms in smart cities is
expected to grow.

III. SYSTEM CONFIGURATION

This study focuses on the data circulation mechanism, one
of the core functions essential for realizing smart cities, within
the data collaboration platform. The proposed data circulation
mechanism primarily handles two types of data:

1) Static data owned by local governments
2) Highly real-time dynamic data obtained from IoT sen-

sors and other sources
Since the characteristics of these data types are fundamen-

tally different, each requires a specific processing method.
For the realization of smart cities, it is crucial for the data
circulation mechanism to handle both types of data flexi-
bly, enabling collaboration with data analysis platforms and
integration with other systems and applications. This study
proposes an efficient data processing mechanism that meets
these requirements.

The main proposal of this study is as follows: Traditional
data collaboration platforms tend to focus on processing
real-time data. However, to achieve data-driven systems and
evidence-based policy making (EBPM) [8], which are key
goals of smart cities, the integration of diverse static and
dynamic data is essential.

In the proposed mechanism, these heterogeneous data types
are converted into Web APIs to facilitate data circulation. This
method provides a unified access approach regardless of the
type and characteristics of the data, thereby enhancing inter-
operability between systems. The following sections describe
the details of the proposed mechanism.

A. System Configuration

The system comprises data collection, storage, and distri-
bution in 1.

Fig 1 illustrates the proposed data distribution mecha-
nism. The central API gateway manages requests, while the
Lambda functions handle data processing and response format-
ting. Static data is retrieved directly from SQLite snapshots,
whereas dynamic data is fetched from S3 in real-time to ensure
up-to-date information.

1) Data Collection: Crawls external sources for dynamic
data.

2) Data Storage: Stores static and dynamic data in
databases suited to their characteristics.

3) Data Distribution: Provides stored data via Web APIs.
The system is implemented on Amazon Web Services

(AWS) as detailed in Table I. All components operate within
the AWS environment.

The key feature is the use of a serverless architecture,
which minimizes infrastructure management and allows for
scalable system construction. TypeScript ensures type safety
for API implementation, while Python is used for efficient
data collection via crawling. SQLite provides lightweight, fast
database operations.

TABLE I
IMPLEMENTATION ENVIRONMENT

Cloud Service Amazon Web Services (AWS)
Execution Environment Node.js (16.18.x)
Framework Serverless Framework (3.26.x)
API Language TypeScript (5.0.x)
Data Collection Language Python (3.10.x)
Database System SQLite (3.x.x)

The following sections will detail the system’s functionality
and evaluation results.

1) Data Collection: As described in Section 3.1, this study
focuses on the collection and storage of two types of data:
static data and dynamic data. Static data is stored in the
database using SQL based on predefined templates. In contrast,
dynamic data, which requires real-time handling, can originate
from various sources, including APIs, applications, and system
integrations. To address reliance on manual data downloads,
we implemented web crawling.

An example of static data is population statistics owned
by local governments. These datasets, typically published
by national or local government agencies, are provided in
human-readable formats such as Excel files or PDFs. To
enhance machine readability for the distribution function, we
extracted necessary data elements and created templates for
each data item. The data items refer to statistical categories
such as ”population by gender” or ”population by age,” and
the templates define the database (DB) table schema. After
creating the templates, data from each year is stored in the
database using SQL. This process was carried out manually
in this study.

For dynamic data, we also manually created templates that
extract necessary data elements. However, unlike static data
templates, these templates define CSV file headers instead of
DB table schemas. During data collection, the data is stored
according to these templates. Since static data typically has
an annual update frequency, all data was collected manually.
However, dynamic data can be updated multiple times a day,
making manual updates impractical. Furthermore, the risk
of human error increases with manual processes. Therefore,
we implemented an automated data collection function. The
system configuration for real-time data updates is shown in 2.

Two primary functions are required for implementing the
data collection feature. First, a program and execution envi-
ronment for crawling websites and storing the data. Second, a
mechanism to execute this program at specified intervals.

For the crawling program, AWS Lambda was used as the
execution environment, and Python was chosen as the pro-
gramming language to implement web crawling. The collected
data is converted according to the predefined templates for
each data item and stored in Amazon S3.

To execute the program at specific intervals, we assumed
that the data source websites do not provide update no-
tifications, meaning the system must actively collect data.
To address this, AWS Step Functions were used to execute
the crawling program according to the update schedules for

602

Fig. 1. Proposed Data Distribution Mechanism.

Fig. 2. Real Time Data Update Configuration Diagram.

each data item. In the environment used for this study, the
data updates occurred at fixed intervals, such as 12:00 and
12:10. Using AWS Step Functions, we configured a cron-based
schedule to automate data collection at these times.

2) Data Storage: This section describes the contents of two
types of databases used to handle both static and dynamic data.

Static data, such as population statistics that are updated an-
nually, is stored in an SQL-based database for cost efficiency.
SQLite is chosen as the database management system due to its
lightweight nature compared to other systems. Since static data
is updated at intervals of approximately one year, the overall
data volume is relatively small. Therefore, it is managed as a
single file and stored in an SQL-based database, allowing the
use of SQL queries and offering the convenience of flexible
data operations.

For dynamic data, instead of using an SQL-based database,
the data is stored in daily segmented CSV files. ”Daily
segmented” refers to managing each data record in file units,
where each file covers a specific period from 12:00 AM to
12:00 AM (Japan Standard Time) the following day. Since
dynamic data tends to accumulate large volumes over time,
managing it in a single file could cause issues with data size
and handling. By dividing the data into daily segments, the
size of each file is kept manageable, which also improves
efficiency when distributing the data through the Web API, as

discussed in the next section. Thus, the accumulation method
differs from that used for static data.

3) Data Distribution: This section describes the Web API
used to distribute the accumulated data. A Web API is a
mechanism that allows part of a program’s functionality to
be accessed by other programs via the web. In this study, a
Web API was implemented to handle the collected and stored
data. The configuration diagram is shown in 3.

As a common implementation, when the system receives a
request to the Web API, it passes through CloudFront and API
Gateway, triggering the corresponding Lambda function for
each data item. Each Lambda function is designed to format
the data according to a predefined structure and respond in
JSON format based on the request. This allows the system to
function as a Web API and redistribute the data.

However, there is a significant difference in how static and
dynamic data are handled in the stored database files.

For static data, at the time the system is deployed, the
SQLite files corresponding to each data item are stored
alongside the executable files within the Lambda environment.
These files are snapshots stored in S3 and placed inside
the Lambda execution environment, allowing the system to
operate without retrieving data from S3 every time a Lambda
function is executed. This approach enhances response speed
and reduces unnecessary resource usage. However, this method
is only effective when the total data volume is small and the
snapshot data is not frequently updated. When the snapshot
data is updated, the Web API must be redeployed, and the
data inside the Lambda function must be manually updated,
making it impractical for non-static data.

In contrast, for dynamic data, the large data volume and the
need to provide the latest data promptly means that the data
is not stored inside the Lambda environment. Instead, data is
fetched from S3 on-demand based on the request, processed,
and returned in the response. This ensures that users receive
the latest data with minimal delay from the time of the update
to the time of distribution.

If dynamic data were handled using the same method as
static data, the entire system would need to be redeployed,
not just individual Lambda functions, leading to longer system
downtime proportional to the number of data items returned

603

Fig. 3. WebAPI Configuration Diagram.

by the Web API, and increased costs. Therefore, different
distribution methods are used for static and dynamic data to
accommodate their respective characteristics and meet system
requirements.

IV. EVALUATION EXPERIMENT

A. Evaluation Contents

To verify the effectiveness of the proposed data circulation
mechanism, we implemented the system assuming the founda-
tion of the open data platform ”Data Platform Kure” in Kure
City, Hiroshima Prefecture. ”Data Platform Kure” is a system
that publicly provides various administrative data held by Kure
City as Web APIs for use by citizens and businesses.

The data to be evaluated includes both static and dynamic
data, and their characteristics, periods, and items are summa-
rized in Table II.

The evaluation will be conducted by analyzing the rate
and nature of errors occurring during the process from data
collection to distribution for the data and periods shown
in Table II. Specifically, the following types of errors are
anticipated:

1) Errors during data collection: crawling failures, data
format mismatches

2) Errors during data storage: database write failures, ca-
pacity overflow

3) Errors during data distribution: API response errors, data
format inconsistencies

Due to the differing characteristics of static and dynamic
data, the evaluation methods will be distinguished accord-
ingly. For static data, since the collection is done manually,
collection-related issues are not considered. Therefore, the pri-
mary evaluation metric will be the success rate of distribution
via the Web API, which will be measured by the percentage
of correct data returned in response to API requests.

For dynamic data, the reliability of the automatic collection
process is crucial, and the primary evaluation metric will be
the data collection rate. This will be calculated by the ratio
of successfully collected data to the total scheduled collection
attempts.

In both data types, if errors occur, the type and frequency of
the errors will be recorded and used to identify areas for sys-
tem improvement. Through this evaluation, the performance
and reliability of the proposed data circulation mechanism
will be comprehensively verified, and challenges for practical
implementation will be identified.

B. Evaluation Results

1) Results of Static Data: In this section, we present the
operational results of the static data distribution system over
an 8-month period, from April 1, 2023, to December 31, 2023.
The data was aggregated based on the following definitions as
evaluation metrics:

• Total Access Count: The total number of HTTP requests
to the constructed system.

• Valid Access Count: The number of valid requests, ex-
cluding issues caused by the request source.

• Server-side Error Count: The number of cases where the
system failed to return an appropriate response due to
system-related issues.

The evaluation results are shown in Table III.
The distribution rate was calculated using the following

equation 1.

Distribution Rate =

Valid Access Count − Server-side Error Count
Valid Access Count

× 100 (%)

(1)

Table IV shows the corresponding HTTP status codes for
each aggregation category.

Here, each status code indicates the following:
• 200: Request successful
• 206: Partial content sent successfully
• 403: Access forbidden
• 503: Service unavailable

”Server-side errors” include temporary server overloads (503)
and access permission configuration issues (403).

604

TABLE II
DATA CONTENT TO BE EVALUATED.

Data Type Period Data Items

Static Data 2023/04/01∼2023/12/31
31 items
(e.g., population statistics,
financial status, tourism statistics)

Dynamic Data 2023/11/05∼2023/12/05 Rainfall, river water level,
tide level

Dynamic Data 2023/12/02∼2024/01/02 Pedestrian flow

TABLE III
STATIC DATA DISTRIBUTION RATE

Total Access
Count

Valid Access
Count

Server-side Error
Count Distribution Rate (%)

7544 6755 60 99.1

TABLE IV
STATUS CODE CORRESPONDENCE BY AGGREGATION CATEGORY

Total Access Count Valid Access Count Server-side Error Count
All 200, 206, 403, 503, Others 403, 503, Others

The analysis results show a distribution rate of 99.1%,
indicating that the constructed system can distribute static data
with high reliability. Factors preventing a 100% distribution
rate include temporary network delays, momentary server
overloads, and minor software bugs. However, the frequency
of these issues is extremely low and is not considered to have
a significant impact on overall system performance.

A 99.1% distribution rate confirms the mechanism’s effec-
tiveness and robustness over 8 months. The system’s ability to
maintain stable performance over an 8-month period further
supports its robustness and reliability.

As future work, a detailed analysis of the remaining 0.9%
error cases will be necessary to identify potential improve-
ments. Additionally, collecting more long-term operational
data and continuously evaluating the system’s stability will
be essential.

2) Results of Dynamic Data: During the verification period
of dynamic data summarized in Table II, the number of
requests to the Web API matched the number of responses.
However, several issues were discovered in the data collection
function. The results are shown in Table V.

The river water level data achieved a 100% success rate
due to its consistent update schedule and minimal dependency
on external services. In contrast, rainfall and tide level data
faced challenges such as source service delays and format
inconsistencies, impacting their collection reliability.

The evaluation was conducted by counting the success
or failure of the data collection program on each day and
calculating the success rate as the ratio of successful operations
to the total evaluation days. Here, success refers to cases where
all scheduled data was collected correctly, while failure refers
to cases where any part of the data collection encountered
issues.

As a result, approximately 20% of the dynamic data dis-
tribution exhibited deficiencies across all four data types.

The success rate is insufficient for providing the system as
a practical service, indicating the need for improvements in
the data collection function. After analyzing the failures, two
primary issues were identified:

First, the system faced issues with unexpected data update
deviations from external sources.

Second, a lack of understanding of AWS-specific charac-
teristics in the constructed system caused problems. Specifi-
cally, the crawling program implemented using AWS Lambda
transitioned to an ”Inactive” state after a certain period of
inactivity, preventing immediate execution. This phenomenon
is documented in AWS documentation, but it was difficult to
account for all requirements in advance, and this issue was
not addressed during the implementation stage.

To address the issues identified in this study, particularly
the automatic transition of AWS Lambda to the ”Inactive”
state, the following improvements are under consideration. To
enhance flexibility in collaboration with external services, we
plan to implement a scheduling feature that accommodates
variable data update times and introduce alternative processes
for anomaly detection. Rare failures impacted the stability of
dynamic data processing.

In the future, these improvements will be implemented to
improve system stability and reliability through long-term op-
eration. We will also work on modularizing the data collection
function and improving its versatility to adapt to various types
of dynamic data.

V. DISCUSSION

The proposed system can be seamlessly integrated into
existing urban infrastructures by providing standardized APIs
for various municipal departments. For non-technical stake-
holders, user-friendly dashboards could simplify data access
and enhance decision-making processes.

605

TABLE V
DYNAMIC DATA DISTRIBUTION RATE

Dynamic Data Success Failure Evaluation Days Success Rate
(%)

Failure Rate
(%)

Rainfall 25 6 31 80.6 19.4
Tide Level 19 12 31 61.2 38.8
River Water Level 31 0 31 100.0 0.0
Pedestrian Flow (KLA) 1 1 2 50.0 50.0

In the process of collecting dynamic data, integration with
external applications and systems is essential. This study
has revealed the practical difficulties in fully understanding
complex services like AWS and data source services that are
difficult to modify. Additionally, unforeseen issues, such as
rare failures under specific conditions, were identified. These
challenges significantly impact the stability and reliability of
dynamic data processing systems.

The evaluation results indicate that continuous monitoring
of both dynamic data and the collection program is necessary.
Implementing a data monitoring program, error detection
within the collection program, and alert notifications to ad-
ministrators when issues arise would enable faster responses to
unanticipated problems. Since modifying data source services
is often difficult, improving the system’s ability to respond
quickly to unknown issues is crucial.

For efficient troubleshooting, generalizing error types is
important. This involves abstracting similar issues and catego-
rizing them within the system. Such generalization simplifies
system status management, enables automation of responses to
alerts, and improves the clarity of alert messages. For instance,
differentiating between the failure to retrieve data and the
failure to process it appropriately allows for more effective
problem-solving.

However, the design and implementation of such error
abstraction must balance the cost of cloud services. Overly
complex systems can increase operational costs, so careful
consideration of the scope and cost of implementation is
necessary. The design should be tailored to the scale and
importance of the system.

Future work includes improving monitoring, automating
error handling, and optimizing for cost and performance.
Efforts will also be made to modularize the data collection
function and improve its versatility to adapt to various types of
dynamic data, aiming to enhance the reliability and efficiency
of the dynamic data processing system.

Additionally, accumulating and analyzing long-term opera-
tional data will contribute to building more accurate failure
prediction models, enabling proactive issue avoidance and
more efficient resource allocation.

VI. CONCLUSION

In this study, we designed and implemented a data cir-
culation mechanism essential for smart cities, focusing on
efficiently handling both static and dynamic data.

The evaluation showed a high distribution rate of 99.1%
for static data, demonstrating stable performance. However,

dynamic data posed challenges, such as issues with external
service integration and AWS Lambda’s transition to an ”In-
active” state. These findings underscore the need for effective
monitoring systems in handling dynamic data.

Key takeaways include the importance of continuous data
and program monitoring, error type generalization, and flex-
ible scheduling to improve system stability and reliability.
Additionally, understanding cloud service characteristics and
optimizing system design are critical.

Moving forward, we will enhance monitoring for dynamic
data, automate error handling, and optimize the system, bal-
ancing cost and performance. We also plan to modularize
the data collection function and improve its adaptability to
different types of dynamic data.

ACKNOWLEDGMENT

This research was supported by JSPS KAKENHI Grant
Number 22H03572. The data used in this study are available
at Dataplatform Kure [9].

REFERENCES

[1] KIRIMTAT, Ayca, et al. Future trends and current state of smart city
concepts: A survey. IEEE access, 2020, 8: 86448-86467.

[2] Cabinet Office, Government of Japan,
https://www8.cao.go.jp/cstp/english/society5 0/index.html, Available
Sep 12rd, 2024.

[3] AOKI, Shunsuke, et al. Time-sensitive cooperative perception for real-
time data sharing over vehicular communications: Overview, challenges,
and future directions. IEEE Internet of Things Magazine, 2022, 5.2:
108–113.

[4] Xiao, Zhe and Fu, Xiuju and Goh, Rick Siow Mong. Data privacy-
preserving automation architecture for industrial data exchange in smart
cities. In: IEEE Transactions on Industrial Informatic, 2027. vol. 14, no.
6, p. 2780–2791.

[5] Cirillo, Flavio and Solmaz, Gürkan and Berz, Everton Luı́s and Bauer,
Martin and Cheng, Bin and Kovacs, Ernoe. A standard-based open
source IoT platform: FIWARE. In: IEEE Internet of Things Magazine:
IEEE, 2019. vol. 2, no. 3, p. 12–18.

[6] HASENBURG, Jonathan; BERMBACH, David. DisGB: Using geo-
context information for efficient routing in geo-distributed pub/sub
systems. In: 2020 IEEE/ACM 13th International Conference on Utility
and Cloud Computing (UCC). IEEE, 2020. p. 67–78.

[7] MATSUMOTO, Shimpei, et al. Development of a smartphone applica-
tion for promoting shopping district using paper maps and Augmented
Reality. In: 2021 10th International Congress on Advanced Applied
Informatics (IIAI-AAI). IEEE, 2021. p. 619–624.

[8] AKIYAMA, Yuki; OGAWA, Yoshiki; YACHIDA, Osamu. Evidence-
Based Policymaking of Smart City: The Case of Challenge in Maebashi
City, Japan. In: Society 5.0, Digital Transformation and Disasters: Past,
Present and Future. Singapore: Springer Nature Singapore, 2022. p. 55–
75.

[9] Kure City, Hirosima Prefecture, Japan; Data Platform Kure URL:
https://api.expolis.cloud/docs/opendata/t/kure#auth, Available at Nov,
2024 (Only in Japanese).

606

