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Abstract—Sentence embeddings are a crucial component of
natural language processing (NLP), enabling machines to capture
subtle meaning and context in text. By converting sentences into
compact, fixed-size vectors, sentence transformers unlock a range
of applications, including semantic search (identifying relevant
documents or passages based on their meaning and context),
sentence similarity assessment (measuring the degree of semantic
equivalence between two sentences), and paraphrase detection
(identifying sentences that convey the same meaning using
different words or phrasing). In this study, we fine-tuned multiple
state-of-the-art sentence transformer models on a custom dataset
specifically designed for sentence similarity tasks and evaluated
their performance through rigorous benchmarking. Our findings
yield a surprising insight: the choice of model is highly task-
dependent, with larger models not always outperforming smaller
ones, which underscores the importance of model selection for
optimal performance in specific NLP tasks.

Index Terms—Information retrieval, Search methods, Semantic
search, Natural language processing, Transformer models, Deep
learning, Transfer learning

I. INTRODUCTION

The rapid advancement of machine learning has enabled
machines to perform tasks once exclusive to humans, such
as understanding language nuances. A key breakthrough is
sentence embeddings, which allow machines to capture the
meanings and contexts within text, advancing applications like
semantic search, sentence similarity, and paraphrase detection
by transforming sentences into vectors for comparison [6].

One major application of sentence embeddings is semantic
search, which is crucial for information retrieval. By repre-
senting queries and documents as vectors, machines are able
to capture semantic relationships, which enables more accurate
and personalized search results, improving user experience and
retrieval effectiveness [4].
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Sentence embeddings have also significantly impacted sen-
tence similarity tasks. By comparing vector representations,
machines determine semantic similarity, supporting applica-
tions like text classification, clustering, and topic modeling
with implications in customer service and content management
[3]. Paraphrase detection, another key application, identifies
sentences with the same meaning but different wording, aiding
in plagiarism detection and improving machine translation by
capturing linguistic nuances [12].

Recent advances in sentence transformer models have im-
proved sentence embeddings, but selecting the right model
for specific tasks remains challenging due to varying model
strengths, task specificity, and resource requirements. Despite
the importance of sentence similarity tasks, a knowledge gap
persists regarding the efficacy of sentence transformer models.
In 2022 study by Casola et al. [1] conducted a study that
compared five pre-trained transformers. However, this research
aims to close that knowledge gap by fine-tuning state-of-
the-art models on a custom sentence similarity dataset. By
benchmarking these models, we explore the impact of model
size and task specificity, emphasizing the need for dataset-
specific fine-tuning to optimize performance. Our findings
have implications for improving NLP systems and enhanc-
ing sentence similarity tasks in applications like information
retrieval, text summarization, and question answering.

II. LITERATURE REVIEW

The first BERT model, called Bidirectional Encoder Repre-
sentations from Transformers, was created by Devlin et al. [2],
revolutionized natural language processing by pretraining deep
bidirectional representations using the Transformer architec-
ture. Unlike previous models that processed text sequentially,
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BERT captures context from both directions, making it highly
effective for various NLP tasks.

Building on the success of BERT, Reimers et al. [10]
introduced Sentence-BERT (SBERT), a variant designed to
efficiently produce semantically meaningful sentence embed-
dings. SBERT utilizes siamese and triplet network structures,
which enable the generation of fixed-size sentence embeddings
that can be compared using cosine similarity. This architecture
addresses the major limitation of BERT in sentence similarity
tasks. While BERT and RoBERTa perform well on these tasks,
they require significant computational resources. SBERT, on
the other hand, reduce an 65 hour inference on BERT in just
5 seconds while still preserving the accuracy [10].

Since the introduction of Sentence-Bert, different models
and variations for semantic sentence similarity tasks have been
developed. Reimers et al. [9] focused on modifying the models
developed in [10] for paraphrasing tasks to fit on a multitude
of tasks, such as information retrieval and classification. Ni
et al. on the other hand worked on modifying text-to-text
transformers, more specifically the TS model family developed
by Raffel et al. [8], to fit sentence similarity tasks efficiently
in the same way SBERT does.

III. METHODOLOGY & IMPLEMENTATION

In this section, we first introduce the data we used for this
benchmark (III-A), followed by the chosen models (III-B), and
finally the training setup for this benchmark (III-C).

A. Data

The dataset utilized for training and fine-tuning the sentence
similarity models encompasses a total of 21,930 samples,
segmented into 16,930 training samples and 5,000 testing sam-
ples. This data represents job postings and related attributes
and includes entries in both English and German. The primary
application of this data is in job matching and recommendation
systems, where the goal is to accurately assess and align
job descriptions with potential candidates based on various
attributes.

The dataset was sourced from Joblift [5], a meta-search
platform for job vacancies with millions of open positions
across four main countries. The data includes job descriptions
and related attributes that allow for semantic analysis and
job matching. This dataset was designed to facilitate the
development of models that assess the semantic similarity
between job descriptions in order to enhance job matching
accuracy.

1) Training Data: The training dataset is structured with
a variety of attributes related to job openings, where some
fields are directly provided and others are predicted by external
models:

« Title: The title of the job opening, providing a succinct
summary of the role.

o Description: A detailed account of the job responsibili-
ties, requirements, and other relevant details.

o Flat SKkills: Predicted. This column contains a list of
skills necessary for the job, as predicted by an external

model. The accuracy of this information may vary, and
missing values indicate either no applicable skills or low
confidence in prediction.

e ESCO Occupation Label: Predicted. Each job is as-
signed a predicted occupation category based on the
ESCO classification system. This helps categorize the job
into predefined occupational groups but may have some
inaccuracies.

o Contract Type: Predicted. A model predicts the type
of contract (permanent, temporary, or seasonal), offering
insights into the nature of the offered employment.

o Education Levels: Predicted. This field shows the antici-
pated educational qualifications needed for the job, aiding
in understanding the educational requirements, but it may
contain inaccuracies.

« Employment Types: Predicted. The type of employment
(e.g., apprenticeship) is predicted, offering insights into
the nature of the job but potentially lacking precision.

o Experience: Predicted. This attribute indicates the level
of experience required for the job, as predicted by an ex-
ternal model. The predictions may not always be accurate
or complete.

o Working Schedule: Predicted. The working schedule
(fixed, flexible, or seasonal) is predicted, which provides
information on job flexibility but may not always be
precise.

o Working Times: Predicted. This feature, indicating
whether the job is part-time, full-time, or allows both,
is predicted by a model and might have some variability
in accuracy.

The predictions of the noted columns are derived from
external models and are subject to potential inaccuracies.

In the creation of this benchmark, we utilized columns with
consistent values (lack of missing value), which results in the
following final list of utilized attributes:

o Description

o Flat Skills

¢ ESCO Occupation Label
o Contract Type

+ Employment Types

o Working Times

2) Testing Data: The testing dataset is composed of pairs
of job descriptions, each accompanied by a similarity score.
This dataset is used to evaluate the performance of the sentence
similarity models by assessing their ability to determine the
similarity between different job descriptions. The inclusion of
both English and German descriptions ensures that the model’s
performance is tested across multiple languages, providing a
comprehensive evaluation of its effectiveness.

B. Models

For this study, due to their popularity and compact size, the
following models have been chosen:

¢ paraphrase-multilingual-MiniLM-L12-v2

¢ paraphrase-MiniLM-L12-v2
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o paraphrase-MiniLM-L6-v2

o paraphrase-MiniLM-L3-v2

¢ paraphrase-mpnet-base-v2

o paraphrase-distilroberta-base-v2

o paraphrase-TinyBERT-L6-v2

o paraphrase-albert-small-v2

o distiluse-base-multilingual-cased-v2

These models are part of the Sentence-BERT (SBERT) model
family introduced by Reimers et al. in [10].

e all-MiniLM-L12-v2

o all-MiniLM-L6-v2

o all-mpnet-base-v2

Hugging Face’s ’Community Week using JAX/Flax for NLP
& CV’ event featured the development of these models as part
of the "Train the best sentence embedding model ever with 1B
training pairs’ project [9].

 sentence-t5-base

This model was introduced by Ni et al. in [7].

To provide a better understanding of the complexity of each
model, Figure 1 shows a bar plot of the parameter count for
each model. This plot allows for a visual comparison of the
model sizes, which can be an important factor in determining
their performance and efficiency.

Parameters (M)

paraphrase-multilingual-MiniLM-L12-v2
paraphrase-MiniLM-L12-v2
all-MiniLM-112-v2
paraphrase-MiniLM-L6-v2
all-MiniLM-L6-v2
paraphrase-MiniLM-L3-v2

paraphrase-mpnet-base-v2

Model

all-mpnet-base-v2
paraphrase-distilroberta-base-v2
paraphrase-TinyBERT-L6-v2
paraphrase-albert-small-v2
distiluse-base-multilingual-cased-v2

sentence-t5-base
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Fig. 1. Sentence Transformers Parameters (M)

C. Fine-Tuning

In our fine-tuning procedure for sentence similarity, we
utilize a triplet loss approach, as in [11], to enhance the
model’s capability to discern between semantically similar and
dissimilar job descriptions. The training process involves the
following components:

1) Triplet Loss: Each training batch comprises three types
of job descriptions:

e Anchor: The reference job description used for compar-
ison.

o Positive: A job description semantically similar to the
anchor, which the model should learn to associate closely
with the anchor.

o Negative: A job description not semantically similar to
the anchor, which the model should learn to distinguish
from the positive.

The triplet loss function is defined as:
L = max(0,d(a,p) — d(a,n) + o) (1

where d(a,p) is the distance between the anchor and the
positive description, d(a,n) is the distance between the anchor
and the negative description, and « is the margin that separates
the positive and negative pairs. The goal is to minimize this
loss, which encourages the model to ensure that the anchor
is closer to the positive description than to the negative
description by at least a margin « [11].

2) Training Setup: The training setup is configured with
the following parameters:

o Batch Size: A batch size of 4 is used, which is suitable
for our training setup and GPU capacity.

e Epochs: Training is performed for 1 epoch per model,
allowing for initial validation of the training process and
initial assessment of the model’s ability.

o Hardware: Training is conducted on an NVIDIA RTX
4070 Ti GPU, which provides the necessary computa-
tional power to handle the model’s training efficiently.

o Library: We utilize the Sentence Transformers library,
which facilitates the implementation and fine-tuning of
models for sentence similarity tasks.

Figure 2 shows the training time for each model, illustrating
the duration of the training process in seconds.

Training Time (s) per Model

paraphrase-multilingual-MiniLM-L12-v2
paraphrase-MiniLM-L12-v2
all-MiniLM-L12-v2
paraphrase-MiniLM-L6-v2
all-MiniLM-L6-v2
paraphrase-MiniLM-L3-v2

paraphrase-mpnet-base-v2

Model

all-mpnet-base-v2
paraphrase-distilroberta-base-v2
paraphrase-TinyBERT-L6-v2
paraphrase-albert-small-v2
distiluse-base-multilingual-cased-v2

sentence-t5-base
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training_time

Fig. 2. Sentence Transformers Training Time

IV. RESULTS & EVALUATION

The fine-tuned sentence transformer models were evaluated
using two key metrics: the Pearson correlation between cosine
distances of the embedding vectors and inference times on the
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test set. The results are summarized in Table I, while a detailed
comparison is provided below.

A. Cosine Pearson Correlation

There is a strong link between the cosine distance of
encoded test samples and true similarity scores, as shown in 3.
The paraphrase-multilingual-MiniLM-L12-v2 model does the
best, with a correlation of 0.3426. It is followed by paraphrase-
albert-small-v2 (0.3407) and paraphrase-distilroberta-base-
v2 (0.3386). The lowest performers are all-MiniLM-L6-v2
(0.1808), all-MiniLM-L12-v2 (0.1848), and all-mpnet-base-
v2 (0.2160). This comparison shows that models trained on
paraphrase detection consistently outperform models trained
on a wide range of tasks. This shows the benefits of choosing
task specific models.

Cosine Pearson per Model

paraphrase-multilingual-MiniLM-L12-v2
paraphrase-MiniLM-L12-v2
all-MiniLM-L12-v2
paraphrase-MiniLM-L6-v2
all-MiniLM-L6-v2
paraphrase-MiniLM-L3-v2

paraphrase-mpnet-base-v2

Model

all-mpnet-base-v2
paraphrase-distilroberta-base-v2
paraphrase-TinyBERT-L6-v2
paraphrase-albert-small-v2

distiluse-base-multilingual-cased-v2

sentence-t5-base
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Fig. 3. Sentence Transformers Cosine Pearson Correlation

B. Comparison with Base Model Performance

One important thing to consider is the difference in the
models’ performance before and after fine-tuning. As can be
seen in Figure 4, all models had different changes in their
performance.

The comparison shows that in general all models that were
pre-trained solely on paraphrase detection had a significant
increase in performance compared to the base models, while
models that were pre-trained on multiple tasks had a decrease
of up to -32.76% in performance after fine-tuning on the
dataset. Upon examining the comprehensive data in the bench-
mark table (Table I), it becomes evident that the sole factor
influencing performance increases or decreases compared to
the base model, is dependent on whether the base model was
pre-trained on paraphrase detection or on multiple tasks.

The sentence-tS-base model, which builds on top of T5 and
can also perform classification, clustering, and other NLP tasks
[7], appears to be the exception to this rule. Its performance
has increased by 34.78%.

Other notable models are paraphrase-MiniLM-L12-v2,
which achieved the highest increase in performance, with

Difference (%) in Cosine Pearson compared to Base Model

paraphrase-multilingual-mMiniLM-L12-v2 4
paraphrase-MiniLM-L12-v2 -
all-MiniLM-L12-v2 §
paraphrase-MiniLM-L6-v2 1
all-MiniLM-L6-v2
paraphrase-MiniLM-L3-v2 4

paraphrase-mpnet-base-v2

Model

all-mpnet-base-v2 §
paraphrase-distilroberta-base-v2 q
paraphrase-TinyBERT-L6-v2 4
paraphrase-albert-small-v2 4
distiluse-base-multilingual-cased-v2 4 I

sentence-t5-base
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Percentual Difference (%)

o
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Fig. 4. Sentence Transformers Percentual Difference of Cosine Pearson

96.69% and paraphrase-albert-small-v2 being the smallest
model (Figure 1) with the second heighest cosine Pearson
correlation (Figure 3) and an increase of 86.15% .

Important to consider is that this benchmark focuses on the
performance of models after a single epoch of training, as
mentioned in section III-C. Other results may occur when fine-
tuning each single model to their optimal state.

C. Inference Times

In addition to evaluating the models’ performance in cosine
Pearson correlation, we also assessed their efficiency by mea-
suring their inference time. Specifically, we recorded the total
inference time and the inference time per sample, over the
5000 samples in the test set, and present the results in Figure
5 and Table I. This analysis allows us to gain insight into the
models’ processing speed and identify potential bottlenecks in
their architecture.

The result shows that paraphrase-MiniLM-L3-v2 model had
the fastest inference (6.6 seconds total, 0.0013 seconds per
sample), followed by the MiniLM-L6-v2 models (10.9 seconds
total). In contrast, the mpnet-base-v2 models required 73.1
seconds, a 11.1-fold increase over the MiniLM-L3-v2 model.

These findings underscore the substantial disparities in
inference time among the evaluated models, emphasizing the
importance of selecting the most suitable model for a spe-
cific application, which often necessitates a trade-off between
accuracy and computational efficiency.

D. Cosine Pearson Correlation and Inference Times

Considering the cosine Pearson correlation and inference
time together allows for a more comprehensive evaluation of
the models’ performance. When looking at the benchmark
table, Table I, the side-by-side comparison highlights the
strength of the top three models in a broader perspective.

The paraphrase-multilingual-MiniLM-L12-v2 model stands
out with the highest cosine Pearson correlation coefficient
of 0.3426, as previously shown in section IV-A, and a low
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Inference Time per Sample (s) per Model
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Fig. 5. Sentence Transformers Inference Time per Sample

average inference time of 0.0035 seconds per sample. This
makes it both the most accurate and a computationally efficient
solution, ideal for applications requiring high accuracy and fast
processing. Its performance across both metrics highlight the
models well-rounded capabilities.

Similarly, the paraphrase-albert-small-v2 model performs
well, achieving a cosine Pearson correlation of 0.3407, just
behind the paraphrase-multilingual-MiniLM-L12-v2 model.
Although its inference time of 0.0093 seconds per sample is
higher, its overall performance remains competitive, making it
a viable alternative where a marginally slower inference time
is acceptable.

E. Combined Result & Evaluation

To provide an even more comprehensive evaluation, we
now consider the models’ performance alongside their training
duration and model size. Although training duration may not
be critical in this case due to the small data size, it becomes a
bottleneck with larger or continuously growing datasets, such
as those with continuous customer feedback. In such scenarios,
faster training and adaptation are crucial for maintaining a
competitive edge.

Model size is another key factor, impacting not only training
speed but also batch inference scalability. Smaller models
allow for larger batch sizes in both training and inference,
increasing throughput. Additionally, smaller models reduce
memory requirements, making them more suitable for devices
with limited resources, such as edge or mobile devices.

The radar chart (Figure 6) offers a comprehensive view
of all four factors, providing a clear comparison of each
model’s strengths and weaknesses. This visual representation
aids decision-making by highlighting the trade-offs.

From the chart, it is clear that the paraphrase-multilingual-
MiniLM-L12-v2, with the highest cosine Pearson coefficient,
performs well in all other categories except model size, as
it is the second largest model. Its good performance makes

it a strong choice for production environments, capable of
handling diverse tasks and scenarios.

In contrast, the paraphrase-albert-small-v2 model, which
was previously identified as the second-strongest model in
Section I'V-D, reveals a remarkable characteristic: an extremely
small model size. Specifically, it is ten times smaller than the
paraphrase-multilingual-MiniLM-L12-v2 model. This signifi-
cant size reduction enables faster training and increased in-
ference capacity when utilizing higher batch sizes. In produc-
tion environments with limited budget or compute resources,
this model can serve several times more customers than the
paraphrase-multilingual-MiniLM-L12-v2 model making it a
compelling choice in this regard.

Another interesting model is distiluse-base-multilingual-
cased-v2, where the base model has a cosine Pearson correla-
tion of 0.3017, which comes close to the top-performing fine-
tuned models, making it an excellent choice for application
prototyping, though it can be challenging to deploy on a larger
scale with a limited budget due to its comparatively large size.

V. CONCLUSION & FUTURE WORK

In conclusion, our evaluation of various sentence trans-
formers has revealed that the optimal model choice is not as
straightforward as it may seem. While model performance on
the specific problem is a crucial factor, it is not the only one
to consider. Our analysis has shown that models with great
performance may not necessarily be the best choice in all
scenarios, as they may come with significant computational
costs, larger model sizes, or longer training times.

On the other hand, models that may not be the most accurate
can still offer advantages in terms of computational efficiency,
smaller model sizes, or faster training times. Our findings sug-
gest that the correct model choice depends on a comprehensive
evaluation of multiple factors, including accuracy, inference
speed, training duration, and model size.

The paraphrase-multilingual-MiniLM-L12-v2 model, for
example, offers the highest accuracy but may not be the
best choice for production environments with limited com-
putational resources. In contrast, the paraphrase-albert-small-
v2 model, while slightly less accurate, offers a significant
advantage in terms of model size and computational efficiency,
making it a more suitable choice for certain applications.

These results emphasize the need to consider multiple
evaluation metrics when selecting a model. Assumptions like
“bigger is better” or choosing the top-performing model are
not always valid. A comprehensive approach helps identify
the optimal model by balancing accuracy, efficiency, and
computational resources.

Future work can build upon the insights gained from this
study by exploring the application of sentence similarity
models in more diverse and complex scenarios or by creating
a benchmark that trains all models as close as possible to their
optimal state instead of a single epoch.

The development of more sophisticated evaluation metrics
that do consider the specific requirements of real-world ap-
plications, such as latency, memory constraints, and inter-
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Fig. 6. Sentence Transformers Relative Training Time, Parameters, Inference Time and Cosine Pearson Correlation

Model Parameters (M) | Training Time | Cosine Pearson | Base Model | Total Inference | Inference Time

(s) Cosine Pearson | Time (s) per Sample (s)
paraphrase-multilingual- 118 1204 0.3426 0.2774 17.431 0.0035
MiniLM-L12-v2
paraphrase-MiniLM-L12-v2 334 812 0.2895 0.1756 19.2243 0.0038
all-MiniLM-L12-v2 334 832 0.1848 0.2749 19.3172 0.0039
paraphrase-MiniLM-L6-v2 22.7 451 0.3134 0.1594 10.8922 0.0022
all-MiniLM-L6-v2 227 454 0.1808 0.2474 10.9884 0.0022
paraphrase-MiniLM-L3-v2 17.4 255 0.2608 0.1352 6.6432 0.0013
paraphrase-mpnet-base-v2 109 2534 0.2827 0.1896 73.9009 0.0148
all-mpnet-base-v2 109 2570 0.2160 0.2861 73.0814 0.0146
paraphrase-distilroberta- 82.1 1265 0.3386 0.1770 35.1753 0.0070
base-v2
paraphrase-TinyBERT-L6-v2 | 67 1006 0.3238 0.1860 25.4528 0.0051
paraphrase-albert-small-v2 11.7 1107 0.3407 0.1830 46.4308 0.0093
distiluse-base-multilingual- 135 1508 0.2895 0.3017 31.3898 0.0063
cased-v2
sentence-t5-base 110 2315 0.2896 0.2149 59.1648 0.0118

ABLE T

SENTENCE TRANSFORMER MODELS PARAMETER, TRAINING TIME, COSINE PEARSON CORRELATION AND INFERENCE TIMES

pretability, can provide a more comprehensive understanding
of model performance. Furthermore, the exploration of novel
model architectures and training techniques that can efficiently
balance accuracy, efficiency, and computational resources can
lead to more robust and practical solutions.
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