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Abstract—The MaxIS (Maximum Independent Set) belongs
to the category of NP-hard problems. To address this issue, we
apply the PSO (particle swarm optimization) technique in this
study. We evaluate the suggested method against other soft
computing methods currently in use. The experimental testing
is conducted using DIMACS10 benchmarks. The results
demonstrate that the suggested method performs well and
surpasses numerous other soft computing techniques, such as
genetic algorithm (GA) and grey wolf optimization (GWO).

Index Terms—Maximum Independent Sets (MaxIS) problem,
Maximal Independent Set (MIS), Particle Swarm Optimization,
Soft Computing methods.

[. INTRODUCTION

The Maximal Independent Set (MIS) problem and the
Maximum Independent Set (MaxIS) problem are core
combinatorial optimization problems with applications in
areas such as bioinformatics, scheduling, and network
design. Both MIS and MaxIS are central to distributed
computing and have been the focus of extensive research
over the past four decades. Some important contributions
to the distributed message forwarding paradigm are [5],
[18], [20], [22]. The computational complexity of the
problem frequently proves problematic for traditional
exact algorithms, especially for the large graphs. Since the
MaxIS problem is NP-hard. For solving this type of
problem, we can apply soft computing (heuristic or
meta-heuristic) methods to solve the problem.

In relation to the MaxIS problem, various algorithms
have been created in recent years by tackling this issue
using various heuristic techniques. A genetic method for
the MaxIS problem was created by [6] which employed a
graded penalty function to a few tiny MaxIS problem
cases. Aggarawal et al’s recent work [2] compares
state-of-the-art approaches to a genetic algorithm for the
MaxIS problem.

In this paper, we apply a soft computing approach such
as the PSO to address the MaxIS problem. In the area of
soft computing, Kennedy and Eberhart first proposed
particle swarm optimization in 1995 [15]. This heuristic
global optimization technique was inspired by swarm
intelligence and is based on studies of the flock
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movement patterns of fish and birds, which are either
dispersed or converge when looking for food. As the birds
hunt and search, there is always one particular bird that
has superior information about food resources and can
smell the food extremely well, allowing it to be detected at
the location of the food. As a result of their constant
dissemination of information, particularly positive
information, the birds will eventually congregate at the
location of food because they will finally be searching for
it everywhere.

In the Particle Swarm Optimization algorithm, the
solution swarm resembles a flock of birds. The movement
of the birds mirrors the swarm’s evolution, the best
information represents the optimal solution, and the food
source signifies the best solution identified throughout the
process. The food resource is comparable to the most
optimal solution found throughout the entire process. By
working together, each member of the particle swarm
optimization algorithm can determine the most optimal
solution [8].

For evaluation and testing the algorithms, we need to
test them on some standard benchmarking datasets. The
DIMACS and DIMACSI10 [24] challenges provided the
instances that were tested in this work [7]. In Resende et
al. [13], GRASP is used on a collection of more complex
and large-scale MaxIS problem instances that are
produced using Bollobas’s [10] technique for creating
random graphs that can be predicted in advance.

A. Motivation

A maximal independent set might represent finding the
largest set of non-interfering channels or nodes. Using
PSO can provide an efficient way to determine these sets,
thus optimizing network performance and resource
allocation. Using particle swarm optimization (PSO),
researchers and practitioners can efficiently address both
the MIS and MaxIS problems, achieving near-optimal
solutions within a practical timeframe. This approach is
particularly valuable for applications in domains such as
telecommunications, logistics, and social network analysis.

. Heuristic Approach for Complex Problems: The MIS

as well as MaxIS problems are NP-hard, making them
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computationally challenging to solve exactly, especially
for large graphs. PSO provides a heuristic approach that
can find good solutions in reasonable time frames.

- Exploration and Exploitation Balance: PSO’s ability
to balance exploitation (refining existing solutions)
and exploration (investigating new areas of the search
space) makes it well-suited for navigating the
complex search space of the Maximum Independent
Set problem.

. Adaptability: PSO can adapt to different types of
graphs (e.g., sparse, dense) and problem constraints
without significant changes to the algorithm
structure.

. Parallelism and Scalability: The naturally parallel
structure of PSO enables its implementation in
parallel computing environments, enhancing its
scalability for solving large problem instances.

- Simplicity and Flexibility: PSO is relatively simple to
implement and can be easily combined with other
optimization techniques or domain-specific heuristics
to enhance performance.

B. Our Contributions

1) In this paper, we use the PSO algorithm to solve the
MaxIS problem.

2) We have simulated other combinatorial algorithms
for comparison, e.g., the grey wolf optimizer and the
genetic algorithm.

3) We have used DIMACS10 benchmark datasets for
testing and evaluation of the experimental results.

C. Organization of paper

Section II presents the literature survey on MaxIS and
soft computing approaches. In Section III, we have the
problem formulation. Section IV outlines the methodology
for addressing the problem, while Section V presents the
analysis of the results. Finally, in Section VI, the paper
concludes and also discusses the future directions in this
field of research.

II. LITERATURE SURVEY

The development of heuristic-based approaches stems
from the significant computing complexity involved in
determining the maximal independent set, which rises
with the size of the graph. The accuracy and degree of
graph complexity of heuristic algorithms allow them to
find the suboptimal solutions in polynomial time.

Blelloch et al. proposed the greedy sequential approach
to solve the maximal independent set problem, which
shows polylogarithmic bounds for random graphs [9].
Krivelevich et al. presented a general framework for
computing the asymptotic density of the random greedy
independent set for sequences of possibly random graphs
by employing a notion of local convergence [16]. Das et
al. presented a critical review of different existing
approaches in evolutionary methods to solve the

maximum independent set problem [12]. ] Almara and
Suleiman applied the Min_Max algorithm to solve the
maximum independent set problem [4]. Adil et al
proposed a new approach to solve the problem to find
the maximum independent set in a given Graph, known
also as max-stable set problem (MSSP) [1].

M. Hia proposed a genetic algorithm-based heuristic,
especially for the weighted maximum independent set
problem [14]. Sakamato et al. presented a genetic
algorithm for maximum independent set problem and
permutation encoding with a greedy decoding [25].
Aggarwal et al. discussed a classical combinatorial
problem called the independent set problem [2]. Nayeem
and Pal presented the genetic algorithm (GA) to find the
Maximum Weight Independent Set (MWIS) of a graph
[21]. Moisés Silva et al. presented a new artificially
generated algorithm for the maximum independent set
problem [27]. The automatic production of algorithms, a
method that enables the creation of new hybrid
algorithms by utilizing pre-existing algorithms, produces
the new algorithm. Taranenko and Vesel presented a new
genetic algorithm for the maximum independent set
problem based on the elitist strategy [28].

The ant colony optimization technique has also been
applied for solving the maximum independent set
problem [17], [29].

The particle swarm optimization approach has also been
used to solve the MaxIS problem [3], [26].

III. PROBLEM FORMULATION

Many similar formulations of the maximum
independent set issue exist, including those as a
continuous non-convex optimization problem and an
integer programming problem [11], [23].

Let G = (V,E), where |V| = n, is an example of an
undirected graph. A stable set (also known as an
independent set) of the graph G is a subset of the nodes
in which there are no edges connecting any two of them.
Let us look at a(G) which represents the size of a graph
G's biggest stable set and is also known as the graph’s
stability number. Determining whether a(G) exceeds a
given integer k is an NP-hard issue.

According to [19], one natural integer programming
formulation of MaxIS is the following:

n
max y_ x;
= o 6
stxi+x;<1,if(i,j)€E,

x;€{0,1},i =1,...,n.
IV. METHODOLOGY

This section presents the proposed algorithms for the
MaxIS problem.

PSO is an evolutionary method that draws inspiration
from natural animal behavior found in the wild. In
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literature, Kennedy and Eberhart were the ones who first
suggested it (1995) [15]. PSO was initially developed to
solve continuous space optimization problems, although it
is also helpful for issues with combinatorial optimization.
Particles, or potential solutions, make up a swarm,
traveling through the search area.

There are three possible movements for each particle:
traveling in its own direction, returning to its peak local
position from before Pfe” personal best position based
on an assessment function known as fitness. The best
(i.e., maximum fitness) position a particle has attained
thus far during the algorithm is its personal best Pfe” . In
addition to the global best Gfe”, which is the highest
position any particle in the entire swarm has ever
encountered, each particle maintains track of its own
personal best position and direction. The best (.e.,
maximum fitness) position discovered by any particle
across the swarm is the global best G?e”. The global best
Gf’e” is the best (i.e., highest fitness) position that has
been found by any particle in the entire swarm. It is a
global reference point that all particles use to guide their
movement. The throng investigates the search space using
the formulas (Eq. 2 and Eq. 3).

VI =WV + cri (PP = XD + 0.12. (GRS - XD (2)

Xi[+l — Xit+ ‘/i[+l (3)

The particle position at an instant ¢ is represented by
X lt . The updated velocity of the particle at time ¢+ 1. The
current velocity of particle Vl.t at time ¢ The distance that
this particle must travel from X/ is represented by V/,
which is called the velocity of particle i at instant t. In
[0,1], the variables r; and r, are created at random.
Inertia, social factor, and cognitive factor are the names
given to the parameters cj, ¢, and W, respectively [15].

A. Steps of PSO Algorithm

. Initial Swarm Generation: The PSO method begins
by generating a swarm of particles at random. Each
particle is represented as a node in the graph, and
the number of maximal independent sets it includes
indicates how well it fits the data. This process begins
with adding a randomly selected vertex to an empty
current Maximal Independent Set.

. Particle Position Update: In this phase, the MaxIs is
found by calculating the maximum number of
elements among all the fit Maximal Independent Sets.
In each iteration, we find the maximum independent
set (MaxIS) as GBes?,

B. Pseudocode of PSO

This section presents the pseudocode of PSO (as shown
in Algorithm 1) for finding the MaxIS.

Algorithm 1: Particle swarm optimization for
Maximum Independent Set

1 Input: Graph G, swarm size S, number of iterations I
2 OQutput: Maximum Independent Set Sy, 4«
3 int main()
4 G — ReadGraph(filePath) S, — {}
swarm < Initialize Swarm(G, S)

5 for iter —1 to I do

6 for each particle in swarm do

7 UpdateParticle(particle)

8 LocalSearch(particle.Position)
particle.Fitness —
EvaluateFitness(particle.Position)
Update personal and global bests

9 end

10 Print current best fitness and independent set
11 end

12 return global best position as Sy,

13 InitializeSwarm(G, S)

14 for i—1 to S do

15 Initialize particle position and velocity randomly
Evaluate fitness

Update personal and global bests
16 end

17 Return swarm

18 UpdateParticleparticle

19 for each dimension d do
20 Update velocity

21 Update position based on velocity and sigmoid function

22 end
23 EvaluateFitnessposition
24 Calculate size and validity of the independent set
return fitness value (size if valid, else 0)
25 LocalSearchposition
26 Initialize empty independent set and inclusion array
for each vertex v in position do

27 if vertex v can be included then

28 ‘ Add v to the independent set and mark as included
29 end

30 end

31 Update position to reflect the refined independent set

C. How does the proposed algorithm work?

Let us consider a graph (as shown in Fig. 1) to address
the MaxIS problem. This section outlines the step-by-step
process of our proposed algorithm using the example of a
network represented as a graph in Fig. 1.

In step 1: Graph initialization, we begin by defining the
number of vertices (V) and the number of edges (E). In the
given MaxIS graph (as shown in Fig. 1), the set of vertices
is |V| =6, with the vertices labeled as {1,2,3,4,5,6}.

In this graph, the edge connecting vertex 1 to vertex 2
can be represented as {1 —2}. Similarly, the other edges are
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Fig. 1: Example of MaxIS
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represented as follows: {1 -3}, {2—4}, {35}, {4—5}, {4—6},
and {5-6}.

In step 2: Swarm Initialization we initialize the particle
randomly. Each particle’s position is a binary array
representing 1 represents a node is included, while 0
represents that the node is not included.

For Particle 1: Position is {0, 1, 0, 1, 0, 0} and Velocity is
{0.2, -0.5, 0.3, -0.1, 0.4, 0.6}.

For Particle 2: Position is {1, 0, 1, 0, 0, 1} and Velocity is
{-0.4, 0.5, -0.2, 0.1, -0.3, 0.7}.

For Particle 3: Position is {0, 0, 1, 0, 1, 0} and Velocity is
{0.1, -0.4, 0.2, 0.5, -0.2, 0.3}.

For Particle 4: Position is {1, 1, 0, 1, 0, 0} and Velocity is
{-0.1, 0.3, -0.5, 0.2, -0.4, 0.6}.

For Particle 5: Position is {0, 1, 0, 0, 1, 1} and Velocity is
{0.3, -0.6, 0.2, 0.4, -0.3, 0.5}.

In step 3: The particle’s velocity is determined using this
formula. According to Eqg. 2, let us assume, the value of W
is 0.5, ¢; is 1.5, ¢ is 1.5, r; is 0.8 and r, is 0.6. Then, we
calculate the updated velocity for each dimension:

. For Dimension 1:

V*) =0.5%0.2+1.5%0.8(0—0) + 1.5+ 0.6(1 - 0) = 1.0.
So the updated velocity for the first dimension of
particle 1 is, 0.1 and we will use the same dimension
for each dimension.

- For Dimension 2:
VD = 0.5 % (=0.5) + 1.5% 0.6(1 - 1) + 15 % 0.4(1 - 1) =
-0.25.

« For Dimension 3:
Vi =05%0.3+1.5%0.9(1-0)+1.5%0.7(0-0) = 1.5.

« For Dimension 4:
VD = 0.5%(0.1)+1.5%0.4(0—1) +1.5%0.6(1—1) = —0.65.

. For Dimension 5: V""" = 0.5%0.4+1.5%0.7(1-0)+1.5*
0.3(1-0)=1.7.

- For Dimension 6:
VD =0.5%0.6+1.5%0.3(0-0)+1.5%0.3(0-0) = 0.3. So
the updated velocity is {1.0, -0.25, 1.5, -0.65, 1.7, 0.3}.

In step 4, we use the sigmoid function to determine the
new position from the updated velocity. Now the updated
velocity is {1.0, -0.25, 1.5, -0.65, 1.7, 0.3} and the current
position is {0, 1, 0, 1, 0, 0}. We need to update this based
on the sigmoid function applied to updated velocity.

Sigmoid function f(v) =

1+e? @

The position becomes 1 if the sigmoid value exceeds a
random threshold; otherwise, it becomes 0. We use a
random threshold value which is used for all dimensions.
Let us suppose the threshold value is 0.5.

. For Dimension 1:

Velocity is {1.0}, Sigmoid function f(1.0) = ﬁ ~0.731
and threshold value is 0.5. Here, (0.731 > 0.5), So the
new position is 1.
. For Dimension 2:
Velocity is —0.25, then f(—0.25) = 0.44 and threshold is
0.5. Here, since {0.44 < 0.5}. So, the new position is 0.

. For Dimension 3: Velocity is 1.5, then f(1.5) = 0.818
and threshold is 0.5. Here, since {0.818 > 0.5}. So, the
new position is 1.

. For Dimension 4:

Velocity is —0.65, then f(—0.65) = 0.343 and threshold
is 0.5. Here, since {0.343 < 0.5}. So, the new position is
0.

- For Dimension 5:

Velocity is 0.3, then f(0.3) = 0.574 and threshold is 0.5.
Here, since {0.574 > 0.5}. So, the new position is 1.

. For Dimension 6:

Velocity is 1.7, then f(1.7) = 0.846 and threshold is 0.5.
Here, since {0.846 > 0.5}. So, the new position is 1.

Now the updated position is {1, 0, 1, 0, 1, 1}.

In step 5, we calculate fitness for the updated position,
ie {1, 0, 1, 0, 1, 1}. Since the position does not form a
valid independent set because nodes 3, 5, and 6 are all
connected, this independent set is not a valid independent
set because nodes 1, 3, 5 and 6 are mutually not adjacent.
So the fitness score is zero. Now, we calculate fitness for all
the particles.

In step 6, we apply local search; it refines the position to
ensure that it represents a valid independent set {1, 0, 1, 0,
1, 1}. From this independent set, we analyze the provided
graph depicted in Fig.1. In the updated position set, the
position vector for node 1 is observed to be 1. So, the node
1 will be considered for inclusion in the independent set.
Here, it is evident that node 1 is connected to nodes 2
and node 3 (which we do not consider for inclusion in the
independent set).

For the node 2, we see the position vector is zero, so
this node will not be considered for inclusion in the
independent set.

For the node 3, as its value is 1 in the updated position
vector. But it also cannot be included in the independent
set because it is adjacent to node 1.

For the node 4, the position vector is zero in the updated
position. So, this node cannot be considered for inclusion
in the independent set.

For the node 5, we see the position vector is 1 in the
updated position.We will add this node since it is not
adjacent to any nodes currently in the independent set.

For the node 6 whose position value is 1 in the position
vector. But this node cannot be included as it is connected
to the included node 5.
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Step 7: Update the Personal Best Position: The
particle’s personal best position and its present location
are compared for fitness. The particle updates its personal
best position and fitness if the current position’s fitness
exceeds its personal best fitness.

Step 8: Update the Global Best Position: The algorithm
determines whether the personal best location of every
particle is more fit than the present global best. If so, the
fitness and global best position are changed to reflect the
new best values. Until a maximal independent set is
discovered, same procedures are carried out for every
particle.

TABLE I. DIMACS10 Benchmarks Dataset Results

Lower
DIMACS10 Bound
Benchmarks (Maximum
Dataset Nodes | Edges Clique) GWO GA PSO
chesapeake 39 170 5 8 9 17
delaunay_n10 1K 3K 4 28 196 287
delaunay_n11 2K 6.1K 4 58 393 455
delaunay_n12 4.1K 12.3K 4 71 815 1112
delaunay_n13 8.2K 24.5K 4 135 1662 1765
delaunay_n14 16.4K 49.1K 4 186 3235 | 3482
fe-4elt2 11K 33K 4 155 2315 | 2504
rgg n_2_15_s0 33K 160K 10 315 5148 | 5307
wing_nodal 10.9K 75.5K 6 83 1320 1401
cti 17K 48K 3 346 4077 | 4532

V. RESULT ANALYSIS

This section presents the result analysis.

B Lower Bound(Maximum Clique) [ll GWO

y_nu  delaunay_ni2 delaunay-ni3

GA M rso
2000K

1500K
1000K
500K

oK —— f_l _m
™ ke delaunay_mio  del

Fig. 2: Comparison of results simulated on different
DIMACSI10 datasets [24]

We simulated our proposed algorithm by using C#
coding language on the Windows 11 Pro operating system,
Intel (R) Core (TM) i7/8550UCPU®@1.80 GHz 1.99 GHz
(8"" Generation, RAM 8GB, System Type 64 Bit Operating
System. We have evaluated the algorithms by testing on
the various DIMACS benchmark datasets [24].

Here TABLE I and Fig. 2 - Fig. 3 Present the simulation
results from applying the algorithm to the DIMACS10

B Lower Bound(Maximum Clique) [ll GWO GA [ rso
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Fig. 3: Comparison of results simulated on different
DIMACS10 datasets [24]

benchmark graph datasets.Here we see that our proposed
algorithm PSO performs better as compared to GWO and
GA algorithms. We simulated all the algorithms and then
compared the results on the same platform.

VI. CONCLUSIONS AND FUTURE DIRECTION

This paper proposes a PSO-based algorithm for tackling
the NP-hard problem of finding Maximum Independent
Sets (MaxIS). We simulated our algorithm on DIMACS10
benchmark datasets. The paper also compared the results
with other soft computing algorithms, such as GWO and
GA. We found that our proposed algorithm performs
better than GWO and GA.
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