
Combination of General-Purpose and
Attack-Specific Detectors against Adversarial

Malware
Yoshiki Namura∗, Tomotaka Kimura∗, and Jun Cheng∗

∗Graduate School of Science and Engineering, Doshisha University, Kyoto, Japan
Email: tomkimur@mail.doshisha.ac.jp; jcheng@ieee.org

Abstract—In this paper, we propose a two-stage detection
method for detecting malware and adversarial malware. In the
first stage, we use a general-purpose detector that targets several
types of adversarial malware to determine whether the input
data are malware. In the second stage, we use attack-specific
detectors to detect malware that was determined to be benign
in the first stage. The second-stage detector is composed of
multiple detectors. We train each detector using data generated
by a specific adversarial malware generation method. Through
experiments on the Android malware dataset, we demonstrated
that our proposed method improved accuracy compared with
existing methods.

Index Terms—Deep learning, adversarial malware, evasion
attack, malware detection

I. INTRODUCTION

In recent years, the number of malware incidents has
increased rapidly. There have been cases of confidential infor-
mation being stolen using malware. To combat these malware
incidents, machine learning-based malware detection has been
actively studied [1]. In machine learning-based malware de-
tection, the characteristics of the software are converted into
feature vectors that are evaluated to determine whether the
software is benign or malicious. Although machine learning-
based malware detection systems are a promising solution,
they are exposed to the threat of evasion attacks, which is
an inherent threat to machine learning [2]. Evasion attacks
cause misclassification and false positives by applying small
perturbations to the inputs. When an evasion attack is carried
out against the malware detection system, malware is over-
looked. Overlooking malware can lead to serious incidents.
Thus, countermeasures against evasion attacks are an impor-
tant issue.

As a countermeasure against evasion attacks, the ADE
(Adversarial Deep Ensemble) has been considered [3]. ADE
performs adversarial learning for a single detector using data
generated by multiple evasion attack methods. Using data from
multiple evasion attacks, ADE achieves robustness against
learned and similar evasion attacks. Although ADE is robust
against various evasion attacks, because the characteristics of
each attack are different, training them all together in a single
detector results in lower generalization ability in detection
accuracy for each attack. Therefore, it is difficult to distinguish
between various attacks using the single general-purpose de-

tector and it is necessary to take different countermeasures for
each type of evasion attack.

In this paper, to defend multiple evasion attacks, we propose
a two-stage detection method. In the first stage, we used
a general-purpose detector that classifies software as benign
or malicious without much consideration of the robustness
against evasion attacks. Because the benign software identified
by this detector may include adversarial malware generated
by evasion attacks, we re-evaluate the software identified as
benign using a second-stage detector. Second-stage detectors
consist of multiple evasion attack-specific detectors trained on
data generated by different evasion attacks that were judged to
be benign by the first-stage detectors. Thus, the second stage
is dedicated to discriminating adversarial malware included
in the data determined to be benign in the first stage. For
adversarial malware generated by each evasion attack, the
accuracy of discrimination can be improved by learning the
data generated by the evasion attack individually in each of
the second-stage detectors. Through experiments using the
Android malware dataset, we show that accuracy can be
improved using two-stage detection in the proposed method.

This paper is organized as follows. Section 2 presents
the proposed two-stage detection method and the detection
flow. Section 3 evaluates the effectiveness against some kind
of attacks. Section 4 concludes the paper and shows future
research.

II. PROPOSED METHOD

Figure 1 shows a flow chart of the proposed two-stage
detection method. In the first stage, to detect malware, the
data x of the software for which the decision is to be made
is input into the general-purpose detector f . The first-stage
detector f is trained using a dataset D that is labeled as
benign or malware. Because the first-stage detector does not
take into account adversarial malware, it is difficult to detect
all adversarial malware. Therefore, the proposed method aims
to detect adversarial malware using the second-stage detector.

In the second stage, multiple attack-specific detectors are
used in sequential order to detect adversarial malware. Let
N detectors be denoted by g1, g2, . . . , gN . These detectors
are trained using data that has been added to the training
dataset, D, with the addition of adversarial malware generated
by specific evasion attacks, and using data that has been judged

296979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

Fig. 1: Flowchart of the proposed method

to be benign by the first stage of detection. Many methods
for generating adversarial malware have been devised to date,
and the feature vectors of each method are diverse. Therefore,
detection accuracy could be improved using detectors that have
been individually trained rather than using a single detector.

The detailed decision procedure for second-stage detection
is as follows: The feature of the software x is the input into
the detectors g1, g2, . . . , gN . If any one of these detectors
discriminates that software x is malware, then software x is
determined to be malware. In contrast, if all the detectors iden-
tify that software x is benign, then software x is determined
to be benign. Hence, the second stage uses detectors that have
learned the specific features of each attack, thus reducing the
number of missed scored in the first stage.

III. PERFORMANCE EVALUATION

To demonstrate the effectiveness of the proposed method
against evasion attacks, we evaluated its detection accuracy
using the AndroZoo dataset [4]. The AndroZoo dataset is a
repository of Android applications provided by the University
of Luxembourg. From the AndroZoo dataset, we used 51,709
benign and 14,275 malware Android Package Kit (APK) files.
From the features contained within these APK files, we used
the top 10,000 most frequent features in the training data as
10,000-dimensional binary feature vectors. From the data used
for performance evaluation, we used 60% as training data, 20%
as validation data, and the remaining 20% as test data.

The first-stage detectors f of the proposed method were
the detectors Basic NN, where NN denotes neural network,
ADE-MA, and AT-rFGSM.

• Basic NN: Basic NN consists of a four-layer structure
with 160 neurons in each of the two middle layers.

We set the batch size, epoch size, and learning rate
to 128, 150, and 0.001, respectively. As the activation
function and optimization algorithm, the rectified linear
unit (ReLU) function and Adam algorithm are used,
respectively.

• ADE-MA: ADE-MA is an ensemble detector that learns
multiple methods of generating adversarial malware in a
mixed manner. The ensemble is composed of five NNs.
The average value of the logit of each NN is used as
the output of the final ensemble detector. The NN has a
four-layer structure. In this study, the number of neurons
in the two middle layers was 160 for each layer, the
batch size was 128, the number of epochs was 150,
the learning rate was 0.001, the activation function was
ReLU, and the learning algorithm was Adam. We used
four types of adversarial malware generation methods
to train ADE-MA: PGD-ℓ1, PGD-ℓ2, PGD-ℓ∞, and
FGSM (Fast Gradient Sign Method) attacks using Adam.
During the training process, we selected an adversarial
malware generation method that maximizes the loss
function value of each NN for each mini-batch from
the aforementioned four types of generation methods
and performed adversarial learning that incorporated the
selected adversarial malware generation method.

• AT-rFGSM: AT-rFGSM adversarially trains by using the
rFGSM method [5] for generating adversarial malware.
The same number of adversarial malware samples as
training data for malware are generated using rFGSM,
and they are trained together with benign software and
malware. The detector is constructed using an NN that
has the same settings as Basic NN.

In the second-stage detector, we generated adversarial mal-
ware and added it to the training data of the first-stage
detector, and learned data that the first-stage detector judged
to be benign. Like the first-stage detector f , the second-stage
detector used a four-layer NN. We used four types of methods
for generating adversarial malware: FGSM, JSMA (Jacobian-
based Saliency Map Approach), Mimicry, and Pointwise.
Therefore, we set the number of detectors to N = 4.

• FGSM: FGSM is a white-box attack that generates
perturbations to increase the loss function value of the
malware detector that is the target of the attack [6]. It
generates adversarial malware that reduces detection
accuracy by differentiating the loss function value for
the input malware with the input value and then applying
perturbations to the malware so that the gradient
increases.

• JSMA: JSMA is a white-box attack that searches for
efficient perturbations for each feature [7]. The Jacobian
matrix in the loss function for the input malware is
calculated. Attack performance is obtained with the
smallest perturbation by selecting the maximum value in

297

TABLE I: Accuracy

Detector Evasion attack
No attack FGSM JSMA Mimicry Pointwise

Proposal (Basic NN) 99.44 99.19 98.25 99.37 97.90
Proposal (ADE-MA) 99.44 99.44 98.32 99.65 98.81

Proposal (AT-rFGSM) 99.23 99.23 98.21 99.75 98.11

Basic NN-Only 99.05 2.84 24.55 0.00 0.00
ADE-MA-Only 99.37 99.37 47.36 38.04 36.60

AT-rFGSM-Only 99.05 99.05 42.57 0.49 0.49

TABLE II: Difference in the number of malware that can be detected in the first and second stages

(a) Proposal (Basic NN)

Attack First stage Second stage

NB N
(M)
B NM N

(M)
M NB N

(M)
B NM N

(M)
M

FGSM 13,119 2,839 2,933 2,871 10,299 54 2,820 2,785
JSMA 12,499 2,219 3,553 3,491 10,326 81 2,173 2,138

Mimicry 13,200 2,920 2,852 2,790 10,294 49 2,906 2,871
Pointwise 13,200 2,920 2,852 2,790 10,336 91 2,864 2,829

(b) Proposal (ADE-MA)

Attack First stage Second stage

NB N
(M)
B NM N

(M)
M NB N

(M)
B NM N

(M)
M

FGSM 9,892 51 6,160 5,659 9,858 33 34 18
JSMA 11,377 1,536 4,675 4,174 9,890 65 1,487 1,471

Mimicry 11,643 1,802 4,409 3,908 9,852 27 1,791 1,775
Pointwise 11,684 1,843 4,368 3,867 9,876 51 1,808 1,792

(c) Proposal (AT-rFGSM)

Attack First stage Second stage

NB N
(M)
B NM N

(M)
M NB N

(M)
B NM N

(M)
M

FGSM 10,366 94 5,686 5,526 10,288 47 78 47
JSMA 11,979 1,707 4,073 3,913 10,317 76 1,662 1,631

Mimicry 13,180 2,908 2,872 2,802 10,273 32 2,907 2,876
Pointwise 13,180 2,908 2,872 2,802 10,320 79 2,860 2,829

the matrix.

• Mimicry: Mimicry is a black-box attack that disguises
the characteristics of malware as those of benign
software [8]. By replacing all characteristics except
for the minimum necessary for functioning as malware
with the characteristics of benign software, the malware
acquires characteristics that are judged to be benign
software by the detector.

• Pointwise: Pointwise is an attack that minimizes
the magnitude of perturbations added to adversarial
malware [3]. By randomly repeating the removal of
perturbations at feature units, it generates adversarial
malware that is difficult to detect.

For each generation method, we generated 14,275 adver-

sarial malware from the APK files of malware. From the
adversarial malware, we used 60% as training data, 20% as
validation data, and the remaining 20% as test data.

As an evaluation metric, we used the accuracy of two-stage
detection in an attack environment. Accuracy is as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (1)

where TP denotes true positive and refers to the total number
of correctly identified positives, FP denotes false positive and
refers to the total number of incorrectly identified positives,
TN denotes true negative and refers to the total number of cor-
rectly identified negatives, and FN denotes false negative and
refers to the total number of incorrectly identified negatives.
In the experiments, we considered malware data as positive
and benign data as negative.

298

TABLE III: Accuracy for Benign in the First-Stage and the Second-Stage Detection

Detector – Evasion attack
FGSM JSMA Mimicry Pointwise

Basic DNN First-stage 97.89 98.25 97.83 97.83
Second-stage 99.03 98.87 99.07 98.80

ADE-MA First-stage 91.87 89.28 88.64 88.53
Second-stage 96.55 98.86 96.59 96.44

AT-rFGSM First-stage 97.19 96.22 97.56 97.56
Second-stage 99.05 98.87 99.15 98.85

A. Results

Table I shows the accuracy of two-stage detection, where
Proposal (Basic NN), Proposal (ADE-MA), and Proposal (AT-
rFGSM) represents the proposed method with Basic NN,
ADE-MA and AT-rFGSM as first-stage detector, respectively.
We also show the results of Basic NN-only, ADE-MA-only,
and AT-rFGSM-only that indicate the existing methods of
Basic NN, ADE-MA, and AT-rFGSM, respectively. Table I
shows that accuracy improved when we used two-stage de-
tection with any of the first-stage detectors. Furthermore, our
proposed method not only counteracted evasion attacks that
the first-stage detector could not counteract but also improved
the detection accuracy of evasion attacks that had already
taken countermeasures. Table I shows that the accuracy of
the FGSM evasion attack against the first-stage detector AT-
rFGSM improved from 99.05% to 99.23%; the improvement
was very slight.

Tables II shows the difference in the number of malware
that can be detected in the first and second stages. NB

and NM denote the numbers of discriminated benign and
malware, respectively. N (M)

B and N
(M)
M also denote the true

values of the malware contained in the determined benign NB

and malware NM . The test data included benign software,
malware, and adversarial malware generated by evasion attacks
on each. As we can see from Tables II, when the number of
malware contained in the data that was discriminated to be
benign by the first-stage detector was small, that is, when it
was possible to make a benign judgment with high accuracy
in the first-stage detector, the accuracy of malware detection
in the second-stage detector decreased. This is because the
first-stage detector over-learned the benign data because the
proportion of malware in the benign data was low. Therefore,
to achieve further improvements in accuracy for adversarial
malware that can be detected with high accuracy by the first-
stage detector, it is necessary to alleviate the imbalance in the
benign data.

The final detection accuracy of the two-stage detection is
affected by the accuracy of the malware detection of the first-
stage detector and the accuracy of the malware re-detection of
the second-stage detector. Therefore, we evaluate the effects
of the first-stage detectors. Table III shows the accuracy for
benign in the first-stage and the second-stage detection. The
test data included benign software, malware, and adversarial
malware generated by evasion attacks. As we can see from
Table III, the accuracy for the first-stage detector is lowest
for ADE-MA and the detection rate for the two-stage detector

is also low for ADE-MA. This result implies that the perfor-
mance of the first stage detection affects that of the second
stage detection.

IV. CONCLUSION

In this paper, we proposed a two-stage detection method
that reinforces the accuracy of the first-stage detector as a
detection system that counters increasingly diverse adversarial
malware. In the proposed method, adversarial examples that
the first-stage detector judged to be benign were included
in the training data in the second-stage detector. Through
experiments using the AndroZoo dataset, we showed that the
accuracy was improved by performing two-stage detection
rather than single-stage general-purpose detection. We used
four types of evasion attack to train the two-stage detector,
but dozens of evasion attacks have been considered to date. It
is not realistic to learn all of them in advance and construct
a detector for each one. Therefore, further studies are needed
in the future.

ACKNOWLEDGMENT

This research was supported by JSPS KAKENHI
(23K11077).

REFERENCES

[1] J. Singh and J. Singh, “A survey on machine learning-based malware
detection in executable files,” Journal of Systems Architecture, vol. 112,
p. 101861, 2021.

[2] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning at
test time,” in Proc. of Machine Learning and Knowledge Discovery in
Databases: European Conference (ECML PKDD’13). Springer, 2013,
pp. 387–402.

[3] D. Li and Q. Li, “Adversarial deep ensemble: Evasion attacks and
defenses for malware detection,” IEEE Transactions on Information
Forensics and Security, vol. 15, pp. 3886–3900, 2020.

[4] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of android apps for the research community,” in Proc.
of the 13th International Conference on Mining Software Repositories
(MSR’16), 2016, pp. 468–471.

[5] A. Al-Dujaili, A. Huang, E. Hemberg, and U.-M. O’Reilly, “Adversarial
deep learning for robust detection of binary encoded malware,” in Proc.
of 2018 IEEE Security and Privacy Workshops (SPW’18). IEEE, 2018,
pp. 76–82.

[6] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” In ICLR (Poster), 2015.

[7] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. of 2016 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 2016, pp. 372–387.

[8] N. Šrndić and P. Laskov, “Practical evasion of a learning-based classifier:
A case study,” in Proc. of 2014 IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 197–211.

299

