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Abstract—Centrality measures determined by the network’s
topology structure (e.g., degree centrality, eigenvector centrality,
and betweenness centrality) are widely utilized in various fields,
such as network analysis and data mining. While extensive
research has proposed several centrality indices to measure how
important a node is compared to others as well as fast centrality
computation algorithms, there is a demand to obfuscate node
centrality from a security and privacy perspective. Obfuscating
node centrality offers potential applications, such as preventing
attacks on important nodes from malicious actors. Therefore, this
paper aims to develop an algorithm for obfuscating the centrality
of arbitrary sets of nodes in a graph through the addition and
deletion of links. Specifically, we introduce COBF (Centrality
OBFuscation), which applies the concept of ProHiCo (Probabilis-
tic algorithm to Hide Communities), a community obfuscation
method proposed, to obfuscate node centrality. Experiments are
conducted to analyze how effectively the centrality of specified
nodes is obfuscated. The results demonstrate that COBF can
effectively alter node rankings by approximately five positions in
a network with a total of 100 nodes, highlighting its potential for
enhancing privacy in network analysis.

Index Terms—Node Centrality, Centrality Obfuscation, Net-
work Security, Link Perturbation

I. Introduction

The centrality of nodes, determined by the network’s topo-

logical structure (e.g., degree centrality, eigenvector centrality,

and betweenness centrality) [1-3], is widely utilized in various

scenarios, such as network analysis and data mining. In recent

years, networks that grow over time, such as sensor networks,

communication networks, social networks, and transportation

networks, have been emerging one after another and are

expected to continue spreading worldwide [4]. Node centrality

measures are frequently employed to analyze and understand

the importance of individual nodes within these networks [5,

6].

Over the years, there has been active research on proposing

reasonable centrality measures to measure how important a

node is compared to others as well as fast centrality com-

putation algorithms [7]. However, from the perspective of

security and privacy protection, there is a demand to obfuscate

node centrality. For example, highly central nodes possess

information and value that can significantly influence the

surrounding nodes and the entire network, making it necessary

to obfuscate the centrality of such nodes. If node centrality

can be obfuscated, it holds the potential for applications

such as preventing attacks on important nodes from malicious

actors [8].

In this paper, we address the following research questions.

• How can the node centrality obfuscation problem be

formally defined to generalize obfuscation for arbitrary

node sets in a graph?

• What algorithmic approaches can be developed to effec-

tively solve the node centrality obfuscation problem?

• To what extent does the proposed method perform effec-

tively across different network structures and centrality

measures in obfuscating node centrality?

Therefore, this paper aims to develop an algorithm for

obfuscating the centrality of arbitrary sets of nodes in a graph

through the addition and deletion of links. Previous research

has explored the obfuscation of specific community sets within

networks through link rewiring [9], as well as the obfuscation

of top-ranked nodes with high centrality scores [10]. However,

to the best of our knowledge, there has been no investigation

into the obfuscation of centrality for arbitrary nodes, including

those that are middle-ranked or bottom-ranked nodes with

intermediate or low centrality scores, respectively.

Specifically, we propose a centrality obfuscation algorithm

called COBF (Centrality OBFuscation), which applies the

concept of community obfuscation method ProHiCo (Proba-

bilistic algorithm to Hide Communities) [9] to obfuscate node

centrality. Through experiments, we investigate to what extent

the centrality of specified nodes is obfuscated. ProHiCo is a

method that obfuscates any community set within the network

by adding and/or deleting a small number of links. ProHiCo

addresses two main issues present in conventional community

obfuscation methods, such as REM [11] and safeness [12].

First, it resolves the problem of link optimality, which depends

on the objective function used when adding and/or deleting

links. Second, it tackles the issue where changes in links at a

particular stage affect subsequent link changes, leading to an

imbalance in link rewiring resources. We adopt the approach

from ProHiCo, where link rewiring decisions are based on

pre-calculated weights, to obfuscate node centrality.

The main contributions of this paper can be summarized as

follows.

• We formulate a new class of obfuscation problems (i.e.,

node centrality obfuscation problem) for obfuscating the

centrality of arbitrary sets of nodes in a graph.

• We present an effective algorithm for the node centrality

obfuscation problem called COBF.

• We extensively examine the effectiveness of COBF

219979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025



1

32 4 5

original undirected

graph G=(V, E)

1

32 4 5

obfuscated

graphs

add α links

delete β links

Input

adding links α = 1

deleting links β = 1

target nodes Ο = {3}

1

32 4 5

1

32 4 5function to measure how much

the centrality is ocfuscated

    L(c, c’) = c - c’

c: original centrality

c’: obfuscated centrality
L = 1.6

L = 1.1

L = 1.1

Output

(max value of L)

Fig. 1. An example of the obfuscation problem of node centrality (between-
ness centrality) in a simple network with 5 nodes and 5 links

through a number of experiments with different network

types and centrality measures.

The structure of this paper is as follows. In Section II, we

formulate the node centrality obfuscation problem targeted in

this paper. In Section III, we explain the COBF algorithm for

obfuscating node centrality. In Section IV, we investigate the

effectiveness of COBF through experiments. Finally, in Section

V, we summarize the paper and outline future tasks.

II. Node Centrality Obfuscation Problem

The node centrality obfuscation problem addressed in this

paper involves selecting links for addition and/or deletion in a

network, such that the centrality indices of a specified set of

nodes are obfuscated as much as possible.

Consider an unweighted undirected graph G = (V, E), a

set of nodes for which centrality needs to be obfuscated,

denoted as O ⊆ V , and the numbers of link additions, α, and

link deletions, β, for graph G. Additionally, we are given a

centrality function f (G, v) for node v in graph G.

Let G′ be a graph obtained after adding to and deleting

from graph G. The node centrality obfuscation problem can

be formulated as

arg max
G′

∑

v∈O

L( f (G, v), f (G′, v)) (1)

where L(c, c′) is a utility function that measures the effectiv-

ness of obfuscation. For example, if the goal is to decrease the

centrality of specified top nodes, one can use L(c, c′) = c− c′.

Alternatively, if the goal is to maximize the sum of the

changes in centrality for the specified nodes, one can use

L(c, c′) = |c − c′| or MSE (Mean Squared Error), which

calculates the average of the squared differences between the

original centrality scores c and the modified centrality scores

c′, can be employed.

Fig. 1 provides an example of the node centrality obfus-

cation problem in a simple network with five nodes and five

links. The figure illustrates a case for α = β = 1 and the utility

function of L(c, c′) = c − c′ is used to obfuscate the centrality

of the specified node 3.
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Fig. 2. An example of COBF-weighted execution on a simple graph with 5
nodes and 5 links (γ = 1, ǫ = 1)

III. Centrality Obfuscation Algorithm COBF

The node centrality obfuscation algorithm, COBF, is in-

spired by the community obfuscation framework ProHiCo [9].

Typically, obfuscation involves naively adding and/or deleting

links around the nodes that are intended to be obfuscated,

which can lead to the Matthew effect, where the obfuscation

becomes biased toward specific nodes [9]. To prevent this,

COBF precomputes link weights and systematically deletes

and/or adds links based on these weights to achieve more

balanced obfuscation.

A. COBF-weighted

COBF-weighted precomputes the weights of all links in

graph G and deletes β links based on these weights. Similarly,

it precomputes the weights of all non-links (node pairs without

links) in graph G and adds α links according to these weights.

The following provides a detailed explanation of the algo-

rithm for COBF-weighted.

1) For node pairs with links on graph G, (u, v) ∈ E,

compute the link deletion weight Wd
= (wd

u,v) as

220
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Fig. 3. The obfuscation of betweenness centrality in random graphs generated by ER model
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Fig. 4. The obfuscation of betweenness centrality ranking in random graphs generated by ER model

wd
u,v = (cu + cv)γ (2)

where cv is the centrality of node v, and γ is a parameter.

2) Select a node pair randomly with probabilities propor-

tional to the link deletion weight Wd, and delete the

corresponding link from graph G.

3) For node pairs without links on graph G, (u, v) � E,

compute the link addition weight Wa
= (wa

u,v) as

wa
u,v =

(

1

cu

+
1

cv

)ǫ

(3)

where ǫ is a parameter.

4) Select a node pair randomly with probabilities pro-

portional to the link addition weight Wa, and add the

corresponding link to graph G.

5) Repeat steps 1 and 2 for β times, and repeat steps 3 and

4 for α times.

6) The graph G′ which results from adding and/or deleting

links to the original graph G, is output.

B. COBF-greedy

COBF-greedy is fundamentally the same as COBF-

weighted, but it differs in how it selects node pairs in steps 2

and 4. In COBF-weighted, pairs are chosen randomly, while

COBF-greedy selects node pairs greedily, choosing those with

the maximum weights first. This method focuses on nodes

with higher weights, which can result in more significant

changes to the network structure and centralities compared

to the probabilistic approach of COBF-weighted, while still

maintaining a balanced approach to obfuscation.

C. Execution Example of COBF

In a simple network with five nodes and five links, an

example of COBF-weighted for the problem of obfuscating

the centrality of node 3 is shown in Fig. 2. The figure presents

the results for the parameters where α = β = γ = ǫ = 1. In

the figure, circles represent nodes, gray-filled circles represent

nodes with obfuscated centrality, solid lines represent links

between nodes, dashed lines in graph (c) represent deleted

links, and dashed lines in graph (d) represent links that can be

added. First, the weight for link deletion is calculated for any

node pair on graph G based on Eq. (2). Then, based on the

calculated weight for link deletion, a node pair is randomly

selected with a probability proportional to the weight, and

one link is deleted from graph G. Next, the weight for link

addition is calculated for any node pair without links on graph

G based on Eq. (3). Subsequently, based on the calculated

weight for link addition, a node pair is randomly selected with

a probability proportional to the weight, and one link is added

to graph G. Finally, the resulting graph G′ after link addition

and deletion is output.

IV. Experiment

In the following, we quantitatively evaluate the effectiveness

of COBF across different network types and node centralities.

In this experiment, we use two common centrality measures:
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Fig. 5. The obfuscation of betweenness centrality in scale-free graphs generated by BA model
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Fig. 6. The obfuscation of betweenness centrality ranking in scale-free graphs generated by BA model

betweenness centrality and eigenvector centrality, to assess the

obfuscation performance on typical node centrality metrics.

Using the ER (Erdõs-Rényi) [13] and BA (Barabási-

Albert) [14] network generation models, we generated 100

random graphs and 100 scale-free graphs, each with 100

nodes. We varied the number of deleted links β and added links

α equally between 1 and 10. Three node sets were selected

for obfuscation, based on centrality: a top-ranked set (1st, 5th,

and 10th ranked nodes), a middle-ranked set (45th, 50th, and

55th ranked), and a bottom-ranked set (90th, 95th, and 100th

ranked).

For each graph G and its obfuscated version G′, we mea-

sured the obfuscation degree by comparing the centrality c(v)

and c′(v) of node v using the following function to express the

centrality change:

L(c(v), c′(v)) = |c(v) − c′(v)| (4)

We also evaluated rank changes in descending centrality order

using:

L(r(v), r′(v)) = |r(v) − r′(v)| (5)

COBF’s control parameters were set to γ = 1 and ǫ = 1.

In addition to COBF, we employed a random method

(randomly deleting β links and adding α links).

For the 100 generated graphs, we performed one obfuscation

trial for each specified node set O by adding α edges and

deleting β edges, calculating the average obfuscation degree

and 95% confidence interval for the three methods: COBF-

weighted, COBF-greedy, and random method.

In the random graph generated by the ER model, the

changes in betweenness centrality and rank are analyzed as

the number of link deletions and additions is equally varied.

For the top-ranked, middle-ranked, and bottom-ranked node

sets, the change in betweenness centrality is given by

1

|O|

∑

v∈O

L(c(v), c′(v)), (6)

and the change in rank by

1

|O|

∑

v∈O

L(r(v), r′(v)). (7)

These changes are shown in Fig. 3 and 4. Similarly, the

changes in betweenness centrality and rank for the top-ranked,

middle-ranked, and bottom-ranked node sets in the scale-free

graph generated by the BA model are illustrated in Fig. 5

and 6. These figures present the results of three central-

ity obfuscation methods: COBF-weighted, COBF-greedy, and

random.

From these results, it is evident that, across all graphs,

obfuscation of both the top-ranked and bottom-ranked node

sets is most effectively achieved by COBF-greedy, with this

trend being particularly pronounced in the ER graphs. As

for the middle-ranked node sets, all three methods performed

similarly, though COBF-weighted appears to show a slight

advantage. In terms of numerical results, both COBF-weighted

and COBF-greedy consistently alter the rankings by about five

positions, demonstrating their ability to successfully obfuscate

centrality and achieve the desired effect.
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Fig. 7. The obfuscation of eigenvector centrality in random graphs generated by ER model
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Fig. 8. The obfuscation of eigenvector centrality ranking in random graphs generated by ER model

In the random graph generated by the ER model, the

changes in eigenvector centrality and rank are analyzed as

the number of link deletions and additions is equally varied.

For the top-ranked, middle-ranked, and bottom-ranked node

sets, the change in eigenvector centrality is given by Eq. (6)

and and the change in rank by Eq. (7). These changes are

shown in Fig. 7 and 8. Similarly, the changes in eigenvector

centrality and rank for the top-ranked, middle-ranked, and

bottom-ranked node sets in the scale-free graph generated by

the BA model are illustrated in Fig. 9 and 10. These figures

present the results of three centrality obfuscation methods:

COBF-weighted, COBF-greedy, and random.

From these results, it is clear that COBF-greedy consistently

outperforms both COBF-weighted and the random method

across all node sets top-ranked, middle-ranked, and bottom-

ranked achieving nearly double the effectiveness in both cen-

trality and rank changes. In terms of numerical outcomes, both

COBF-weighted and COBF-greedy altered rankings by around

five positions overall, but COBF-greedy demonstrated a more

pronounced effect, consistently shifting ranks by as much as

ten positions, confirming its stronger ability to obfuscate node

centrality effectively.

V. Conclusion

This paper introduced COBF, an algorithm for obfuscating

node centrality indices, inspired by the ProHiCo community

obfuscation framework. Two variants of COBF were proposed:

COBF-weighted and COBF-greedy. Both methods proved to

be effective in concealing node centrality, with COBF-greedy

demonstrating particularly strong performance. The results

indicated that both approaches could alter node rankings by

approximately five positions, and COBF-greedy consistently

achieved even greater ranking shifts. These findings confirm

COBF’s capability to effectively obfuscate centrality, making

it a promising approach for enhancing privacy in network

analysis.

While COBF has shown its effectiveness, several avenues

for future exploration remain. First, scalability to larger, real-

world networks is an important aspect to investigate. As

networks grow in size and complexity, ensuring that COBF

maintains its effectiveness and efficiency will be critical.

Another area for future work is extending COBF to obfuscate

additional centrality measures, such as closeness or between-

ness centrality, beyond those analyzed in this study. Lastly,

optimizing the computational efficiency of COBF, especially

for applications involving large-scale networks, is an essential

direction for enhancing its practical applicability.
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Fig. 9. The obfuscation of eigenvector centrality in scale-free graphs generated by BA model
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