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Abstract—The prediction of anomalies and the diagnosis of
various machines using Internet of Things (IoT) technology is
a topic of extensive research. In this study, IoT technology was
utilized to develop a system for collecting data and diagnosing
existing air conditioners, with a focus on anomaly detection.
Building on our previous research, which explored strategies
for deploying vibration sensors in various locations to optimize
seasonal diagnosis models, this study introduces a method for
improving anomaly detection accuracy. The method leverages air-
conditioner-specific sensor data analyzed using the Mahalanobis-
Taguchi (MT) method, which calculates the Mahalanobis distance
for normal sensor values and vibration data. Discrepancies in
sampling rates between vibration and air-conditioner-specific
sensor data were addressed using the proposed analysis method.

Index Terms—IoT, Anomaly detection, AI, Data mining

I. INTRODUCTION

Machines installed in various facilities are critical compo-
nents of infrastructure, and their anomalous behavior can sig-
nificantly impact both the environment and business continuity.
Consequently, anomaly prediction and diagnosis are crucial
for preventing such issues. This study focused on employing
Internet of Things (IoT) technology to implement a system
for collecting data and diagnosing existing air conditioners,
with a particular emphasis on anomaly detection. We discussed
strategies for deploying vibration sensors in optimal locations
within noisy environments, ensuring the precise tuning of
seasonal diagnosis models, and the automated construction of
anomaly detection models [1] [2].

We enhanced anomaly detection accuracy by incorporating
air-conditioner-specific sensor data alongside vibration data.
While the former represents device-specific information, sim-
ilar data can be collected across various models and utilized
by experienced technicians to diagnose abnormalities. Previous
studies demonstrated the feasibility of detecting abnormalities
in air conditioners year-round. However, instances of reduced
detection accuracy were observed, particularly due to failures
in indoor units. To address this, we showed that anomaly
detection accuracy could be further improved by analyzing
air-conditioner-specific sensor data using the Mahalanobis-

Taguchi (MT) method [3]. Discrepancies in the sampling rates
of vibration data and air-conditioner-specific sensor data were
resolved using the proposed analysis method.

Hereafter, Section 2 presents relevant prior studies in this
field. Section 3 provides details about the target air condi-
tioner and IoT sensors, while Section 4 outlines our solution
approach. Section 5 presents the experimental results, and
Section 6 summarizes our findings.

II. RELATED WORK

Extensive research has been conducted on machine anomaly
detection. For industrial applications, Kondo [4] developed a
diagnostic system for vehicle equipment using octave band
analysis and one-class classification for anomaly detection.
Nomura et al. [5] evaluated the integrity of piping valves by
detecting changes in vibration within a bubble body caused by
fluid pressure fluctuations, employing a convolutional neural
network [6] [7].

These studies, however, relied on the assumption of accurate
data availability and overlooked the influence of climatic and
seasonal conditions on the operational states of the machinery.
Furthermore, these studies did not focus on the abnormalities
specific to air conditioning.

The MT method has been widely applied to tasks such as di-
agnosing the deterioration of power distribution equipment [8]
and evaluating stress from biological data [9]. However, these
studies relied solely on the MT method without integrating it
with other approaches. Building on our previous research, we
proposed a method to enhance anomaly detection accuracy
using air-conditioner-specific sensor data analyzed using the
MT method alongside vibration data.

III. SYSTEM CONFIGURATION

Figure 1 illustrates the configuration of the air conditioner
and sensor installation location. We focused on both indoor
and outdoor air conditioning units. The compressor, serving
as the primary power source, increases the refrigerant’s tem-
perature and pressure through compression. The expansion
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Fig. 1. Configuration of air conditioner and sensor installation location

TABLE I
DATA COLLECTION CONDITION OF VIBRATION SENSORS

# Sensor category Measurements(unit) Sampling frequency

1 Vibration sensor Acceleration(m/s2)(3axis) 50Hz

valve, by forcing the refrigerant through a constricted opening,
reduces its temperature and pressure while automatically reg-
ulating the flow rate and superheating process. Air circulation
in both indoor and outdoor spaces is managed by the fan
motor, and the heat exchanger facilitates heat transfer between
the refrigerant and the surrounding air in both environments.
The inverter, in conjunction with the temperature controller,
regulates the compressor’s operation to maintain the desired
temperature.

Based on the prior experiment [1], three-axis vibration
sensors were installed in outdoor and indoor fan motors to
detect equipment failure at early stages. We also installed air-
conditioner-specific sensors Ti, To, Pd, Ps, Td, Tl, Tg, and
Te within the air conditioner. These sensors measured the air
temperature, refrigerant temperature, and refrigerant pressure
at each location, as shown in Figure 1. Similar sensors are
widely used diagnostic tools in modern air conditioners.

IV. ANOMALY DETECTION METHOD

A. Data collection condition

Table I lists the data collection conditions of the vibration
sensors. Based on sensor specifications, the sampling rate of
each vibration sensor was set to 50 Hz. Vibration data were
collected using the same method employed in a previous study
using an IoT-gateway (GW) [1].

Table II details the data collected by the air-conditioner-
specific sensors. Ti and To(data group 1) are associated with
the operation of the indoor unit; while Pd, Ps, Td, Tl, Tg, and
Te(data group 2) are linked to the operation of both indoor
and outdoor units. The sampling rate for all sensors was set
to every minute, and the data were collected through a port
dedicated to air conditioners.

B. Data analysis procedure

Our study employed a convolutional autoencoder
(CAE) [10] to analyze vibration data. Autoencoders [11],
which are neural networks designed to model normal
operational conditions, were utilized, with the CAE
specifically incorporating convolution and deconvolution

TABLE II
THE DATA OF AIR-CONDITIONER-SPECIFIC SENSORS

# Data group Related unit Symbol Measured amount(unit) Description

1 Data group 1 Indoor unit Ti Celsius(oC) Intake temperature
2 To Celsius(oC) Outlet temperature
3 Data group2 Outdoor 

unit/Indoor 
unit

Pd MPa Pressure(High Pressure side)
4 Ps MPa Pressure(Low Pressure side)
5 Td Celsius(oC) Compressor upside 

temperature
6 Tl Celsius(oC) Heat exchanger liquid 

side temperature
7 Tg Celsius(oC) Gas Pipe Temperature
8 Te Celsius(oC) Evaporation temperature

Sampling rate : Every minute

Fig. 2. Configuration of Convolutional Autoencoder

layers for data processing (see Figure 2). The input to the
CAE comprised 324-point power spectra, derived from fast
Fourier transform (FFT) calculations on each three-axis
vibration measurement. The size and number of filters were
determined through preliminary experiments [1].

Given that the input data represent normal operational
status, the difference between the input and output is relatively
small. Anomalies are detected by comparing these differences
against a specific threshold. The anomaly score E is defined as
the mean square error from the predicted data x and observed
data x′ below:

E =

∑N
n=1(∥ xn − x′

n ∥)2

N

where the dimension N of x and x′ is 972.
Next, we outline an analysis procedure for air-conditioner-

specific sensor data, which is expected to improve detection
accuracy. The sensor data were collected at a sampling rate of
1 per minute, in accordance with device specifications. Due to
the smaller volume of air-conditioner-specific data compared
to vibration data (sampling rate of 20 ms), it was not feasible to
directly apply the CAE. Instead, we employed the simpler MT
method. The MT method utilizes the Mahalanobis distance,
a measure that accounts for correlations between variables,
enabling it to sensitively detect deviations from the normal
data group. The procedure for the MT method is formulated
as follows:

Step1: Prepare data D = {x1, .., xN}that are known to be
normal and observed data D’ = {x′

1, , , x
′
N ′} to be

evaluated. Both the variables are M-dimensional.
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Step2: Calculate the sample mean

µ̂ =
1

N

N∑
i=1

xi

and sample covariance matrix

∑̂
=

1

N

N∑
i=1

(xi − µ̂)(xi − µ̂)⊤

based on D.
Step3: Calculate the Mahalanobis distance (anomaly score)

d(x′
i) = (x′

i − µ̂)⊤
∑̂−1

(x′
i − µ̂)

to evaluate D’. If d(x′
i) is smaller than the threshold,

the observed data are considered normal; otherwise,
they are determined to be anomalous.

The MT method was used to evaluate the two input cases
corresponding to data groups 1 and 2.

The final anomaly evaluation was determined by combining
the results for the vibration and air-conditioner-specific sensor
data as follows:

Step1: Determine whether anomalies are detected in vibra-
tion data analysis. If an anomaly is detected, the
location of the corresponding sensor (outdoor or
indoor) is considered abnormal. Otherwise, proceed
to Step 2.

Step2: Determine whether anomalies are detected in the data
group 1 analysis. If an anomaly is detected, it can
be assumed to occur in an indoor unit; otherwise,
proceed to Step 3.

Step3: Determine whether anomalies are detected in the data
group 2 analysis. If an anomaly is detected, it can
be assumed to occur in an indoor unit; otherwise, the
air conditioner can be assumed to operate normally.

The results of the preliminary experiments indicated that
abnormalities in the outdoor unit could be detected from
vibration data alone, Steps 2 and 3 are required to detect
abnormalities in the indoor unit.

V. EXPERIMENTAL RESULTS

A. Test items and condition

Table III presents an overview of the field test result. We
collected data for normal and anomalous operational condi-
tions for one day each in summer and winter. For the failure
tests, the air volume was decreased by 50% and 80% as the
inhalation port was closed step by step while maintaining a
fixed temperature settings of 27°C and 20°C for summer
and winter, respectively.

B. Failure test results

Figures 3 and 4 show the results of failure tests conducted
on the indoor and outdoor units during the summer. The
learning data were collected over a one-hour period during
which the air conditioner operated normally on the day of
the experiment. The threshold was set to the lowest level at

TABLE III
OVERVIEW OF FIELD TEST

# Test round Test date Testing scenario
1 1st failure test  8/21/2020 Air volume decrease caused by closing the intake 

port of the indoor and outdoor unit by 50% and 80%.
(Cooling mode, temperature set to 27 oC)

2 2nd failure test  12/15/2020 Air volume decrease caused by closing the intake 
port of the indoor and outdoor unit by 50% and 80%.

(Heating mode, temperature set to 20 oC)

Fig. 3. Transition in CAE and MT anomaly score in outdoor failure test(1st
failure test)

which normal and abnormal operations could be distinguished.
In the outdoor unit failure test(Figure 3), both the vibration
and air-conditioner-specific sensor data were used to detect
anomalies; and the air-conditioner-specific sensor data yielded
an abnormality score that corresponded to the proportion
of inhalation port closures (50% and 80%). For the indoor
unit(Figure 4), the trends observed were similar to those of
the outdoor unit; however, the anomaly detection accuracy―
measured by the difference in anomaly scores between normal
and abnormal data―was lower in the vibration data compared
to the outdoor units. Additionally, there were instances where
abnormalities could not be detected using the air-conditioner-
specific sensor data.

Figures 5 and 6 show the results of the failure tests
on the indoor and outdoor units during winter, using the
same method for determining the learning data and anomaly
detection threshold as those used in the summer experiment.
In the outdoor/indoor unit failure test(Figure 5), the vibration
data successfully detected abnormalities. However, the air-
conditioner-specific sensor data were unable to detect ab-
normalities where the degree of closure was 50% (during
the first half of the abnormal section). In the indoor unit
failure test(Figure 6), neither the vibration data nor the air-
conditioner-specific sensor data (data group 1) could detect
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Fig. 4. Transition in CAE and MT anomaly score in indoor failure test(1st
failure test)

Fig. 5. Transition in CAE and MT anomaly score in outdoor/indoor failure
test(2nd failure test)

abnormalities. However, as shown in Figure 5(b), the air
conditioner-specific sensor data (data group 2) can be used
to detect indoor unit failures under winter conditions.

C. Summary and suggestion

Table IV summarizes the results of the failure tests, showing
that the procedure described in Section IV accurately detected
failures in both the outdoor and indoor units. Furthermore, by
using both vibration and air-conditioner-specific sensor data,
the degree of abnormality can be determined from the anomaly
score, thereby improving the reliability of anomaly detection.

Fig. 6. Transition in CAE and MT anomaly score in indoor failure test(2nd
failure test)

TABLE IV
SUMMARY OF FAILURE TEST

# Test scenario Failure 
location

Vibration 
data(Indoor 
fan motor)

Vibration 
data(Outdoor 

fan motor)

Air- conditioner-
specific sensor 

data
(data group 1) 

Air-conditioner-
specific sensor 

data
(data group 2) 

1 Failure 
test(1st:Cooling)  

Indoor unit Ob Nob Pob Nob

2 Outdoor unit Nob Ob Nob Ob

3 Failure 
test(2nd:Heating)  

Indoor unit Nob Nob Nob Ob

4 Outdoor unit Ob Ob Nob Pob
Ob:Observed Nob:Not observed    Pob:Partially observed

VI. CONCLUSION

In this study, we developed a method for improving anomaly
detection accuracy by analyzing air-conditioner-specific sensor
data using the MT method, which calculates the Maharanobis
distance for a normal sensor values along with vibration data.
The features of the proposed method are summarized below.

• The anomaly detection procedure can identify failures in
both outdoor and indoor units by combining the analysis
of vibration and air-conditioner-specific sensor data.

• The difference in sampling rates between the data was
addressed using the convolutional autoencoder(CAE) for
vibration data and the MT method for air-conditioner-
specific sensor data.

• By using both vibration and air-conditioner-specific data,
the anomaly score can indicate the degree of abnormality,
enhancing the reliability of anomaly detection.

The experimental findings presented in this paper confirm the
effectiveness of the proposed method.
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