
HSoMLSDP: A Hybrid Swarm-Optimized Machine
Learning Software Defect Prediction Framework

Madhusmita Das, Biju R. Mohan, and Ram Mohana Reddy Guddeti
Department of Information Technology

National Institute of Technology Karnataka, Surathkal
Mangalore, India

{madhusmitadas.197it004, biju, profgrmreddy}@nitk.edu.in

Abstract—Defect prediction plays a crucial role for any soft-
ware system across various domains, as its failure may cause
unavoidable and undeniable scenarios. For reliable software,
defect-free is considered as one of the most important criteria.
This research aims to design a hybrid swarm-optimized machine
learning software defect prediction (HSoMLSDP) framework to
predict software defects. We strive to do this by designing a
swarm-optimized machine learning defect prediction (SoMLDP)
model within the HSoMLSDP framework. In pursuit of enhanc-
ing the defect prediction accuracy of the SoMLDP model, this
paper introduces a hybrid swarm optimization algorithm (SOA)
referred to as the gravitational force Lévy flight grasshopper
optimization algorithm-artificial bee colony (GFLFGOA-ABC)
algorithm. By combining the enhanced exploration feature of
the gravitational force Lévy flight grasshopper optimization
algorithm (GFLFGOA) with the robust exploitation capacity of
the artificial bee colony (ABC), the GFLFGOA-ABC algorithm
is proposed. Prior to validating the HSoMLSDP framework,
the LFGFGOA-ABC algorithm’s performance is first confirmed
by experiments on 6 benchmark functions (BFs) to assess its
mean and convergence rate. Following BF verification, the second
experiment tunes the hyperparameters of ML models (ANN, GB,
XGB) to improve the defect accuracy of the SoMLDP model.
As an enhancement of accuracy justifies the correctness of the
SoMLDP model, thus validating the HSoMLSDP framework.

Index Terms—Swarm-optimization Algorithm, Benchmark
Functions, Machine Learning, Software Defect Prediction.

I. INTRODUCTION

From the past few decades, almost in every sector, the usage
of safety-critical system (SCS), safety-critical system software
etc., are increasing day by day. As software is a major part of
all these systems, identifying and correcting software defects is
crucial for delivering a reliable SCS. Every fault indicated pos-
sible points of failure, where the program might malfunction,
behave erratically, or crash. Getting more probable defects
based on the historical datasets can significantly make the
system more robust. For defect prediction, a lot of probabilistic
models, and simulators are available, but the current trend is
to use computationally intelligent approaches such as machine
learning (ML), deep learning (DL), metaheuristic algorithms
(MAs), etc.

In this research work, we aimed to design a software defect
prediction framework focusing on the improvisation of the
swarm-optimized machine learning defect prediction model.
Even though several MAs have been developed, every algo-
rithm has certain drawbacks. Inspired by the above reasons, we

combined the powerful exploitation characteristic of the ABC
with the gravitational force (GF) and Lévy flight (LF) concepts
of the GOA to create a hybrid algorithm. In accordance with
our research work on the SCS, widely used NASA metrics data
program datasets [1] are considered, as the software developed
for NASA’s operation is safety critical. The following are the
main contributions of the proposed work.

• Design of hybrid swarm-optimized machine learning
software defect prediction (HSoMLSDP) framework to
predict the software defects.

• Design of swarm-optimized machine learning defect pre-
diction (SoMLDP) model by integrating ML models with
novel hybrid swarm optimization algorithms (SOAs).

• Design of a gravitational force Lévy flight grasshopper
optimization algorithm-artificial bee colony (GFLFGOA-
ABC) algorithm to accelerate convergence rate.

• Extensive experiments on benchmark functions (BFs) to
verify the effectiveness of the GFLFGOA-ABC algo-
rithm.

• Defect Prediction by validating SoMLDP model using
hyperparameter tuning approach.

This paper is structured into the following sections: The
literature review is covered in section II, and the background
concepts used in the proposed methods are briefly summarized
in section III. Section IV presents the methodology. Following
this, section V presents verification of the proposed algorithm
along with their results and analysis. Section VI discusses
results and their analysis of the validation of the proposed
framework. Lastly, Section VII presents a conclusion with
future scope.

II. LITERATURE SURVEY

This section outlines several relevant studies that employ
diverse ML methodologies in addressing the software defect
prediction (SDP) challenge. Sharma et al. in [2] developed a
model for SDP and improved the prediction using hyperpa-
rameter tuning in a ML classifier. To validate the approach,
the CM1, JM1, and KC1 defect datasets were considered.
Mehmood et al. [3] implemented feature selection techniques
in various ML techniques to achieve high accuracy considering
5 NASA defect datasets and compared the ML techniques
without feature selection. Suryadi et al. in [4] employed the
SMOTE to achieve balance within a dataset comprising 13

481979-8-3315-0694-0/25/$31.00 ©2025 IEEE ICOIN 2025

NASA MDP instances while utilizing a genetic algorithm
(GA) as a methodology for feature selection and hyperparam-
eter optimization to enhance the efficacy of the random forest
classifier.

The authors in [5] emphasize the importance of SDP for
enhancing software dependability. Through their study, they
demonstrated the effectiveness of various ML techniques.
In [6], Ali et al. presented an intelligent ensemble-based
software defect model that integrates various classifiers. To
identify faulty modules, the suggested model used a two-
stage prediction approach. It was verified using seven historical
defect datasets from the NASA MDP repository. Goyal et. al.
[7] undertake a comprehensive assessment and comparative
analysis of ML models particularly random forest (RF) and
logistic regression (LR) in conjunction with and without GA
driven feature selection. The result of their research indicate
the accuracy enhancement of NASA defect dataset for SDP.
Kelkar et. al [8] assessed the performance of five ML models
with and without grey wolf optimization (GWO) based feature
selection method and demonstrated the effectiveness of GWO
in enhancing SDP for KC1, JM1 and PC5 dataset.

To the best of our understanding, the aforementioned lit-
erature review indicates that there exists potential for en-
hancement in the performance metrics associated with ML
models for SDP. So, this observation motivates us to optimize
the swarm-optimized ML defect prediction model through the
methodology of hyperparameter tuning.

III. BACKGROUND AND PRELIMINARIES

The base SOAs that are used to design a novel hybrid SOA
are briefly described in this section. Table I lists down all the
symbols and their meaning.

A. Grasshopper Optimization Algorithm (GOA)

Saremi et al. [9] introduced the GOA as a method for
addressing optimization challenges, which is inspired by the
collective behavior exhibited by grasshopper swarms. The
original mathematical model of GOA, as detailed in [9],
encounters inefficiency as the grasshopper may reside within
the comfort zone, which results in inefficient convergence. So,
to enhance convergence efficiency, specific parameters have
been incorporated into an original mathematical model. Thus,
the original GOA equation can be reformulated as follows:

xsdi =




n�
j=1,j ̸=i

C
UBsd − LBsd

2
fs(

��xsd
j − xsd

i

��)xj − xi

sdij




C + T̂sd

(1)

The parameter C undergoes adjustment to mitigate exploration
while enhancing exploitation in alignment with the number of
iterations, as indicated in the equation 2.

C = Cmax − iter
Cmax − Cmin

itermax
(2)

TABLE I: Notations of the equations

Symbols Explanation
xi and xj ith and jth swarm position
n Swarm Size/ Population Size.
sdij ith to jth swarm’s distance.
fs Social Force Strength.
UBsd

and LBsd

Upper bound and lower bound of the sdth

dimension of the ith swarm, respectively.
ˆTsd Optimal position in the sdth dimension.

C Adaptive Parameter.
Cmax Maximum value (1).
Cmin Minimum value (0.00001).
iter Current iteration.
itermax Maximum iteration.
xi,j Position of the new food source of the ith

swarm/bee at jth dimension.
β Random number[0, 1].
i {1,2....n} Selected from swarm size.
j {1,2....sd} Random dimension index.
sd Dimension in the optimization process.
UBj and
LBj

Upper bound and lower bound of the jth

parameter, respectively.
K Random number [-1,1].
vi,j New candidate solution.
xk,j Position of the kth randomly selected can-

didate solution in jth dimension and k ̸= j
for proper exploitation.

fitness(xi) Fitness value of ith solution
Pri Probability of ith food selection.
Levy_S Step length for the random walk.
gr Gravitational constant (0.9).
ˆegr

xj−xi

sdij
Unit Vector.

B. Artificial Bee Colony (ABC) Algorithm

ABC is a swarm-based optimization algorithm, which is
developed by Karaboga et al. [10]. The mathematical model
of this algorithm is as follows:

• Step 1: The first step includes initialization of the pop-
ulation (xi) and the random generation of food sources
using equation 3.

xi,j = LBj + β(UBj − LBj) (3)

• Step 2: Fitness evaluation of all swarms (xi).
• Step 3: Employed Bee Phase - In this phase, the neigh-

borhood of each solution is exploited through a local
search in the dimension j to find a better solution vi,j
from the randomly generated food source, as defined in
the equation 4.

vi,j = xi,j +Ki,j(xi,j − xk,j) (4)

• Step 4: Onlooker Bee Phase - The onlooker bees get
information from the employed bee and select the food
source or solution by estimating the probability value
(Pri) using the equation 5.

Pri =
fitness(xi)
n�

i=1

fitness(xi)
(5)

The (Pri) value is compared with β value. If β < Pri,
then the solution is updated. A solution with higher

482

probability value is selected and memorized for better
exploration.

• Step 5: Scout Bee Phase - The employed bee becomes a
scout bee when the food supply is not selected. So new
food sources by the scout bees will be generated by using
equation 3.

IV. METHODOLOGY

This section focuses on the performance of the HSoMLSDP
framework as presented in Fig. 1.

Fig. 1: HSoMLSDP Framework

The methodical process followed to achieve the objective
of our framework is carried out in two major phases.

• Data Collection and Preprocessing
• Swarm-optimized machine learning defect prediction

(SoMLDP) model

A. Data Collection and pre-processing

The data collection process succeeded by data pre-
processing is the preliminary phase of our proposed frame-
work, as illustrated in Fig. 1. For this research work, we utilize
seven defect datasets from NASA 1 as enumerated in Table
II to assess the robustness and efficacy of the HSoMLSDP
framework.

Data pre-processing is essential to prevent biases to-
wards specific features before processing the datasets into
the SoMLDP model. This study uses label encoding, data
cleaning, feature selection, and normalization for data pre-
processing. Yes (Y) and No (N) are mapped to 0 and 1, respec-
tively, in label encoding. Inter-quartile range (IQR) method is
followed for data cleaning, while for feature selection using
Pearson’s correlation coefficient, we removed highly correlated
independent features, which is tabulated in Table II. Finally,
the min-max scaler approach is performed for normalization.

1NASA Defect Dataset https://github.com/klainfo/NASADefectDataset

TABLE II: NASA Defect Dataset Description

Dataset Description original
Features

Selected
Features

Instances

CM1 Software for instru-
ments aboard space-
craft

38 26 327

KC1 Ground data process-
ing system of the
spacecraft

22 15 2107

KC4 Spacecraft operations
software system

41 35 125

MW1 Satellite-based
ground data system
for meteorology

38 28 250

PC2 Altitude regulation
software system of
spacecraft

37 25 722

PC3 Earth orbiting satel-
lite’s flight software.

38 25 1053

PC5 Satellite’s ground
software system

39 26 1694

After pre-processing, the data is split into 75-25 ratios for
training and testing respectively.

B. SoMLDP Model

By merging the SOAs with the ML models (ANN, XGB,
GB), the SoMLDP model is proposed. This model seeks to
maximize computational efficiency while improving accuracy
and detection rates.

1) Proposed GFLFGOA-ABC Algorithm: A novel hybrid
SOA is proposed in this research work to improve the per-
formance of the SoMLDP model. In the original GOA, as
explained in the subsection III-A, the parameter "C" was in-
corporated to achieve a balance between local exploitation and
global exploration. Nevertheless, the original GOA exhibits
a nonlinear optimization process that suffers from restricted
exploratory capacity. As a consequence, GOA may stuck in
local optima, leading to a slow convergence. Therefore, to
mitigate the shortcomings in the original GOA, Das et al. [11]
proposed GFLFGOA algorithm as presented in equation 6,
where LF and GF concepts are embedded into it.

xd
i = C




n�
j=1,j ̸=i

C
UBsd − LBsd

2
fs(

��xsd
j − xsd

i

��)xj − xi

sdij




levy_S − gr ˆegr + T̂sd

(6)

Considering GFLFGOA as explained above and ABC al-
gorithm as described in subsection III-B, a novel hybrid
GFLFGOA-ABC algorithm is proposed. The faster conver-
gence of GFLFGOA and the good exploitation capacity of
ABC are combined based on the probabilistic selection mech-
anism. The ABC will be chosen for generating the fitness
solution if rand ≥ 0.5, whereas the GFLFGOA is considered
for rand < 0.5. In the case of the ABC algorithm, the
demerit is its weak exploration, as the search process of this
algorithm may lose its diversification by focusing only on the
local area. In the ABC algorithm, the exploration process is
carried out by the scout bee phase. As weak exploration may

483

return sub-optimal solutions by converging prematurely, so
to overcome weak exploration, scout bee is not considered
while proposing the GFLFGOA-ABC algorithm. In the case
of ABC algorithm selection, the new position of the search
agent is evaluated based on 50 percentage probability using
a random number (Pi) that is generated between (0,1). So if
rand < Pi, it follows the employee bee phase, else follows
the onlooker bee phase. The above-mentioned explanation
is detailed in the pseudocode of the Algorithm 1. Before

Algorithm 1: GFLFGOA-ABC
Data:
itermax: Maximum iterations
n: Population Size / Swarm Size
C: Adaptive Parameter
Result: xbest(Best position), gf (Best fitness value)

1 Initialize swarm population xi(i = 1, 2, ...n), and
parameters (itermax, n, cmax, cmin);

2 Each swarm fitness value assessment;
3 Obtain the present best individual (xbest);
4 while (iter < itermax) do
5 Update C (equation 2);
6 for i= 1:n do
7 if (rand < 0.5) then
8 Distance (sd) normalization [1,4];
9 Update position (equation 6);

10 If the swarm exceed the boundary,
eliminate it;

11 else
12 if (rand < Pi) then
13 Update position (vi,j) (equation 4);
14 if (vi,j > xi) then
15 xi = vi,j
16 end
17 else
18 Generate (Pri) for xi (equation 5);
19 if (β < Pri) then
20 Update Position (equation 4);
21 end
22 end
23 end
24 end
25 Set the current best position;
26 Update xbest if it is superior to before;
27 iter = iter + 1;
28 end
29 return xbest, gf

implementing the proposed GFLFGOA-ABC algorithm to
validate the HSoMLSRA framework, first the goodness of the
GFLFGOA-ABC is verified by conducting experiments on the
benchmark functions (BFs) as detailed in the section V. The
symbols used in above equations are listed in the Table I along
with their meanings.

2) Parameter Settings of ML models: Model training heav-
ily relies on hyperparameter tuning. The selected hyperparam-
eters for the ML models are listed in Table III.

TABLE III: Hyperparameters of ML Models

ML Models Hyperparameters
Artificial Neural
Network (ANN)

Learning rate, Neurons in layer1
and layer 2, Batch size, Epochs.

XGBOOST (XGB) Learning rate, Max depth, Subsam-
ple, N estimator.

Gradient Boosting
(GB)

Learning rate, Max depth, N esti-
mator.

V. VERIFICATION OF GFLFGOA-ABC ON BFS

To verify the robustness of the GFLFGOA-ABC, as detailed
in subsubsection IV-B1, experiments are carried out on BFs. In
this work, a total of 6 BFs are randomly selected for statistical
evaluation. A detailed description of BFs and the experimental
results are presented in subsections V-A and V-B, respectively.

A. BFs Description

BFs act as artificial problems that can be utilized to mea-
sure the operational characteristics and efficiency of opti-
mization algorithms in various intricate scenarios. A total of
6 BFs, namely Schwefel 2.21 (fn1), shifted Schwefel 1.2
(fn2), sphere (fn3), easom (fn4), Beale (fn5), and Ackley
(fn6) are considered randomly to evaluate the performance
of GFLFGOA-ABC algorithms. Out of which fn1-fn3 are
unimodal and the remaining are of multimodal BFs.

B. Results and Discussion

This subsection explains in detail about the results and their
analysis that are generated from the experiments carried out on
BFs. The proposed GFLFGOA-ABC algorithm, as explained
in subsubsection IV-B1, is written in Python and uses the
Jupyter notebook environment to compile.

1) Results: Table IV represents the mean value and their
ranking, after conducting experiments for 200 iterations. The
convergence graphs of BFs for 200 iterations are plotted in
Fig. 2.

2) Discussion: The mean values, together with their respec-
tive rankings, are considered to assess the statistical efficacy
of the GFLFGOA-ABC algorithm on BFs. The highest posi-
tion, denoted in bold, is achieved by obtaining the minimal
mean value for each BF. From Table IV, it can be clearly
asserted that the GFLFGOA-ABC algorithm exhibits superior
performance for fn1-fn6. In addition to attaining the lowest
mean value, the GFLFGOA-ABC algorithm exhibits a more
rapid convergence rate as compared with the base algorithms,
as illustrated in Fig. 2. Through unimodal BFs, one can assert
a considerable capacity for exploitation, whereas the capacity
for exploration is assessed through multimodal BFs. Therefore,
based on the preceding discourse, one can substantiate the
efficacy of the GFLFGOA-ABC algorithm.

484

TABLE IV: Mean value and ranking of five SOAs

BF Index GFLFGOA-ABC LFGOA GFGOA GOA ABC

fn1
Mean 5.80E+01 8.72E+01 5.98E+01 8.57E+01 7.28E+01
Rank 1 5 2 4 3

fn2
Mean 1.08E+05 1.74E+05 1.35E+05 2.38E+05 1.42E+05
Rank 1 4 2 5 3

fn3
Mean 7.71E+03 2.43E+04 1.64E+04 2.57E+04 1.23E+04
Rank 1 4 3 5 2

fn4
Mean -9.68E-01 -8.27E-01 -4.57E-01 -6.59E-01 -8.89E-01
Rank 1 3 5 4 2

fn5
Mean 1.65E-03 9.36E-03 1.09E-01 2.35E-02 6.66E-03
Rank 1 3 5 4 2

fn6
Mean 1.69E+01 2.05E+01 2.01E+01 2.05E+01 1.96E+01
Rank 1 4 3 4 2

(a) fn1 (b) fn2 (c) fn3

(d) fn4 (e) fn5 (f) fn6

Fig. 2: Convergence Rate of Benchmark Functions (BFs)

VI. VALIDATION OF HSOMLSDP FRAMEWORK

To validate the HSoMLSDP framework, experiments are
conducted using seven NASA defect datasets as tabulated in
Table II. The experiments are conducted on a 64-bit Ubuntu
operating system with a hardware configuration of 32GB
RAM, 512GB hard disk, and an Intel core i7 processor. The
results and their analysis are discussed in detail in subsection
VI-A and VI-B, respectively.

A. SoMLDP Results

After the experiments are conducted for 100 generations,
the accuracy results are noted in Table V.

B. SoMLDP Analysis

In the context of our research work, the concept of fitness
function employed in the SOA is comparable to the accuracy
metrics. As presented in Table V, it is evident that across

all datasets, there exists an enhancement in accuracy ranging
from approximately 0.01 to 0.28 when the ML models (ANN,
XGB, GB) are optimized using the SOAs. Furthermore, as
documented in Table V, for the XGB model, the GFLFGOA-
ABC algorithm exhibits superior optimization performance in
comparison to the baseline algorithms for the KC1, MW1,
PC3, and PC5 datasets. In hyperparameter optimization for
the ANN model, the GFLFGOA-ABC algorithm demonstrates
enhanced accuracy for the KC1, MW1, PC2, and PC5 datasets.
For hyperparameter tuning of GB model, GFLFGOA-ABC
performs better accuracy for KC1, MW1, PC2, PC5, and
PC3. Overall, there is an enhancement of approximately 0.06-
0.28, 0.01-0.05, and 0.02-0.10 for ANN, GB, and XGB,
respectively, when tuning with SOAs. Based on the aforemen-
tioned analysis, it can be inferred that our SoMLDP model
demonstrates a distinct advantage in terms of accuracy.

485

TABLE V: Accuracy Comparision

Dataset Models Without Optimization GFLFGOA-ABC LFGOA GFGOA GOA ABC

CM1
XGB 0.89024 0.93902 0.92683 0.92683 0.92683 0.93902
ANN 0.87805 0.93902 0.91463 0.93902 0.91463 0.93902
GB 0.90909 0.91919 0.91919 0.91919 0.91919 0.92929

KC1
XGB 0.86338 0.88046 0.86717 0.87856 0.86907 0.87856
ANN 0.84820 0.87856 0.87287 0.87097 0.87097 0.87476
GB 0.84676 0.87362 0.86888 0.86730 0.87046 0.87204

KC4
XGB 0.68750 0.78125 0.71875 0.78125 0.75000 0.78125
ANN 0.56250 0.84375 0.71875 0.84375 0.71875 0.71875
GB 0.63158 0.68421 0.68421 0.68421 0.68421 0.68421

MW1
XGB 0.90476 0.92063 0.90476 0.90476 0.90476 0.90476
ANN 0.88889 0.95238 0.93651 0.93651 0.93651 0.93651
GB 0.86667 0.89333 0.88000 0.88000 0.86667 0.88000

PC2
XGB 0.98895 0.99448 0.99448 0.99448 0.99448 0.99448
ANN 0.98895 1.00000 0.99448 0.99448 0.99448 0.99448
GB 0.99539 1.00000 0.99539 0.99539 0.99539 0.99539

PC3
XGB 0.86364 0.88258 0.87879 0.87879 0.87500 0.87879
ANN 0.82576 0.87879 0.87500 0.87879 0.85606 0.87879
GB 0.84494 0.87658 0.86392 0.87025 0.85759 0.87025

PC5
XGB 0.77830 0.82075 0.81368 0.81604 0.81132 0.81840
ANN 0.74057 0.81182 0.80660 0.80660 0.80660 0.80896
GB 0.77407 0.80157 0.79371 0.79371 0.78585 0.79568

VII. CONCLUSION AND FUTURE SCOPE

In this paper, we proposed a HSoMLSDP framework to
predict software defect of NASA defect datasets, which were
generated from safety critical softwares. Inside HSoMLSDP
framework, SoMLDP model is proposed by integrating the
ML models (ANN, XGB, GB) with the novel hybrid SOA.
To validate the HSoMLSDP framework, seven NASA defect
datasets are trained and tested into the SoMLDP model.
To enhance the SoMLDP model, hyperparameter tuning is
applied by proposing GFLFGOA-ABC algorithm. This pro-
posed HSoMLSDP framework facilitates SDP and is found to
outperform state-of-the-art approach for NASA defect datasets.
Future scope includes validation of HSoMLSDP framework
for other SDP datasets and DL models.

REFERENCES

[1] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data
quality: Some comments on the nasa software defect
datasets,” IEEE Transactions on software engineering,
vol. 39, no. 9, pp. 1208–1215, 2013.

[2] D. N. Sharma and D. K. Yadav, “Machine learning
based approach for software defect prediction using
hyperparameter,” 2024.

[3] I. Mehmood, S. Shahid, H. Hussain, et al., “A novel
approach to improve software defect prediction accu-
racy using machine learning,” IEEE Access, vol. 11,
pp. 63 579–63 597, 2023.

[4] M. K. Suryadi, R. Herteno, S. W. Saputro, M. R. Faisal,
and R. A. Nugroho, “Comparative study of various
hyperparameter tuning on random forest classification
with smote and feature selection using genetic algorithm
in software defect prediction,” Journal of Electronics,
Electromedical Engineering, and Medical Informatics,
vol. 6, no. 2, pp. 137–147, 2024.

[5] B. Alsangari and G. BİRCİK, “Performance evaluation
of various ml techniques for software fault predic-
tion using nasa dataset,” in 2023 5th International
Congress on Human-Computer Interaction, Optimiza-
tion and Robotic Applications (HORA), IEEE, 2023,
pp. 1–7.

[6] M. Ali, T. Mazhar, Y. Arif, et al., “Software defect
prediction using an intelligent ensemble-based model,”
IEEE Access, 2024.

[7] G. Goyal, K. Sharma, V. Mittal, B. Singla, M. Das,
et al., “Hybrid genetic algorithm and machine learning
approach for software reliability assessment in safety-
critical systems,” in 2024 IEEE International Confer-
ence on Interdisciplinary Approaches in Technology and
Management for Social Innovation (IATMSI), IEEE,
vol. 2, 2024, pp. 1–6.

[8] S. Kelkar, S. P. Vishvasrao, A. Agarwal, C. Rajput, M.
Das, et al., “Comparative analysis of software reliability
using grey wolf optimisation and machine learning,”
in 2024 IEEE International Conference on Interdis-
ciplinary Approaches in Technology and Management
for Social Innovation (IATMSI), IEEE, vol. 2, 2024,
pp. 1–5.

[9] S. Saremi, S. Mirjalili, and A. Lewis, “Grasshopper
optimisation algorithm: Theory and application,” Ad-
vances in engineering software, vol. 105, pp. 30–47,
2017.

[10] D. Karaboga and B. Basturk, “A powerful and efficient
algorithm for numerical function optimization: Artificial
bee colony (abc) algorithm,” Journal of global optimiza-
tion, vol. 39, pp. 459–471, 2007.

[11] M. Das, B. R. Mohan, R. M. R. Guddeti, and N. Prasad,
“Hybrid bio-optimized algorithms for hyperparameter
tuning in machine learning models: A software defect
prediction case study,” Mathematics, vol. 12, no. 16,
p. 2521, 2024.

486

