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Abstract—In the evolving field of video surveillance, this
study introduces Dynamic Crowd Surveillance (DCS)-Detect, an
advanced deep learning model designed for real-time detection
of suspicious activities across diverse scenarios. Leveraging a
3D ResNet-18 convolutional neural network (CNN), DCS-Detect
effectively captures both spatial and temporal patterns in video
frames, enabling accurate identification of anomalous behaviors.
Customized to classify 13 distinct anomaly types from the
DCSASS dataset, DCS-Detect addresses the challenges posed
by dynamic environments by integrating a comprehensive data
preprocessing pipeline. This pipeline includes frame sampling,
augmentation, normalization, and optical flow analysis, all of
which enhance the models generalization capabilities. Rigorous
experimentation demonstrates DCS-Detects high performance,
achieving an accuracy, precision, recall, and F1 score of 98.65%,
underscoring its robustness and reliability.

Index Terms—Real-time anomaly detection, 3D convolutional
neural network, Dynamic crowd surveillance, deep learning.

I. INTRODUCTION

Human crowd analysis has emerged as a critical area of
study, especially in urban security and event management, due
to growing populations in public spaces that are becoming
denser and more unpredictable. Surveillance systems equipped
with crowd analysis capabilities offer significant benefits for
public safety by preventing accidents, detecting suspicious
behavior, and improving response times during emergencies
[1]. However, traditional surveillance systems rely heavily on
manual monitoring or basic algorithms, which fall short in
complex and dynamic environments with high crowd densities
[2]. Moreover, conventional surveillance methods struggle
to capture temporal patternsa vital component for detecting
behaviors that develop over time. These limitations highlight
a pressing need for automated, real-time surveillance systems
capable of analyzing crowd behavior with high accuracy and
adaptability [3].

To address these challenges, researchers have turned to deep
learning, particularly Convolutional Neural Networks (CNNs),

to improve feature extraction from video data. Despite the
success of CNNs in image analysis, most approaches still rely
on 2D CNNs, which capture only spatial features, lacking
the temporal understanding necessary for effective anomaly
detection in video sequences [4]. In response, we propose Dy-
namic Crowd Surveillance (DCS)-Detect, a specialized deep
learning model that leverages a 3D ResNet-18 architecture
that, unlike traditional 2D CNNs, is capable of capturing both
spatial and temporal patterns in video data [5]. This dual
capability is crucial for identifying suspicious behavior that
develops across frames, making the model highly suitable for
real-time applications. Trained on the DCSASS dataset [6],
which includes diverse anomaly types like ”Arson,” ”Rob-
bery,” and ”Stealing,” DCS-Detect demonstrates adaptability
in varied environments, enhancing its applicability in real-
world scenarios [7]. The model also incorporates a com-
prehensive data preprocessing pipeline with features such as
frame sampling, data augmentation, normalization, and optical
flow analysis, which collectively improve its robustness across
different crowd scenarios [8]. Unlike conventional systems,
which often lack adaptability in complex scenarios, DCS-
Detect demonstrates the following novel contributions:

1) DCS-Detects 3D ResNet-18 architecture captures both
spatial and temporal dimensions of video data, signif-
icantly enhancing its ability to detect nuanced motion
patterns that may indicate suspicious behavior.

2) DCS-Detects robust preprocessing pipeline employs op-
tical flow analysis, background subtraction, and tra-
jectory tracking, enabling DCS-Detect to isolate key
behaviors in crowded settings.

3) Real-time inference capabilities allow DCS-Detect to
map predictions to actionable, human-readable labels,
giving security personnel immediate insights for prompt
response.

The paper is organized as follows. Section II provides back-
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TABLE I
COMPARISON OF PROPOSED MODEL WITH EXISTING CNN MODELS

Model Performance Characteristics

Proposed
DCS-Detect
(3D ResNet-18)

3D CNN (ResNet-18), Spatiotemporal Process-
ing, Input Dimensions: 224× 224× 16

I3D (Inflated
3D ConvNet) [8]

3D CNN (Inception-v1), Spatiotemporal Process-
ing, Input Dimensions: 224× 224× 64

C3D
(Convolution 3D) [9]

3D CNN, Spatiotemporal Processing, Input Di-
mensions: 112× 112× 16

Two-Stream
CNN [10]

2D CNN (VGG16), Partial Spatiotemporal Pro-
cessing (Separate Spatial and Temporal), Input
Dimensions: 224× 224

ConvLSTM [11] Conv + LSTM, Partial Spatiotemporal Process-
ing (Spatial and Temporal Sequentially), Input
Dimensions: 224× 224

S3D-G (Spatial
Temporal Deep
Network) [12]

2D CNN (Inception-v1 with Temporal Fusion),
Spatiotemporal Processing, Input Dimensions:
224× 224× 16

TSN (Temporal Seg-
ment Network) [6]

2D CNN (ResNet-50), No Spatiotemporal Pro-
cessing (Averaging Temporal Segments), Input
Dimensions: 224× 224

ground information relevant to the study. Section III presents
the proposed methodology, including detailed mathematical
formulations to explain the approach. Section IV covers the
experimental results, and Section V concludes the paper by
summarizing the main outcomes and suggesting directions for
future research.

II. BACKGROUND

Traditional surveillance systems, reliant on human opera-
tors, struggle with fatigue and cognitive overload, particularly
in high-density environments where continuous monitoring is
difficult [2]. Basic algorithms also fail to capture dynamic
crowd behaviors over time, limiting real-time anomaly detec-
tion. While CNNs are effective for spatial feature extraction,
traditional 2D CNNs cannot handle temporal dependencies,
leading to the adoption of advanced models like 3D CNNs
and hybrid approaches [4]. 3D CNNs, such as the 3D ResNet
architecture, can capture both spatial and temporal features,
enhancing anomaly detection in dynamic video data [5].

The proposed 3D ResNet-18 model, DCS-Detect, is eval-
uated against other models like I3D, C3D, and Two-stream
CNN [8]–[10], showing superior real-time spatiotemporal
processing for anomaly detection. DCS-Detect utilizes input
dimensions of 224 × 224 × 16, unlike I3D which requires
larger temporal depth [8], and C3D which has lower spatial
resolution [9]. The model’s performance is further enhanced by
robust data preprocessing techniques such as frame sampling,
normalization, and optical flow analysis. This preprocessing,
combined with DCS-Detect’s advanced architecture, enables
high detection accuracy and real-time deployment in surveil-
lance systems [9]–[11].

III. PROPOSED METHODOLOGY

The DCS-Detect model is structured on a 3D ResNet-18
architecture [6], an advanced CNN variant that captures both
spatial and temporal patterns across video sequences. Unlike
standard 2D CNNs [12], which operate on individual image
frames, the 3D ResNet-18 model is specifically designed to
process entire video sequences, enabling it to understand both
static and dynamic changes in a scene. This ability to detect
temporal dependencies is crucial for crowd analysis, where
suspicious activities often develop across multiple frames [7].
A thorough data preprocessing pipeline is applied to this
dataset to ensure high-quality input, beginning with frame
extraction. Each video is divided into 16 frames, selected
at uniform intervals, to provide consistent temporal sampling
across videos of varying lengths. These frames are then resized
to a resolution of 224x224 pixels and normalized to align
with the standard values used by ImageNet. Data augmen-
tation techniques includes rotation, brightness alteration, and
flipping, are then applied to increase input diversity, improv-
ing model robustness. Additionally, optical flow analysis is
employed to capture motion between frames, which enhances
the models capacity to detect movement-based anomalies. A
3D convolution operation for this model is defined as:

Yi,j,k =
K∑

p=0

K∑
q=0

K∑
r=0

Wp,q,r ·Xi+p,j+q,k+r, (1)

where Y represents the output feature map, X is the in-
put frame sequence, W denotes the 3D filter weights, and
K is the kernel size. This operation allows DCS-Detect to
capture intricate patterns of movement by convolving across
both spatial dimensions (height and width) and the temporal
dimension (frames). In the standard ResNet-18, the final fully
connected layer outputs a probability distribution for a single
image class. However, for DCS-Detect, this layer is modified
to output a distribution across 13 classes, each representing a
different anomaly type. The modified output layer calculates
the classification score fc using:

fc = Wfc · fn−1 + bfc, (2)

where Wfc and bfc are the weights and biases of the fully con-
nected layer, and fn−1 is the feature vector from the preceding
layer. A softmax function is then applied to transform these
scores into class probabilities:

P (y = c|x) = exp(fc)∑C
j=1 exp(fj)

, (3)

where P (y = c|x) is the probability of class c given input
x, and C = 13 represents the number of anomaly types.
DCS-Detect employs a cross-entropy loss function, which
is optimized during training to maximize the likelihood of
correctly predicting each anomaly type. The cross-entropy loss
for multi-class classification is defined as:

L = −
C∑

c=1

yc log(P (y = c|x)), (4)
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where yc is the true label indicator for class c and P (y = c|x)
is the predicted probability. The training procedure uses the
Adam optimizer with a learning rate of 0.001, which iteratively
adjusts model parameters based on gradients computed for
each batch. An adaptive batch-handling technique further
ensures that incomplete or invalid data samples are excluded
from training, helping to stabilize learning and enhance model
reliability. To provide actionable insights, DCS-Detect in-
cludes a real-time prediction function, converting frame se-
quences into a 5D tensor format [B,C, F,H,W ], where B
is the batch size, C represents channels, F is the number of
frames, and H and W are the frames height and width. Once
this tensor is fed into the model, the softmax output provides
class probabilities for each type of anomaly, which are then
mapped to human-readable labels. This mapping allows DCS-
Detect to deliver real-time, interpretable predictions that en-
able security personnel to make quick, informed decisions.

IV. EXPERIMENTAL RESULTS

To validate DCS-Detects effectiveness for real-time
anomaly detection in crowd surveillance, we conducted a se-
ries of experiments assessing the model’s accuracy, precision,
recall, and F1 score. This section details the evaluation metrics,
experimental setup, comparative analysis, and mathematical
support for DCS-Detects superior performance. The model
was modified for 13 output classes, trained with the cross-
entropy loss function (Equation (4)), using the Adam optimizer
(learning rate 0.001) for 10 epochs and a batch size of 2.
Adaptive batch handling ensured stable training. Experiments
were run on an NVIDIA GPU with four CPU cores for data
loading.

A. Evaluation Metrics
DCS-Detects performance was evaluated using

standard classification metrics. Accuracy, calculated as
TP+TN

TP+TN+FP+FN , measures the proportion of correct
predictions among all predictions made, reflecting the models
overall effectiveness in making accurate classifications.
Precision, defined as TP

TP+FP , focuses on the accuracy of the
model in identifying positive samples, specifically measuring
the correctness of positive predictions. Recall, expressed as

TP
TP+FN , assesses the model’s ability to identify true positive
instances accurately, emphasizing its sensitivity in detecting
relevant cases. The F1 score, represented as 2 · Precision×Recall

Precision+Recall ,
provides a harmonic balance between precision and recall,
offering an overall measure of the model’s performance with
respect to both of these metrics. In this study, DCS-Detect
achieved outstanding performance across all these evaluation
metrics, reaching 98.65% for accuracy, precision, recall, and
F1 score.

.

B. Empirical Evidence for Real-Time and High-Accuracy Per-
formance

To assess DCS-Detects advantages over other models in
video anomaly detection, we compared it with I3D, C3D, Two-
Stream CNN, ConvLSTM, S3D-G, and TSN [6], [8]–[13].

TABLE II
PERFORMANCE COMPARISON OF DCS-DETECT AND EXISTING MODELS

Model Performance Metrics (%)

Accuracy Precision Recall F1 Score

Proposed DCS-Detect ((3D ResNet-18)) 98.65 98.65 98.65 98.65

I3D (Inflated 3D ConvNet) [8] 94.6 93.5 94.0 93.7

C3D (Convolutional 3D) [9] 85.2 84.0 84.3 84.1

Two-Stream CNN [10] 88.5 87.2 88.0 87.6

ConvLSTM [11] 91.3 90.5 90.8 90.6

S3D-G (Spatial Temporal Deep Network) [12] 95.4 94.8 95.0 94.9

TSN (Temporal Segment Network) [6] 86.4 85.6 86.0 85.8

Fig. 1. DCS-Detect converges fastest with the lowest training loss, while Two-
Stream CNN converges more slowly and ends with a higher loss, indicating
feature extraction limitations.

Fig. 2. DCS-Detect shows the lowest, most stable validation loss, indicating
strong generalization, while Two-Stream CNN has higher, fluctuating loss,
suggesting difficulties in capturing spatiotemporal patterns.
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As summarized in Table II, DCS-Detect outperformed these
models in accuracy and real-time inference, a critical factor for
live surveillance. While I3D achieved 94.6% accuracy, DCS-
Detects higher accuracy and superior real-time capabilities
make it better suited for practical deployment. Models like I3D
and S3D-G, with high input dimensionality and computational
complexity, face limitations in real-time use, whereas C3D,
with a simpler 3D CNN structure, achieved only 85.2%
accuracy, underscoring the advantage of DCS-Detects deeper
3D ResNet-18 architecture.

DCS-Detects superior performance is attributed to three key
factors: spatiotemporal feature capture, motion detection with
optical flow, and computational efficiency. Its 3D convolu-
tion layers capture both spatial and temporal dependencies
across video frames, allowing the model to detect anomalies
caused by dynamic crowd movements. Optical flow analysis
is employed to track pixel-level motion, capturing subtle
changes between consecutive frames. This method is crucial
for distinguishing crowd dynamics, such as small shifts in
direction or acceleration, that indicate potential anomalies.
The computational time for 3D convolutions scales with
the number of frames, kernel size, and spatial dimensions,
meaning that increasing the number of frames leads to higher
computation costs. DCS-Detect optimizes this by using 16
frames per sequence, compared to models like I3D, which use
64 frames, enabling faster processing while preserving tem-
poral resolution. By combining 3D convolutions and optical
flow, DCS-Detect detects subtle crowd dynamics with minimal
delay. Its real-time capability is further enhanced by frame
reduction and adaptive batch handling, making DCS-Detect
an efficient, robust solution for real-time crowd surveillance
anomaly detection.

C. Training and Validation Loss Analysis

In the training and validation loss comparison, DCS-Detect
outperforms other models, as shown in Figures 1 and 2. Its
training loss decreases quickly, achieving a lower final loss due
to the efficient use of 3D convolutions and optical flow, which
capture both spatial and temporal features simultaneously [13],
[14]. DCS-Detect also maintains a low, stable validation loss
with minimal fluctuations, indicating strong generalization and
reduced overfitting. In contrast, I3D shows minor overfitting
due to its larger input dimensionality, and C3D has higher
training and validation losses, reflecting limited feature extrac-
tion. Two-Stream CNN exhibits the highest validation loss and
significant overfitting due to its separated spatial and temporal
processing.

V. CONCLUSION

DCS-Detect, a 3D ResNet-18-based model, was developed
to address the limitations in current crowd anomaly detection
systems by providing efficient and accurate real-time analysis.
Utilizing 3D convolutions, DCS-Detect integrates spatial and
temporal features within video data, capturing complex crowd
dynamics that are often missed by other models. Additionally,
the model employs optical flow analysis to enhance motion

sensitivity, allowing it to detect subtle movements indicative of
anomalies. Experimental comparisons demonstrate that DCS-
Detect converges faster and achieves lower training and vali-
dation loss than other models like I3D, C3D, and Two-Stream
CNN, thanks to its advanced feature extraction capabilities
and reduced overfitting. With a comprehensive preprocess-
ing pipeline, including frame extraction, augmentation, and
normalization, the model is robust against various real-world
conditions. DCS-Detect sets a new benchmark in anomaly
detection for real-time crowd surveillance, demonstrating both
performance and practicality for broader intelligent surveil-
lance applications.
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