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Abstract—Recently, the increasing complexity and volume of
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tional Network Intrusion Detection Systems (NI Tendiinmal
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I. INTRODUCTION

Network intrusion detection systems (NIDS) play a critical
role in safeguarding the integrity and security of modern
networked environments. However, the increasing complexity
and dynamism of network traffic, coupled with the rise of
sophisticated cyber threats, present significant challenges for
traditional detection methodologies. Conventional NIDS often
rely on supervised learning models, which require extensive
labeled datasets that are costly and time-consuming to generate
[1]. Moreover, these systems tend to struggle when faced
with high-dimensional data and fail to generalize effectively to
novel or previously unseen attacks, making them less adaptable
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to rapidly evolving network environments. The dependence
on predefined patterns limits their ability to detect emerging
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Fig. 1: Example of mapping Euclidean space vector to Grass-
mann vector. The figure depicts two components, Peyclidean
and Py,qssmann, T€presenting projections in high-dimensional
and low-dimensional spaces respectively. P.,ciidean cOITE-
sponds to the high-dimensional representation of the data,
while Py,qssmann illustrates its lower-dimensional counterpart
after being projected onto a Grassmann manifold. This map-
ping preserves critical structural information while reducing
dimensionality, which aids in effective anomaly detection by
isolating subtle deviations.

To overcome these limitations, researchers have explored
alternative approaches that leverage advanced mathematical
structures to model network traffic data more efficiently. One
promising direction involves the use of Grassmann manifolds,
which represent the set of all possible subspaces of a given
dimension within a larger space. Figure 1 illustrates the map-
ping of data from Euclidean space to the Grassmann manifold,
highlighting the transition from a high-dimensional represen-
tation Pyclidean t0 a lower-dimensional subspace Perassmann-
This geometric framework is well-suited for capturing com-
plex correlations and variances in high-dimensional network
data, providing a means to project and analyze the data in
a lower-dimensional space without losing critical structural
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information. By mapping data onto Grassmann manifolds, the
inherent properties of the manifold space can be used to isolate
and detect subtle deviations that would otherwise go unnoticed
using traditional techniques.

In this paper, we proposes a novel intrusion detection
framework that utilizes Grassmann manifold techniques to
enhance the detection and mitigation of network anomalies.
Overall contribution can be summarized as below:

o The framework projects network traffic data onto these
manifolds, enabling more efficient modeling and analysis
while reducing the computational and memory overhead
commonly associated with high-dimensional data pro-
cessing.

o By leveraging the geometric properties of Grassmann
manifolds, the proposed approach captures hidden pat-
terns and complex data structures, which significantly
improves the detection of a wide range of network
intrusions.

o Through comprehensive experiments, the framework
demonstrates its ability to identify anomalies with high
accuracy and robustness, making it a promising solution
for real-world network security applications.

o The results highlight its potential to address the limita-
tions of existing NIDS, providing a path forward for more
effective and scalable intrusion detection systems.

II. RELATED WORKS

Network Intrusion Detection Systems (NIDS) have seen
significant advancements with the integration of machine
learning and deep learning techniques. Principal Component
Analysis (PCA) is one of the foundational methods employed
for dimensionality reduction in NIDS. By projecting high-
dimensional data into a lower-dimensional subspace, PCA
preserves key variances to isolate anomalies based on re-
construction errors [3]. For example, Brauckhoff et al. [4]
demonstrated the use of PCA for analyzing network traffic
anomalies by projecting flow features and detecting deviations.
Despite its simplicity, traditional PCA operates in Euclidean
space, which limits its ability to model complex geometric
structures inherent in high-dimensional network traffic. This
limitation reduces its effectiveness in dynamic environments
where attack patterns can be highly nonlinear and varied.

To address these challenges, recent years have seen the
rise of deep learning-based methods in NIDS. Techniques
such as Long Short-Term Memory (LSTM) networks and
Transformer-based architectures excel in capturing temporal
and contextual dependencies in sequential network data [5].
Additionally, Generative Adversarial Networks (GANs) have
gained attention for their ability to generate synthetic attack
data, which enhances the robustness and generalization of
anomaly detection models [6]. However, while these methods
achieve high accuracy, they are computationally intensive and
heavily reliant on labeled datasets, which are often expen-
sive and time-consuming to obtain. Moreover, their black-
box nature makes interpretability and real-time deployment
challenging.

Recent innovations have focused on mathematical frame-
works like Grassmann manifolds to overcome the limitations
of both traditional and deep learning-based methods. Grass-
mann manifolds represent the set of all possible subspaces
of a given dimension within a larger space, providing a
robust geometric foundation for analyzing high-dimensional
data. Unlike PCA in Euclidean space, Grassmann manifold-
based approaches effectively capture complex correlations and
variances, enabling more precise detection of subtle deviations
that are critical for anomaly detection. For instance, Grassman-
nPCA projects network traffic data onto these manifolds, al-
lowing for efficient dimensionality reduction while preserving
critical structural information.

A. Advantages of Grassmann Manifold

Unlike traditional NIDS that rely heavily on predefined pat-
terns or supervised models constrained to Euclidean geometry,
our proposed method leverages the Grassmann manifold to
project high-dimensional network traffic data into a subspace
that captures critical geometric structures. This approach pro-
vides several key advantages:

o Robust Representation: The Grassmann manifold en-
ables the modeling of network traffic data with inherent
geometric awareness, preserving complex patterns and
correlations often overlooked by Euclidean-based tech-
niques.

o Improved Generalization: By utilizing the manifold’s
structure, the proposed method demonstrates superior
ability to generalize to unseen attacks, addressing a
significant limitation of existing supervised learning ap-
proaches.

o Reduced Computational Overhead: The Grassmann
manifold framework facilitates efficient dimensionality
reduction while maintaining essential information, lead-
ing to faster convergence and lower computational costs
compared to traditional methods.

o Enhanced Detection Metrics: Through comprehensive
experiments, the proposed approach achieves higher de-
tection accuracy, precision, and F1-scores while maintain-
ing a lower false alarm rate, emphasizing its effectiveness
in real-world scenarios.

By combining these advantages, the proposed Grassman-
nPCA framework in Ilrepresents a significant advancement
in NIDS, leveraging manifold properties to model network
traffic more efficiently and accurately. Compared to tradi-
tional EuclideanPCA, GrassmannPCA demonstrates superior
performance in detecting anomalies, particularly in scenarios
involving high-dimensional and dynamic network data. With
its computational efficiency, robust geometric representation,
and reduced reliance on labeled data, GrassmannPCA offers a
scalable and adaptable solution for modern network environ-
ments, providing a promising alternative for next-generation
NIDS while complementing the strengths of deep learning
approaches.
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III. PROPOSED METHOD
A. Mathematical Formulation

Given a set of high-dimensional data points X € R"*%,
where d is the feature dimension and n is the number of sam-
ples, we aim to project X onto a Grassmann manifold G(p, d),
where p is the subspace dimension. The Grassmann manifold
G(p, d) represents the space of p-dimensional subspaces in RA.

To perform dimensional reduction on the Grassmann mani-
fold, we first compute the covariance matrix C' = X TX. The
projection matrix P is obtained through eigen decomposition,
as shown in Eq. 1:

C =UAUT, (1)

where U € R?*P are the eigenvectors corresponding to the
top-p eigenvalues A. The projection Y = XU then lies on

G(p,d).
B. Algorithm

The two algorithms employed in the study are outlined
below:

Algorithm 1 GrassmannPCA

Require: Dataset X € R"*¢, Rank k, Learning rate 7,

Number of iterations 7T’

1: Randomly initialize projection matrix U € R?** with
orthonormal columns.

2: fort=1to T do

3. Compute the reconstruction error: £ = X — UUT X

4 Calculate the gradient: Vi = —2EX 7T

5:  Project gradient onto tangent space: Vgrassmann =

(I -UUN)Vy

6: Update U using gradient descent: U < U —
nvGrassmann

7:  Reorthogonalize U using QR decomposition: U =
QR(U)

8: end for

9: Return the optimized projection matrix U

The GrassmannPCA algorithm is a specialized variant of
PCA designed to optimize a low-dimensional subspace on the
Grassmann manifold. Unlike traditional PCA, which optimizes
in Euclidean space, GrassmannPCA enforces orthonormal con-
straints on the projection matrix and updates it using gradient
descent projected onto the tangent space of the manifold.
The algorithm starts by initializing a random orthonormal
matrix and iteratively minimizes the reconstruction error by
adjusting the projection matrix using a tangent space gradient.
To maintain orthonormality, it reorthogonalizes the matrix
at each step using QR decomposition. This process ensures
that the optimized subspace remains a valid point on the
Grassmann manifold. And the preserved subspace is used for
accurate modeling. Hence, it allows to cluster subspaces which
eventually leads to effective network intrusion detection.

The EuclideanPCA algorithm is a basic version of PCA
optimized using Euclidean space properties. It aims to find a
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Algorithm 2 EuclideanPCA

Require: Dataset X € R”*4 Rank k, Learning rate 7,
Number of iterations 1'

1: Randomly initialize projection matrix W € R***

2: fort=1to T do
3 Compute the reconstruction error: E = X — WW7TX
4:  Calculate the gradient: Vy = —2EXT
5
6
7

Update W using gradient descent: W < W — nVy,
: end for
: Return the optimized projection matrix W

low-dimensional subspace by iteratively refining a projection
matrix W to minimize the reconstruction error of the given
dataset. The algorithm starts by randomly initializing W and
uses gradient descent to update it over a specified number
of iterations (77). At each iteration, the algorithm computes
the reconstruction error £ = X — WW7T X, which measures
how well the current subspace defined by W approximates
the original data. The gradient of the reconstruction error with
respect to W is calculated as Vyy = —2EXT, and W is
updated using the learning rate 7.

GrassmannPCA and EuclideanPCA share a foundation in
dimensionality reduction but differ in their geometric repre-
sentations and optimization strategies:

¢ GrassmannPCA: Operates on the Grassmann manifold,

enforcing orthonormal constraints and leveraging tangent
space gradients for optimization. This enables the preser-
vation of geometric structures in high-dimensional data.

o EuclideanPCA: Optimizes in Euclidean space, provid-

ing a simpler implementation but lacking the geometric
awareness of GrassmannPCA, which can result in re-
duced detection capability for complex attack patterns.

IV. EXPERIMENTAL SETUP

The proposed network intrusion detection framework was
evaluated using the NSL-KDD dataset, a widely recognized
benchmark in network security. Addressing issues of redun-
dancy and class imbalance present in the original KDD Cup
1999 dataset, NSL-KDD offers a more reliable foundation for
assessing intrusion detection systems. Comprising 41 features
that reflect basic, content-based, and time-based characteristics
of network traffic, the dataset includes labels categorizing
traffic as normal or one of several attack types. GrassmannPCA
and EuclideanPCA were independently applied to this dataset
under a centralized training setup to distinguish normal from
malicious traffic. To ensure consistency and unbiased evalua-
tion, the data underwent z-score normalization for standard-
ization and was split into balanced training and testing sets.
Both algorithms leveraged PCA-based techniques to model
the underlying structure of the data, with reconstruction errors
used as the criterion for anomaly detection.

A. Dataset Description and Preprocessing

The NSL-KDD dataset [7] was chosen due to its widespread
use in intrusion detection research and its improvements over



the original KDD Cup 1999 dataset, including the removal of
redundant records and better class balance. While NSL-KDD
provides a reliable benchmark.

The dataset contains 125,973 records and 41 features cat-
egorized into basic, content-based, and time-based charac-
teristics, with labels indicating whether traffic is normal or
an instance of one of 22 attack types. To ensure unbiased
evaluation:

o The dataset was split into 70% for training and 30% for
testing, maintaining a balanced distribution of normal and
attack instances.

e Z-score normalization was applied to standardize feature
values across all records.

B. Performance Metrics

The performance of the algorithms was measured using
several key metrics:

e Accuracy: The ratio of correctly classified instances
(both normal and attack) to the total number of instances.

o Precision: The proportion of true positive detections
among all instances classified as anomalies, representing
the model’s ability to avoid false positives.

e Recall: The proportion of true positive anomalies de-
tected out of all actual anomalies in the dataset, indicating
the model’s sensitivity.

e F1-Score: The harmonic mean of precision and recall,
balancing detection sensitivity and specificity.

o False Alarm Rate: The proportion of normal instances
incorrectly classified as attacks.

« False Negative Rate: The proportion of attack instances
incorrectly classified as normal.

C. Rationale for Baseline Selection

Euclidean PCA was chosen as the baseline because it repre-
sents a fundamental and well-studied approach to dimensional-
ity reduction in anomaly detection [8]. This choice allows for a
clear demonstration of the benefits introduced by incorporating
manifold geometry in the proposed GrassmannPCA method.

D. Results and Analysis

The results for the EuclideanPCA and GrassmannPCA algo-
rithms are summarized below. GrassmannPCA demonstrated
better overall performance compared to EuclideanPCA across
multiple metrics, particularly in terms of precision, Fl-score,
and accuracy. This improvement is attributed to the Grassmann
manifold’s ability to preserve geometric structures in high-
dimensional data, allowing for better differentiation between
normal and malicious patterns. The results for EuclideanPCA
and GrassmannPCA are summarized in Table I. Grassman-
nPCA demonstrated better overall performance across mul-
tiple metrics, particularly in terms of precision, Fl-score,
and accuracy. These improvements, though modest (e.g., a
2.17% increase in Fl-score), highlight the effectiveness of
Grassmann manifolds in capturing high-dimensional patterns
while maintaining computational efficiency.

TABLE I: Performance Comparison on NSL-KDD Dataset

Metric EuclideanPCA | GrassmannPCA
Training Time (s) 16,806.38 16,618.74

Accuracy 80.20% 82.97%
Precision 84.38% 88.32%
Recall 80.04% 80.77 %
F1-Score 82.15% 84.37%
False Alarm Rate 19.59% 14.12%
False Negative Rate 19.96% 19.23%

Although the improvements in detection metrics are incre-
mental, the reduced false alarm rate (-5.47%) underscores the
robustness of GrassmannPCA in differentiating normal and
malicious traffic. Additionally, its faster training time (-1.12%)
indicates improved computational efficiency, which is critical
for real-time NIDS deployment.

For the EuclideanPCA algorithm, the final test results indi-
cated an accuracy of 80.20% with a precision of 84.38% and
a recall of 80.04%. The F1-Score was 82.15%, while the false
alarm rate and false negative rate were 19.59% and 19.96%,
respectively. The total training time for the EuclideanPCA was
approximately 16,806 seconds.

In contrast, the GrassmannPCA algorithm showed a higher
overall performance with an accuracy of 82.97%, a preci-
sion of 88.32%, and a recall of 80.77%. The F1-Score for
GrassmannPCA was 84.37%, and the false alarm rate was
significantly lower at 14.12%, with a false negative rate of
19.23%. The GrassmannPCA model also required a shorter
training time of 16,618 seconds, indicating a more efficient
learning process.

The combined Fig.2 presents a detailed comparison of the
training performance metrics for the Euclidean and Grassmann
models. It consists of six subplots, providing insights into
accuracy, loss, and cumulative time trends across the entire
training process.

The training accuracy (2a) shows that the Grassmann model
consistently achieves higher accuracy compared to the Eu-
clidean model. The training loss (2b) reflects a faster con-
vergence for the Grassmann model, evidenced by its steep
decline in loss values. Meanwhile, the training cumulative
time (2c) illustrates that the Grassmann model requires less
computational time, showcasing its efficiency.

The zoomed training accuracy (2d) between 0.6 and 0.9
highlights the stability of the Grassmann model, as it maintains
a smoother accuracy curve. The early-stage loss (2e) during
the first 300 iterations shows a rapid decrease, confirming the
Grassmann model’s quicker adaptation to the training data.
The cumulative time for the last 3000 iterations (2f) further
emphasizes the Grassmann model’s sustained efficiency even
in the later stages of training.

Overall, the results show that the Grassmann model achieves
better performance in terms of both accuracy and conver-
gence speed while requiring less computational time compared
to the Euclidean model. This suggests that the Grassmann
manifold-based approach is more effective for handling high-
dimensional network traffic data, making it a superior choice
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Fig. 2: Training Performance Metrics for Euclidean and Grassmann Models.

for network intrusion detection in complex environments.

The results demonstrate that the proposed GrassmannPCA
method outperforms the Euclidean PCA baseline across mul-
tiple metrics. GrassmannPCA achieved a 2.17% improvement
in Fl-score and a 1.12% reduction in training time. While the
improvements are modest, they highlight the effectiveness of
Grassmann manifold geometry in capturing high-dimensional
patterns.

The results underscore the following advantages of the
GrassmannPCA approach:

o Scalability and Efficiency: GrassmannPCA achieves
these improvements with reduced computational costs,
making it well-suited for real-time applications.

e Consistent Metric Improvements: The approach
demonstrates consistent gains across all metrics, includ-
ing a significant 5.47% reduction in false alarm rate,
which is critical for practical deployment [9].

o Complementary Strengths: While deep learning-based
models like LSTMs and GNNs excel at sequential data
modeling, GrassmannPCA complements these strengths
by providing a geometrically informed representation of
data.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a comparative study of two
network intrusion detection algorithms, GrassmannPCA and
EuclideanPCA, using the NSL-KDD dataset. The results

demonstrated that GrassmannPCA outperformed Euclidean-
PCA in terms of detection accuracy, precision, and F1-Score.
The GrassmannPCA algorithm leveraged the unique geomet-
ric properties of the Grassmann manifold, which enabled it
to capture complex patterns and relationships within high-
dimensional network data more effectively. This led to a lower
false alarm rate and better differentiation between normal
and malicious traffic compared to the traditional Euclidean-
based PCA approach. Additionally, GrassmannPCA exhibited
a faster convergence rate, requiring less training time to
achieve optimal performance, making it a computationally effi-
cient solution for real-world network security applications. The
findings suggest that projecting network data onto Grassmann
manifolds is a promising approach for enhancing the detection
capabilities of NIDS, particularly in environments with high-
dimensional and dynamic traffic data. Future work will focus
on extending GrassmannPCA evaluations to diverse datasets
such as CICIDS2017 and UNSW-NBI15 and comparing its
performance with advanced techniques like Autoencoders,
GANSs, and Transformer-based models. Efforts will also ex-
plore hybrid approaches that integrate GrassmannPCA with
other statistical or machine learning methods to detect complex
attack patterns more effectively. Additionally, optimizing the
framework for energy efficiency will ensure its suitability for
resource-constrained environments, such as edge devices or
IoT systems.
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