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Abstract—This paper presents a novel machine learning-based
approach to improve the accuracy of estimating the diagnostic
coverage of Cyclic Redundancy Check (CRC) in automotive
systems, crucial for adhering to functional safety standards
like ISO 26262. By focusing on the prediction of Hamming
weights — indicative of CRC’s error detection capabilities — for
large code and message lengths, our methodology addresses the
limitations of traditional brute-force and approximate estimation
methods. Utilizing supervised learning with known Hamming
weights as training data, we evaluate the effectiveness of seven
machine learning models, with LightGBM demonstrating supe-
rior performance after hyperparameter tuning and training data
filtering. Our experiments show that this approach can estimate
normalized Hamming weights with a relative error margin of
approximately + 15%, significantly enhancing the precision of
CRC'’s diagnostic coverage estimation compared to conventional
techniques.

Index Terms—Cyclic Redundancy Check (CRC), diagnostic
coverage, residual error rate, AUTOSAR (AUTomotive Open
System ARchitecture), Hamming weight, machine learning

I. INTRODUCTION

Ensuring the safety of automobiles is paramount in today’s
technology-driven world [1]. Functional safety standards, such
as ISO 26262 [2, 3], serve as the cornerstone for identifying
and mitigating risks that could potentially lead to hazardous
situations in vehicles. AUTOSAR (AUTomotive Open System
ARchitecture) [4] represents a pivotal initiative in standard-
izing software infrastructure across the automotive industry.
It enables interoperability and flexibility in software design,
allowing manufacturers to integrate advanced features and
services seamlessly.

AUTOSAR E2E (End-to-End) protection [5] is a commu-
nication protection mechanism defined within the AUTOSAR
framework. The E2E protection approach is particularly de-
signed to detect errors that could occur during the transmission
of messages in automotive networks, such as corruption, loss,
repetition, insertion, or reordering of data packets. In AU-
TOSAR E2E, these fault modes are systematically addressed
through the implementation of counters, timers, and Cyclic
Redundancy Checks (CRC) [2, 3].

Among these three mechanisms, CRC is a fundamental and
widely-deployed technique in digital communications used to
detect errors in data transmission [6, 7]. It involves applying
a polynomial division to the data bits, generating a checksum
that reflects the data’s integrity. This checksum, appended to
the data, allows the receiving end to verify whether the data
has been altered during transmission.

AUTOSAR E2E protection defines several profiles, each
tailored to different requirements and use cases within auto-
motive systems [5]. These profiles specify how messages are
protected and checked, including the use of CRC of varying
lengths, counter measures for message freshness, and data
ID concepts for message identification. The choice of profile
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and CRC polynomial depends on the specific communication
scenario, including the expected error patterns, performance
requirements, and computational constraints.

Accurately understanding CRC’s error detection capabilities
is crucial for designing and evaluating the reliability of dig-
ital communication systems [8-10]. An accurate assessment
of CRC’s diagnostic coverage is essential for ensuring that
automotive systems meet stringent safety standards, helping
to prevent data corruption that could lead to system failures
or hazardous situations.

Estimating the diagnostic coverage of CRC is fraught with
challenges, primarily due to the complexity and variability
of data patterns and the limitations of conventional analytical
methods [11-13]. In [13], we proposed a technique for assess-
ing the diagnostic coverage for a specific CRC polynomial
using the upper- and the lower-bounds. This approach was
designed to surpass the accuracy of the traditional diagnostic
coverage estimation method, which primarily utilizes the Ham-
ming distance alone. By doing so, we achieved a significant
improvement in the precision of diagnostic coverage estimates.

Building on this foundation, this paper endeavors to further
elevate the accuracy of estimating CRC’s error detection
ability through a machine learning-based approach. To the
best of our knowledge, there have been no previous attempts
to estimate the error detection capabilities of CRC using a
machine learning approach.

This paper addresses the following research questions:

o Can machine learning techniques be effectively utilized
to estimate the Hamming weights of CRC, a crucial
parameter in evaluating its error detection capabilities?

¢ How can known Hamming weights across various mes-
sage lengths and the number of errors from the same CRC
polynomial be leveraged as training data to improve the
precision of estimating unknown Hamming weights?

o Among the array of machine learning models and meth-
ods, which yields the highest accuracy in predicting
Hamming weights, thereby facilitating a more precise
assessment of CRC’s diagnostic coverage?

o How accurately can the diagnostic coverage (error detec-
tion capability) of CRC be estimated by predicting its
Hamming weights using machine learning, and what im-
plications does this have for the reliability and functional
safety of systems employing CRC?

This paper explores the application of machine learning
techniques to estimate the error detection capabilities of CRC
more accurately than traditional methods allow. By analyzing
patterns in known error detection outcomes, machine learning
models can uncover insights into the effectiveness of various
CRC configurations under different conditions.

More specifically, this paper proposes the new method
to enhances the precision in estimating unknown Hamming
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weights by using known Hamming weights from the same
CRC polynomial across different message lengths and the
number of bit errors as training data. The process starts
with transforming and filtering the Hamming weight data to
optimize it for machine learning, followed by a comparative
analysis of multiple models to select the most effective one.
We then fine-tune the chosen model’s hyperparameters to
maximize its predictive accuracy.

The main contributions of this paper are summarized as
follows.

o We demonstrate the feasibility and effectiveness of using
machine learning techniques to estimate the Hamming
weights of CRC, thereby paving the way for innovative
approaches in assessing CRC’s error detection capabili-
ties.

o We propose a methodology that leverages known Ham-
ming weights from the same CRC polynomial across var-
ious message lengths and Hamming distances as training
data, significantly enhancing the precision of estimating
unknown Hamming weights.

o We provide a detailed analysis of the predictive accuracy
of different machine learning models for CRC’s Ham-
ming weight estimation and showcasing how this leads
to a more accurate determination of CRC’s diagnostic
coverage.

This paper is organized as follows. Section II delves into
the fundamentals of CRC and Hamming weight, crucial for
understanding the basis of our investigation. Section III com-
pares traditional diagnostic coverage estimation methods under
a communication models with different bit error rates. In
Section IV, we introduce a machine learning-based methodol-
ogy for estimating Hamming weights, detailing the process
and rationale behind using machine learning for improved
accuracy in diagnostic coverage estimation. Section V presents
our experimental setup, methodology, and results, offering
a deep dive into the practical applications and implications
of our research. Finally, Section VI concludes the paper by
summarizing our findings, discussing their significance, and
outlining future research directions.

II. CycLiC REDUNDANCY CHECK AND
HAMMING WEIGHT

This section provides a brief introduction to CRC and
Hamming weights. Additionally, we introduce the definition
of the diagnostic coverage and the residual error rate.

Cyclic Redundancy Checks (CRC) is a method used to
detect errors in digital data transmission. CRC appends a
few bits, called a checksum, to the end of the bit string for
a message and sends out the extended bit string [14]. The
receiver recalculates the checksum upon receiving the data
and compares it to the received checksum. If the result is O,
it indicates that no bits of the message were in error; if the
result is not O, then the receiver knows that there has been
an error in one or more bits. However, if the result is O, it
does not necessarily mean there was no error. CRC cannot
detect all possible errors, but the range of errors it can detect
is impressively broad [14].

The Hamming weight [10, 12] in the context of error
detection with CRC refers to the number of error patterns that
cannot be detected by a particular CRC polynomial among all
possible combinations of n-bit error patterns. Essentially, it

quantifies the effectiveness of a CRC polynomial in detecting
errors of a certain length within data.

To calculate the Hamming weight HW(L,n) for given
message length L and the number of bit errors n, we need
to explore all possible n-bit error patterns (i.e., C,, combi-
nations) for the given CRC polynomial [10]. When a message
is divided by the CRC polynomial, the remainder represents
the CRC value. Unidentifiable error patterns are those where
the CRC value remains unchanged despite bit errors. If an
error is a multiple of the CRC polynomial, the remainder of
the division becomes 0, making it impossible to detect the
error. Conversely, if the error is not a multiple of the CRC
polynomial, the remainder changes, allowing us to detect the
error occurrence.

The diagnostic coverage of a CRC is defined as the ratio
of the number of error patterns that can be detected by the
CRC to the total number of possible error patterns [11, 12].
The Hamming weights influences the CRC’s ability to detect
faults. As the Hamming weight increases, the likelihood of
the CRC detecting errors rises, thereby enhancing its error
detection capability.

The residual error rate in the context of CRC is a metric that
quantifies the probability of undetected errors after the CRC
has been applied to a data set [13, 12]. The residual error
rate represents the probability of undetected errors after CRC
verification, while the diagnostic coverage rate indicates the
percentage of detectable errors. These two factors are inversely
related; as the diagnostic coverage increases, the residual error
rate decreases, signifying a higher level of fault detection
capability.

III. CONVENTIONAL DIAGNOSTIC COVERAGE
ESTIMATION METHODS

This section outlines conventional estimation methods for
the diagnostic coverage of CRC (denoted by DC) as per the
communication functional safety standards [11]. The residual
error rate of CRC is denoted by uDC(= 1—DC). In practice,
the residual error rate uDC is more convenient to work
with than the diagnostic coverage DC. Therefore, subsequent
discussions will focus on uDC.

A. Residual error rate under binary symmetric communication
model

In CRC, the widely used communication model assumes
that errors occur independently across transmitted bits, and the
bit error rate is defined as the proportion of bits that have been
erroneously transmitted over the total number of transmitted
bits [11].

Assuming the binary symmetric channel model [13], the
probability of n bit errors independently occurring in an L-
bit message over a channel with the bit error rate (BER) of
p(0 < p < 1) follows a binomial distribution and can be
described by

Pr(n) = (L

Jora - pe. 0
n

Let uDC(L,n) denote the undetected error rate of a CRC
polynomial for n-bit errors within an L-bit message. Also, let
A(L,n) denote the hamming weight of a CRC polynomial for
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n-bit errors within an L-bit message. Under the binary sym-
metric channel model, the undetected error rate uDC(L, n) is
given by

A(L,n)
()
Using the undetected error rate uDC(L,n), the residual

error rate uDC is given by [11]

uDC(L,n) = (2)

L
uDC(L,n) = Y Pr(k)uDC(L, k) (3)
k=1

B. Hamming distance based method

The first method estimates the residual error rate uDC of a
CRC polynomials solely based on its Hamming distance. CRC
polynomials exhibit a characteristic in which errors smaller
than the Hamming distance, which varies for each CRC
polynomial, are guaranteed to be detectable with a detection
capability of 100%. However, errors equal to or larger than
the Hamming distance are conservatively evaluated with a
detection capability of 0% [11].

Hamming distance based method simply assumes the unde-
tected error rate is zero for all n’s larger than the hamming
distance H [11].

1 n<H
0 otherwise

uDC(L, n)_ { @)
This estimation method is simple but it leads to overly
cautious estimates of error detection performance.

C. Pessimistic estimation with Hamming weights

The second and the third method estimate the residual error
rate of a CRC polynomial based on all available (known)
hamming weights, A(L,n).

However, in most cases, not all Hamming weights are avail-
able. Thus, the second method estimates its upper-bound by
assuming that all errors for (L, n) without available Hamming
weights are undetectable.

A(Ln) AL, n) is available
Gy AL ®)

1 otherwise

uDC(L,n) =

Similar to the first method, the second method also results in
a conservative evaluation. However, the second method yields
a tighter upper-bound than the first method.

D. Optimistic estimation with Hamming weights

The third method estimates the residual error rate opti-
mistically; i.e., the third method estimates its lower-bound by
assuming that all errors for (L, n) without available Hamming
weights are detectable.

A(L,n)

uDC(L,n) = ()
0 otherwise

A(L,n) is available

Since the estimated residual error rate with the third method
is optimistic, it is not appropriate to design an automotive
system solely based on such optimistic estimates. Instead,
such optimistic estimates should be combined with other
conservative estimates, such as those estimated with the second
method.
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Fig. 2. Estimated residual error rate uDC of Profile 5

E. Comparison of conventional estimation methods

Fig. 1 and 2 illustrate the relation between the bit error rate
and the residual error rate uDC estimates obtained with three
estimation methods for AUTOSAR E2E Profiles 4, and 5.

These results indicate that the Hamming distance based
method is too conservative in almost all configurations. Also,
these results indicate that combining pessimistic (HW1) and
optimistic (HW2) estimates with Hamming weights is either
sufficient or insufficient depending on the configuration (i.e.,
the CRC polynomial, message length L, bit error rate). For
instance, in profiles 4 and 5 with longer message lengths,
a significant difference between the worst-case (pessimistic)
and best-case (optimistic) estimates underscores the need for
improved estimation accuracy.

IV. HAMMING WEIGHT ESTIMATION WITH MACHINE
LEARNING

In machine learning, data processing plays a crucial role,
making it essential to first investigate the characteristics of
known CRC Hamming weights, which are of interest to us.

In this study, we primarily focus on the CRC polynomials
used in AUTOSAR E2E profiles.

Fig. 3 shows the relation between the message size L and
Hamming weights HW(L, n) for different number n of bit-
errors and AUTOSAR profiles. These figures indicate that the
Hamming weight evolves quite differently for different CRC
polynomials. Such unexpected behavior of Hamming weights
are not desirable as training data for machine learning.

We define the normalized Hamming weight (L, n) for the
Hamming weight HW (L, n), as

n(L,n) = TV, 0
LYn
The normalized Hamming weights for different message size
L are depicted in Fig. 4.

As can be seen from these figures, the normalized Ham-

ming weights exhibit common tendency regardless of CRC
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polynomials and the number n of bit-errors, which must be
quite beneficial for machine learning. So, our machine learn-
ing framework builds a predictor (regressor) for normalized
Hamming weights rather than original Hamming weights.

Another design factor for building a prediction model of
the Hamming weight is the choice of training dataset. In
our machine learning approach, we intentionally use available
Hamming weights for the identical CRC polynomial, rather
than combining Hamming wights for a variety of CRC poly-
nomials.

V. EXPERIMENTS

In this section, we investigate the effectiveness of our
machine learning framework for estimating Hamming weights
of a CRC polynomial for different message length L and
the number n of bit errors through extensive experiments.
For this purpose, we compare the effectiveness of seven
types of machine learning models and elucidates the impact
of filtering training data and tuning the hyperparameters of
machine learning models. Furthermore, we demonstrate that
using the estimated normalized Hamming weights allows for
a more accurate estimation of the diagnostic coverage of CRC
than traditional methods.

A. Experimental setup

In the following experiments, we particularly focus on
two major 32-bit CRC polynomials: 0xfA567D89 in the
AUTOSAR E2E Profile 4 and 0x82608EDB in IEEE 802.3
(Ethernet). Among AUTOSAR E2E Profiles, Profile 4 uses
the longest (32 bit) CRC compared with other profiles (1, 2, 5
and 6). Generally, assessing the diagnostic coverage for large
CRC polynomials is challenge. We thus choose long (32 bit)
CRCs, rather than short (8 bit or 16 bit) CRCs, because of
practical importance.

For training and validating the prediction model of the
Hamming weights in our framework, we used the Hamming
weight dataset published in the CRC Zoo [15], which presents

Hamming weights of a number of 8, 16, 24, and 32 bit CRC
polynomials for a wide range of message length L and the
number n of bit-errors. Although the CRC Zoo is a large
dataset, availability of Hamming weights are limited to those
for small L and/or small n because of infeasible computational
complexity discussed in Section L.

For CRC polynomials divisible by (z + 1), all odd-bit
inversions are detected; however, the undetected error rate
for even-bit inversions is approximately double that of other
polynomials [10]. Therefore, it is necessary to conduct experi-
ments and evaluate the effectiveness of both polynomials with
such characteristics and those without. Specifically, this study
selected CRC32, as specified in the Ethernet Frame Check
Sequence (FCS) of IEEE 802.3, and the polynomial used in
AUTOSAR E2E Profile 4, to assess the prediction accuracy
of machine learning methods applied to these polynomials.

The available Hamming weights of CRC polynomials (AU-
TOSAR E2E Profile 4 and IEEE 802.3) in the CRC Zoo are
split two: training data and test data; for a pair of the CRC
polynomial and the massage length L, the Hamming weight
for the largest n among the available Hamming weights is
used as test data, and others are used as training data.

For all machine learning models except LightGBM, we
used the scikit-learn version 1.2.2. For LightGBM, we used
the Microsoft’s implementation (lightGBM version 3.3.5). The
model parameters for each machine learning model were set
to its default values.

B. Effect of learning models

We first investigate what type of machine learning models is
suitable for predicting normalized Hamming weight of a spe-
cific CRC polynomial by comparing the prediction accuracy
of seven machine learning models in terms of MAE (Mean
Absolute Error) and MSE (Mean Squared Error).

Table I summarize the prediction accuracy of seven learning
models — Lasso, Ridge, MLP (Multilayer Perceptron), SVR
(Support Vector Regression), Random Forest, Gradient Boost-
ing, and LightGBM — for CRC polynomials of AUTOSAR
E2E Profile 4 and IEEE 802.3, respectively.

In what follows, we particularly focus on the prediction ac-
curacy with two good models: Random Forest and LightGBM
because of their comparatively better performance (Tab. I).

Fig. 5 and 6 shows the estimated normalized Hamming
weight n(L, n) for a range of message length L and the highest
number n of bit-errors in the dataset. Each figure on the left
shows both the true normalized Hamming weight (line) and
the predicted one (dotted line). Each figure on the right shows
the relative error of the estimated Hamming weight; i.e., the
ratio of the prediction to the truth.
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From this results, one can find that the decision tree-
based machine learning models such as Random Forest and
LightGBM shows relatively good and stable accuracy for
predicting normalized Hamming weights.

C. Effect of data filtering

We then investigate how the data filtering is effective for
estimating the normalized Hamming weights with machine
learning. The Hamming weight dataset taken from the CRC
Zoo has notable characteristics; i.e., a significant portion of
dataset are zeros. Only a small fraction of the dataset has
non-zero Hamming weights. We therefore examine how the
prediction accuracy is affected by excluding training data
having zero Hamming weight.

Table II presents the overall prediction accuracy of CRC
polynomials (Profile 4 and IEEE 802.3) with Random Forest
and LightGBM with training data filtering. Comparing these
results with Tab. I indicates that data filtering (excluding
data with zero Hamming weight from training) significantly
improves the prediction accuracy in both Random Forest and
LightGBM.

The detailed results are shown in Figs. 7 and 8, which
illustrate the relation between the message length L and the
estimated normalized Hamming weight 7(L, n). These results
also confirm our finding — data filtering significantly improves

(a) normalized Hamming weight (b) relative error

Fig. 8. Estimated normalized Hamming
filtering

weights with LightGBM and data

D. Effect of hyperparameter tuning

It is well-known that the tuning of hyperparameters in
machine learning models is the key for obtaining the good
prediction model. In what follows, we therefore examine how
the estimation accuracy of the normalized Hamming weight
can be improved with the hyperparameter optimization.

For this purpose, we choose LightGBM as the machine
learning model, and optimize its hyperparameters with the
Optuna framework [16].

Fig. 9 shows the estimated normalized Hamming weights
and their relative errors for different message length L. These
results clearly indicate that the hyperparameter optimization
significantly improves the model accuracy.

E. Implications to diagnostic coverage estimation

Our experiment results so far reveal that our machine
learning framework for estimating the normalized Hamming
weight is effective; i.e., with appropriate machine learning
configurations — usage of a tree-based model such as Light-
GBM, applying data filtering to remove too many zeros, and
optimizing hyperparameters, the normalized Hamming weight
can be estimated with reasonable accuracy.

the prediction accuracy. g T ! T e sror
= relative error with base line
% 05 | f
£ ; of A ————————]
TABLE II § e 5
PREDICTION ACCURACY OF NORMALIZED HAMMING WEIGHTS WITH 3 T o5t i
DATA FILTERING §
CRC polynomial mOdel MAE MSE é b 0.1010 11)0 10‘00 10‘000 100000 B 10 1‘00 1(;00 10‘000
Proﬁle 4 Randorn FOI'CSt 0 388 0 953 message length L [bit] message length L [bit]
Profile 4 LightGBM 0.387 0.944 (a) normalized Hamming weight (b) relative error
IEEE 802.3 Random Forest 0.05 0.0024
IEEE 802.3 LightGBM 0.05 0.0025 Fig. 9. Estimated normalized Hamming weights with LightGBM (data

filtering, hyperparameter optimization)
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The next questions is how the better estimation of Hamming
weights than conventional methods contributes to the detailed
analysis and assessment of the diagnostic coverage of a CRC
polynomial.

At the end of this section, we therefore examine the impli-
cations of the better estimation of Hamming weights to the
diagnostic coverage (also equivalently to the residual error
rate).

We first examine whether the prediction accuracy obtained
with our machine learning framework is sufficient for practical
purposes. Fig. 10 shows the residual error rate obtained
with different methods. In the figure, “HD” indicates the
Hamming distance based method. “HW1” and “HW?2” indicate
the pessimistic and the optimistic methods with all available
Hamming weights (i.e., upto n = 5 for IEEE 802.3 and n = 6
for Profile 4), respectively. “HW 1(pred)” and “HW2(pred)”
are the same with “HW1” and “HW2” except the Hamming
weights of the largest n is replaced with the predictions.

These results indicate that the residual error rates obtained
with the true and the predicted Hamming weights are indistin-
guishable, which means that our machine learning approach
for estimating the normalized Hamming weights is accurate
uncouth for assessing the diagnostic coverage of a CRC
polynomial.

We finally examine how the diagnostic coverage (and the
residual error rate) is accurately estimated using our normal-
ized Hamming weight prediction model. Fig. 11 again shows
the residual error rate uDC of Profile 4 and IEEE 802.3.
Fig. 11 is identical to Fig. 10 except that “HW1(pred)” and
“HW2(pred)” use Hamming weight predictions HW (L, 6) for
IEEE 802.3 and HW(L, 8) for Profile 4. Since HW (L, 6) for
IEEE 802.3 and HW (L, 8) for Profile 4 with L = 1,392 [byte]
are not available in the CRC Zoo, we use the estimated
Hamming weights with our trained LightGBM model.

These results indicate that with an additional Hamming
weight predictions, the accurately of the residual error rate

estimation is greatly improved, in particular, at the bit error
rate between 1076 and 10~%. Such a range of bit error rates
is of great importance to practical automotive design.

VI. CONCLUSION

In this paper, we have demonstrated a novel machine
learning approach to significantly improve the accuracy of
estimating the diagnostic coverage of CRC in automotive
systems. By leveraging supervised learning, specifically the
LightGBM model, and refining the estimation process through
hyperparameter tuning and strategic filtering of training data,
we achieved a substantial reduction in the error margin of
normalized Hamming weight predictions. These advancements
allow for a more precise determination of CRC’s error de-
tection capabilities, thereby contributing to the enhancement
of automotive system reliability and adherence to functional
safety standards. Looking forward, the primary challenge lies
in extending the methodology’s robustness and applicability
to a broader range of CRC polynomials and automotive
configurations.

REFERENCES

[1] M. Gharib, P. Lollini, M. Botta, E. Amparore, S. Donatelli, and
A. Bondavalli, “On the safety of automotive systems incorporating
machine learning based components: A position paper,” in Proceedings
of the 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W 2018), pp. 271-274, June
2018.

[2] “Road vehicles — functional safety — part 5: product development at the
hardware level,” Standard ISO 26262-5:2018, International Organization
for Standardization, Dec. 2018.

[3] “Road vehicles — functional safety — part 6: product development at the
software level,” Standard ISO 26262-6:2018, International Organization
for Standardization, Dec. 2018.

[4] AUTOSAR, “Specification of SW-C end-to-end communication pro-
tection library,” Standard R21-11 428, International Organization for
Standardization, 2021.

[5] AUTOSAR, “E2E protocol specification,” standard, International Orga-
nization for Standardization, 2021.

[6] S. Lin and D. J. Costello, Error control coding: fundamentals and
applications. Pearson-Prentice Hall, 2004.

[71 W. W. Peterson and E. J. Weldon, Error-correcting Codes. MIT Press,
1972.

[8] G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of cyclic
redundancy-check codes with 24 and 32 parity bits,” IEEE Transactions
on Communications, vol. 41, pp. 883-892, June 1993.

[9] S. B. Wicker, Error Control Systems for Digital Communication and

Storage. Prentice Hall, Dec. 1994.

P. Koopman, “32-Bit Cyclic Redundancy Codes for Internet Applica-

tions,” in Proceedings International Conference on Dependable Systems

and Networks, pp. 459—468, June 2002.

“Industrial communication networks — profiles — part 3: functional safety

fieldbuses - general rules and profile definitions,” Standard IEC 61784-

3:2021, International Electrotechnical Commission, Feb. 2021.

T. Forest and M. Jochim, “On the fault detection capabilities of AU-

TOSAR’s end-to-end communication protection CRC’s,” in Proceedings

of the SAE World Congress and Exhibition (SAE 2011), Apr. 2011.

T. Emi, H. N. Aung, Y. Yamasaki, and H. Ohsaki, “Improving CRC

fault detection probability in AUTOSAR E2E based on known hamming

weights,”

W. An, M. Médard, and K. R. Duffy, “CRC codes as error correction

codes,” in Proceedings of the IEEE International Conference on Com-

munications (ICC 2021), pp. 1-6, June 2021.

P. Koopman, “CRC Polynomial Zoo.”

~koopman/crc/cre32.html.

T. Akiba, S. Sano, T. Yanase, T. Ohta, et al., “Optuna: A Next-generation

Hyperparameter Optimization Framework,” in Proceedings of the 25th

International Conference on Knowledge Discovery and Data Mining

(SIGKDD 2019), pp. 2623-2631, July 2019.

[10]

(1]

[12]

(13]

[14]

[15]

https://users.ece.cmu.edu/

[16]

480



