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Abstract—This paper addresses one of the challenges of digital
forensics by enhancing the analysis phase, focusing on prioritizing
forensic artifacts in email evidence using machine learning.
The urgency stems from the growing volume and variety of
digital evidence, leading to backlogs in forensic laboratories. The
research explores how categorizing forensic artifacts by priority
can optimize the criminal investigation. The study develops and
evaluates three machine learning models: Decision Tree, Support
Vector Machine (SVM), and Fully Connected Neural Network
(FCNN). These models are assessed based on their accuracy,
strengths, limitations, and ability to prioritize email evidence.
Results indicate that the SVM model is the most accurate and
consistently performing well, while the FCNN model uniquely
classifies all validation set emails correctly.

Index Terms—Artificial Intelligence, Classification, Decision
Trees, SVM, FCNN

I. INTRODUCTION

Crimes that affect thousands of victims, families, and busi-
nesses each year like homicide, kidnapping, and burglary
are increasingly characterized by digital evidence [1]. This
shift is underscored by the ubiquity of electronic devices,
which reinforces the importance of digital devices for detecting
evidence related to cyber and non-cyber criminal activities [2].
According to the [3], over 90% of all crimes have a proven
digital connection. However, the digital forensic investigation
process faces many challenges. The increasing amount of
digital evidence, its diverse sources, and the evidence-centric
nature of industry tools contributes to delays and backlogs in
forensics labs [4]. Technological advancements in storage have
resulted in a significant rise in the amount of data, thereby
exacerbating the case backlog. This has had an adverse effect
on criminal investigations and court proceedings, impeding
their progress [5].

Despite the variety of tools, digital forensics remains largely
a manual process that requires careful analysis by experts in
the field [6]. The urgency of extracting information quickly
from digital devices has reached a critical point due to the in-
creasing number of investigations involving different computer
systems and vast amounts of data [7]. Investigators struggle
with cognitive challenges and time-consuming processes and
are often overwhelmed by the size and volume of cases [8], [9].
The increase in crime and the associated complexities increase
the pressure on investigators to deliver timely results [10].

The overall objective of this work is to develop an in-
novative approach that enables the prioritization of forensic
artifacts to enhance the efficiency and efficacy of the crime
investigation process in the domain of digital forensics. This
approach allows for a swifter and more targeted examination of
pertinent evidence with the potential to optimize the analysis
phase of an investigative procedure.

II. THEORETICAL FOUNDATION

A. Digital Evidence and its Significance

Digital evidence is any digital data that reliably supports
or disproves a hypothesis related to an incident [11]. Homem
expands this definition to include data generated, transmitted,
or stored on digital devices, which can reconstruct the course
of a suspected criminal event. Digital evidence encompasses
“digital data” used during transmission, storage, or processing
to verify or refute theories associated with malicious events
[4].

This type of evidence applies to both digital and traditional
crimes, such as robberies, burglaries, and homicides, where
digital footprints like chat messages, emails, and phone records
can provide critical insights into alibis, timelines, and incident
details [4], [12].

Currently, around 85% of criminal investigations involve
electronic evidence, as estimated by the European Union.
Retrieving digital evidence from sources like email, cloud
services, online payments, and portable devices has become
fundamental in criminal proceedings [13]. Mark Stokes, Head
of Digital Forensics at the Metropolitan Police Service, esti-
mates that around 90% of criminal activities involve a digital
component, significantly impacting legal outcomes [14].

B. Automation in Digital Forensics Investigations

The integration of automation techniques in digital foren-
sics has become essential for data collection, analysis, and
interpretation. Automation efficiently handles repetitive tasks,
reducing manual effort in digital forensic investigations [15].
As digital crime increases, automation is crucial for managing
the workload [13]. Al Fhadi et al. (2013, p. 5) reported
that 58% of law enforcement and organizations recognize
automation’s potential to reduce manual efforts, viewing it as
critical for the field’s future.
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Automation in digital forensics aims to accelerate evidence
processing and address lab backlogs, easing forensic prac-
titioners’ workload [4]. Proper application can reduce data
analysis burdens, allowing analysts to focus on other tasks
and improving investigation accuracy [16]. The significant rise
in machine learning (ML) research publications from 2010 to
2021 highlights the growing interest in applying ML to digital
forensics [17].

With increasing data volumes, optimizing analysis processes
to swiftly identify relevant evidence is crucial. Studies suggest
using ML to prioritize file artifacts based on metadata and
timeline events. Du et al. proposed training models with
previously analyzed files to generate relevance values for new
artifacts, enabling immediate analysis of seized devices. How-
ever, this method’s effectiveness depends on the size of the pre-
analyzed dataset and does not involve content analysis [18]. Du
and Scanlon’s supervised ML approach automates metadata-
based classification, addressing the challenge of manually
finding suspicious files [19]. Al Fahdi et al. demonstrated that
unsupervised pattern recognition with Self-Organizing Maps
could cluster significant artifacts, although adaptation based
on investigator decisions was limited [8].

These approaches aim to expedite investigations but pri-
marily focus on file metadata, potentially overlooking crucial
file content information. Clemens cautions that metadata alone
can be misleading or incomplete [6]. This paper explores using
ML to prioritize email analysis based on content and emotional
tone, addressing the identified research gap.

III. RESEARCH METHOD

This chapter presents a comprehensive overview of the
research methodology employed in this study to automate
the process of prioritizing email evidence. It encompasses
the procedure of creating an appropriate dataset and provides
information about the ML model, as well as the evaluation
metrics employed to compare the models.

A. Overview of the Approach

The core methodology includes categorizing email evidence
into content-based priority levels using ML models. This
approach requires not only the development and training of
the ML models as well as the extraction of comparative
information but also the development of a label for the dataset
created by expert knowledge. For this purpose, the Enron email
dataset was chosen as the basis. This dataset is particularly
suited because of the real events surrounding the Enron scandal
and thus reflects the real application of ML models in the field
of digital forensics. The ML model types of DT, SVM, and
FCNN were selected for this approach due to the classification
requirement of the problem. In order to conduct a comprehen-
sive evaluation of models, it is advised by [20] to utilize a
standardized collection of performance metrics throughout the
evaluation procedure. Hence, the evaluation phase incorporates
the employment of performance measures such as Accuracy,
Precision, Recall, as well as F1-Score. Furthermore, the Con-
fusion Matrix is generated for each model to assess the quality

of predictability and subsequently compared to determine a
potentially superior model. After the individual models have
been developed, a comparative analysis of the model types is
carried out in order to identify their strengths and limitations as
well as to provide recommendations regarding the suitability
of the different model types during an investigation.

B. Dataset Selection

Hilmand et al. emphasize the importance of text recordings
and emails as critical evidence sources in digital forensic
investigations [21]. To reflect real-world investigations, the
Enron email corpus was selected for this study. The Enron
corpus comprises approximately 500,000 emails collected over
3.5 years from the Enron energy company, which filed for
bankruptcy in December 2001 following a major corporate
scandal [22], [23].

This study trained supervised models using a modified
Enron email corpus, incorporating a subset of around 1,700
emails annotated by UC Berkeley students, focusing on busi-
ness emails and those related to the California energy crisis.
The experiment utilized 1,641 labeled emails, categorized into
four primary categories and 53 subcategories. Emails were
assigned categories based on their content and given weight
values indicating the frequency of category assignment.

1) Data Cleaning and Preprocessing: To ensure the quality
and reliability of the dataset, meticulous data cleaning was
performed. After finishing the data cleaning, the One Hot
Encoding method was employed to create distinct columns
for each primary category, as well as for the subcategories
and the respective weightings. This step was necessary as the
underlying dataset suffers an absence of an inherent order of
the category designations.

After performing One Hot Encoding, category values were
adjusted such that a value of one indicates a positive allocation
to a content category, and zero indicates unassigned categories,
aiding in more accurate model training despite increased data
dimensionality.

2) Priority Score Value and Priority Recommendation:
The existing dataset lacks priority labels, so a “Prior-
ity Recommendation” label was created based on category
assignments. Emails were assigned low, medium, and high
priorities within the “Coarse Genre” and “Included/Forwarded
Information” categories, excluding non-representative cate-
gories. Expert input from a digital forensics specialist identi-
fied and prioritized subcategories, assigning eleven to low, five
to medium, and five to high priority. A Priority Score Value,
ranging from 0.0 to 1.0, was calculated using weights (Low=0,
Medium=0.5, High=1) based on subcategory assignments and
frequency. This score was then used to derive the Prior-
ity Recommendation (Low, Medium, High) for each email,
resulting in a labeled dataset for model training and providing
clear insights into email significance in investigations.

3) Feature Selection: Features have a decisive impact on
the execution time and predictive performance of an ML
model. For example, training and testing with a large number
of irrelevant features that show no relevance to the prediction
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can negatively affect the performance of the model [24]. With
small datasets, as is the case in the approach of this paper, a
few features may be sufficient to achieve the desired results
[18]. Thus, the features for the development of the ML models
are limited to the four main category and the 53 sub-categories
as well as the weightings. This results in a total of 159 features
per email.

The performance of the classification machine learning
models is evaluated using four metrics: Accuracy, Precision,
Recall, and F1-Score.

IV. DEVELOPING MACHINE LEARNING MODELS FOR
EVIDENCE PRIORITY CATEGORIZATION

This section covers the development process of DT, SVM,
and FCNN models. Moreover, it delves into the process of
hyperparameter tuning and the selection of the most suitable
model within each category by evaluating diverse performance
metrics.

A. Decition Tree
Decision Tree (DT) models are popular for solving clas-

sification problems due to their interpretability and insight
into feature influence on priority labels [25]. The used DT
model, implemented in Python using Scikit-learn, requires
categorical labels to be encoded numerically using LabelEn-
coder. This conversion improves model interpretability and
prediction accuracy by integrating qualitative information into
the quantitative framework.
Three DT models with varying depths were trained and
evaluated:

• Model 1 (max depth=12): Achieved 96.6% accuracy,
indicating strong pattern learning but a slight risk of
overfitting.

• Model 2 (max depth=8): Achieved 94.8% accuracy, bal-
ancing performance and generalization.

• Model 3 (max depth=5): Achieved 93.9% accuracy, with
the least risk of overfitting but lower performance.

Learning curves indicated that all models converged with
increasing training examples. Confusion matrices revealed
minimal misclassifications, with Model 1 having the fewest
errors but a slight risk of overfitting. Model 2 balanced
performance and stability, while Model 3 had the most errors
but the smallest risk of overfitting.

All three DT models demonstrated strong predictive ca-
pabilities (as shown in Table I). Model 1 had the highest
accuracy but required attention to overfitting. Model 3 showed
the least overfitting but had the lowest accuracy. Model 2
offered a balanced performance, making it a reliable option
for generalization with good precision and recall. Therefore,
Model 2 was selected for further comparison with other ML
models in this study.

B. Support Vector Machine
Support Vector Machines (SVMs) create decision bound-

aries to classify data. This is crucial for handling noisy, non-
linearly separable data [26], making SVMs advantageous for
prioritizing complex email evidence.

The SVM model was implemented in Python using Scikit-
learn. Unlike DT models, SVMs do not require converting
categorical labels to numeric. Both linear and radial basis
function (RBF) kernels were tested to evaluate SVM perfor-
mance across different data relationships. The regularization
parameter (C) was adjusted to balance margin maximization
and training error minimization, aiding in generalization, and
reducing overfitting [27].

Three SVM models were trained and evaluated:

• Model 1 (linear kernel, C=1): Achieved 99.7% accuracy,
effectively capturing dataset patterns with a clear decision
boundary.

• Model 2 (RBF kernel, C=1): Achieved 97.2% accuracy,
handling more complex relationships but with lower
accuracy.

• Model 3 (RBF kernel, C=5): Achieved 98.2% accuracy,
improving over Model 2 but slightly overfitting.

Learning curves indicated that Model 1 had excellent gen-
eralization with a small gap between training and cross-
validation accuracy. Models 2 and 3 showed larger gaps,
indicating potential overfitting. Confusion matrices revealed
that Model 1 had the fewest misclassifications, followed by
Models 3 and 2, respectively.

All three SVM models demonstrated strong classification
capabilities (as shown in Table II). Model 1 performed excep-
tionally well, with high accuracy, precision, recall, and F1-
scores, but risked overfitting. Models 2 and 3 had slightly
lower performance but better generalization. Validation tests
confirmed that all models could correctly classify high-priority
emails, essential for digital forensic investigations. Model 3
was selected for further comparison with other ML models
due to its balanced performance and improved generalization.

C. Fully Connected Neural Network

Neural networks (NNs) training involves the backpropa-
gation algorithm, which optimizes the model by adjusting
weights based on prediction errors [28]. The Fully Connected
Neural Network (FCNN) was implemented in Python using
TensorFlow and Keras. The categorical label “Priority Recom-
mendation” was converted to numerical format using Scikit-
learn’s LabelEncoder. The FCNN architecture includes an
input layer, two hidden layers (64 and 32 units), and an output
layer (three units for “High”, “Middle”, and “Low” priorities).
Hidden layers use Rectified Linear Unit (ReLU) activation
functions to capture nonlinear relationships, and the output
layer uses a softmax activation function. Two optimization ap-
proaches, Adaptive Moment Estimation (Adam) and Stochastic
Gradient Descent (SGD), were tested. Models were compiled
with these optimizers and the sparse categorical cross-entropy
loss function. Early stopping callback was employed to prevent
overfitting by monitoring validation loss and halting training
when improvements ceased, ensuring generalization and effi-
ciency.
Two FCNN models were developed:
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TABLE I
OVERVIEW OF DT MODELS’ PERFORMANCE METRICS

Precision Recall F1-Score
High Middle Low High Middle Low High Middle Low

First DT Model
(max depth=12)

0.95 0.96 0.98 0.98 0.93 0.98 0.97 0.95 0.98

Second DT Model
(max depth=8)

0.94 0.92 0.98 0.96 0.92 0.96 0.95 0.92 0.97

Third DT Model
(max depth=5)

0.93 0.93 0.95 0.96 0.88 0.97 0.95 0.90 0.96

TABLE II
OVERVIEW OF SVM MODELS’ PERFORMANCE METRICS

Precision Recall F1-Score
High Middle Low High Middle Low High Middle Low

First SVM Model
(kernel=linear; C=1)

0.99 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

Second SVM Model
(kernel=rbf; C=1)

0.99 0.95 0.97 0.97 0.96 0.98 0.98 0.96 0.98

Third SVM Model
(kernel=rbf; C=5)

0.99 0.97 0.98 0.97 0.97 1.00 0.98 0.97 0.99

• Model 1: Utilized the Adam optimizer with 100 epochs
and early stopping, terminating at 23 epochs, achieving
97.9% accuracy.

• Model 2: Utilized the SGD optimizer with 200 epochs
and early stopping, terminating at 52 epochs, achieving
99.1% accuracy.

Learning curves for both models demonstrated efficient
training and rapid learning. Model 1 showed a quick decline in
loss and convergence of accuracy curves at around 96% after
five epochs. Model 2 achieved better convergence and higher
accuracy.

Confusion matrices revealed seven misclassifications in
Model 1 and three in Model 2. Both models correctly predicted
all high-priority emails, essential for time-critical investiga-
tions. Performance metrics indicated that Model 2 consistently
outperformed Model 1, though both demonstrated robust clas-
sification capabilities.

Both FCNN models effectively prioritized email evidence
(as shown in Table III). Despite Model 2’s higher metrics,
Model 1 performed better on the validation set, suggesting
better generalization. Therefore, Model 1 with the Adam op-
timizer is selected for further comparison with other machine
learning models.

V. COMPARATIVE ANALYSIS

In the final comparative analysis, we selected the most
promising model from each model type. The DT model
type is represented by the second model with a maximum
tree depth of eight, which demonstrated a solid accuracy of
94.8% and was capable of accurately classifying priorities
and generalizing to unknown instances. As for the SVM
model type, the third model with the RBF kernel and the
regularization parameter of five was selected to be compared
with the other model types. With an accuracy of 98.2%, it
outperformed the DT model by 3.4 basis points. Among the
FCNN models, the first model with the Adam optimizer was

chosen. With an accuracy of 97.9%, this model performs in the
higher midrange compared to the other two types. As seen in
Table IV, the DT model type performs less effectively than the
other ML types in terms of performance metrics. Nevertheless,
all values exceeding 90% indicate that the model performs
satisfactorily. The SVM model type performs best in terms
of the performance metrics with five of the highest values
and three averages. However, the values of the FCNN model
type are also in the high range, thus underlining the ability
to accurately prioritize emails. Among the selected models,
the FCNN type was able to correctly classify all emails in
the validation set while the other two types misclassified one
medium-prioritized email.

Ensuring the accurate identification of high-prioritized
emails is critical to prevent relevant information from be-
ing omitted in later stages of the investigation and, most
importantly, during the legal process. Hence, the accurate
classification of the validation set by the FCNN model type is
a significant accomplishment.

The SVM type exhibits a slight advantage in terms of
overall accuracy, outperforming both the DT and FCNN types.
Accuracy is a critical metric in digital forensics, especially
when dealing with large amount of email evidence. A highly
accurate model ensures that emails are accurately categorized,
allowing investigators to promptly prioritize important items
and thus streamline the investigative process. This allows to
optimize the utilization of the resources like time and man-
power towards the most pertinent emails. Therefore, inaccu-
racies in digital forensic analysis can reduce its effectiveness,
as they can result in false positives, where irrelevant items
are incorrectly identified as relevant, or false negatives, where
relevant items are missed. Although the FCNN model has
slightly lower accuracy compared to the SVM, it displays
strong learning convergence and similar classification accu-
racy.

It is worth emphasizing that the DT model type has a
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TABLE III
OVERVIEW OF FCNN MODELS’ PERFORMANCE METRICS

Precision Recall F1-Score
High Middle Low High Middle Low High Middle Low

First FCNN Model
(Adam Optimizer)

0.99 0.98 0.97 1.00 0.95 0.98 1.00 0.97 0.97

Second FCNN Model
(SGD Optimizer)

1.00 0.990 0.980 1.000 0.980 0.990 1.000 0.990 0.99

TABLE IV
PERFORMANCE METRICS OVERVIEW OF ML MODEL TYPES

Precision Recall F1-Score
High Middle Low High Middle Low High Middle Low

DT Model Type 0.94 0.92 0.98 0.96 0.92 0.96 0.95 0.92 0.97
SVM Model Type 0.99 0.97 0.98 0.97 0.97 1.00 0.98 0.97 0.99
FCNN Model Type 0.99 0.98 0.97 1.00 0.95 0.98 1.00 0.97 0.97

significant advantage compared to other types. The utilization
of a graphical representation of the DT model type provides
a means to comprehend the decision-making process. Conse-
quently, the predicted priority recommendations can be derived
based on the tree visualization, thereby enabling traceability.

Compared to DT models, FCNN and SVM models suffer
from interpretability issues due to their black-box nature,
complicating their use in court proceedings [29]. DT mod-
els, while more interpretable, face accuracy challenges as
complexity increases, influenced by stop criteria and pruning
methods [25]. SVM models are scalable and suitable for high-
dimensional data but require careful kernel function selection
[30]. FCNN models, adept at capturing patterns in complex
data, are prone to overfitting and depend on appropriate
hyperparameter selection [31].

VI. SUMMARY AND OUTLOOK

Digital forensics faces numerous challenges due to the
increasing volume, diversity, and complexity of electronic
evidence. Forensic professionals must rapidly identify and
prioritize crucial evidence, which is time-consuming. This
research introduces a methodology using machine learning
(ML) to optimize the analysis of email evidence. The study
comprehensively compares various ML models, evaluating
their performance, strengths, and limitations, highlighting the
practical challenges in model selection for forensic experts
[29].

The findings demonstrate that ML models can accurately
prioritize email evidence, identifying emails with pertinent
information based on content. Specifically, SVM and FCNN
models enhance efficiency by effectively handling large data
volumes.

One of the key strengths of this study is its research
approach, which surpasses the use of metadata-based models
in comparison to other studies. As highlighted by [6], relying
solely on metadata analysis is not recommended due to the
potential for misleading or incomplete information. Therefore,
this study introduces a new approach to predicting recommen-
dations by taking into account the categories of email content.

Despite the existing strengths, the study has several limi-
tations that are typical characteristics of the field of digital
forensics. One of the main limitations in this area of research
is the lack of availability of datasets that can be used for the
development of forensic tools. According to [8] it is made
clear that this limitation arises due to legal and data protection
restrictions. [18] and [32] extend this statement by stating that
this limitation additionally arises because of ethical reasons
and non-sharing policies. The limited amount of data available
overstretches individual datasets such as the Enron dataset,
causing doubts about their ability to be applied to a wider
context [32]. Additionally, the Enron dataset mainly consists
of messages from employees of a single company, which
amplifies concerns about its generalizability [33].

To further advance the research approach of this paper,
the following future research recommendations are given: By
utilizing data augmentation techniques, the dataset could be
expanded and used to improve the ML capabilities. Another
strategy for optimization involves broadening the scope of
the email content categories to expand the performance of
the ML models. Furthermore, by incorporating emails from
different companies instead of solely relying on the Enron
dataset, it becomes feasible to introduce greater diversity in
terms of content and context. Ultimately, this can enhance the
adaptability and flexibility of the ML models.
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