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Abstract—The network traffic prediction or forecasting prob-
lem has attracted tremendous interest from both academia
and industry because traffic prediction is widely used as the
fundamental data in establishing or in updating network infras-
tructure. Recently, numerous clever time-series analysis schemes
based on machine learning techniques such as RNNs (Recursive
Neural Networks) and self-attention architecture have been
developed. However, most of the previous studies in the area
of artificial intelligence (AI) do not deal with network traffic in
their experiments. In this paper, we deal with the network traffic
prediction problem using the domain knowledge accumulated in
the field of networking. In particular, we define channels for
network traffic and interpret temporal and spatial information
from the real-world traffic dataset. Our experiments on the Abi-
lene dataset show that the recent patch mixing model performs
best in terms of prediction error. In addition, we observe that
both RNN models and simple transformer-based models show
inadequate performances.

Index Terms—Time-series forecasting, Transformer, Network
traffic, Patch, Mixing

I. INTRODUCTION

The network traffic has experienced explosive growth due
to the prevailing penetration of video and multimedia services.
Because network traffic increases rapidly and abruptly, ISPs
(Internet Service Providers) are urged to act proactively to
satisfy rapidly growing customer demands. Network traffic
forecasting can be classified into two categories in terms of
the length of forecasting: long-term prediction and short-term
prediction. Long term predictions [1, 2] forecast traffic in
remote future ranging from several months or several years
later in the future. Long term predictions play an important
role in network planning tasks such as network topology
design and network capacity planning. In contrast, short-
term network predictions [3, 4, 5] cover short temporal spans
such as millisecond to minute scales. Short term predictions
are used for congestion control, routing, network resource
management and various dynamic network control tasks.

Because network traffic prediction is essential for both
dynamic network control and for long term network planning,
the literature of network traffic prediction is prominent in
both breadth and depth [6, 7, 8, 9]. The traffic forecasting
methods can be classified into four classes in terms of founda-
tion techniques: linear and non-lines time- series forecasting,
conventional machine learning, deep learning, and transformer

based methods. Even though conventional linear/non-linear
models and data driven models provision satisfactory per-
formances, recent schemes based on deep learning and self-
attention architecture generally provide better performances.
Particularly, recent transformer based models are shown to be
superior to non-transformer models in long term forecasting.
Therefore, in this paper, we focus on deep learning based
models and transformer models.

We select four representative forecasting techniques and
compare their performance in predicting future network traffic.
The four methods are LSTM (Long Short Term Memory),
Informer, Autoformer, and TSMixer. Informer and Autoformer
include self-attention modules in their networks. Furthermore,
the TSMixer model adopts patching and mixing techniques
developed in the area of computer vision. We conducted a
performance analysis using the data set obtained from the
real-world network called the Abilene network. The Abilene
network is a high-performance backbone network created by
the Internet2 community. We pre-process the raw Abilene
dataset to make them suitable for time-series forecasting tasks.

Our extensive experiments on the Abilene dataset show
that TSMixer provides significantly superior performances
over the other three methods. However, somehow contrary to
prior studies, we observe that transformer architecture models,
Informer and Autoformer, show poor performances; their
performances are worse than that of LSTM. This may indicate
that for network traffic prediction, we may need to devise
additional novel components in addition to transformers.

Our contributions can be summarized as follows.
• We apply the most recent time-series forecasting methods

such as TSMixer for network traffic forecasting. As far
as we know, this is the first application of the techniques
to networking domain.

• We perform extensive experiments on real-world dataset,
Abilene traffic data. We preprocess the traffic data in
order to make them suitable for time-series forecasting.

• We discover that methods which combine patching and
mixing techniques are superior to other models.

The rest of the paper is organized as follows. Related work
section explains prior methods. We classify prior time-series
analysis models into four categories. Time-Series Forecasting
Models section describes the four techniques analyzed in this
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paper. Especially we explain the TSMixer model in a greater
detail because it is the best performing method. Experimental
Results section illustrates the details of Abilene traffic dataset
and performance evaluation process. In addition, the results
obtained from our experiments are described in this section.

II. RELATED WORK

This section describes four classes of forecasting tech-
niques: linear and non-linear time-series forecasting, conven-
tional machine learning, deep learning, and transformer based
methods. Early studies utilized various linear and non-linear
forecasting techniques including ARMA (Auto-Regressive
Moving Average) [10], ARIMA (Auto-Regressive Integrated
Moving Average) and SARIMA (Seasonal ARIMA)[12, 13].
As big data on real-world traffic including GEANT [14] and
Abilene networks [15, 16] have been accumulated and are
open to the public access, many big-data based network traffic
prediction schemes have been proposed. The big data based
models include conventional machine learning techniques; lin-
ear and non-linear regression, SVM (Support Vector Machine)
[17], Random forest, HMM (Hidden Markov Models) [18, 19],
and Wavelet transform [20].

Rapid advances in NNs (Neural Networks) and DL (Deep
Learning) have changed the research landscape of time-series
forecasting and prediction significantly. Starting from the basic
CNN (Convolutional NN) and RNN (Recurrent NN) [21], their
variations such as LSTM (Long and Short Term Memory)
[22, 23] and GRU (Gated Recurrent Unit) [24, 25] have been
widely and successfully applied to traffic forecasting. Even
though RNN based models provide more accurate prediction
than traditional machine learning techniques, their perfor-
mances are worse than the conventional methods in certain
cases, indicating their lack of generality.

More recently, as the self-attention mechanism [26] have be-
came popular and widely used in NLP and computer vision ar-
eas, several methods founded over the transformer architecture
have been proposed. These include Informer [27], Autoformer
[28] and Fedformer[29]. Informer is one of early method
that utilized the transformer architecture. Informer proposes a
module so called ProbSparse self-attention mechanism aimed
to reduce the time complexity and memory requirements
of transformers. In addition, Informer adopts self-attention
distillation and generative decoder to enhance the accuracy
of forecasting. Autoformer overcomes the drawback of sparse
point-wise self-attention by introducing a decomposition ar-
chitecture with an Auto-Correlation mechanism. Autoformer
combines Transformer with seasonal trend decomposition to
capture the global view of time-series. Transformer based
methods achieve better performances than non-Transformer
methods in long-term forecasting, but several recent studies
[30, 31, 32] reported that these methods perform worse than
traditional RNN methods in certain environments.

III. TIME-SERIES FORECASTING MODELS

This section explains the four time-series forecasting meth-
ods that we selected for performance analysis: LSTM, In-

former, Autoformer, and TSMixer. LSTM is a variant of RNN
designed to capture long-range dependencies in time-series
data. LSTM also relieves the vanishing gradient problem.
Unlike traditional RNNs, LSTMs use a unique architecture
that includes memory cells and gating mechanisms. As shown
in Fig. 1, the input, forget, and output gates regulate the flow
of information such that important contexts are propagated
over long future sequences. LSTM has enjoyed successful
results in the area of NLP (Natural Language Processing)
where sentences are considered as series of words. This ability
makes LSTMs ideal for tasks like speech recognition, language
modeling, and time-series prediction.

Fig. 1: Architecture of LSTM

Informer and Autoformer, built on the transformer architec-
ture, are designed to solve limitations of traditional methods
like RNNs in long-term time-series forecasting. For effective
capturing of temporal patterns in long time sequences, they
use optimized attention mechanisms. Even though the methods
based on transformer architecture provide good performances,
they incurs large computational overhead. In result, plain
transformer scheme suffers from the scalability problems
because model sizes increase quadratically with the sequence
length. Informer adopts two unique mechanisms, a proba-
bilistic attention mechanism and a distilled attention, that
select informative temporal intervals. Ignoring less informative
intervals, Informer reduces the computational complexity and
enhances the scalability of the model significantly.

Like the Informer, Autoformer is another Transformer-based
model specifically designed for time-series data with seasonal
patterns. To segregate trend component and seasonal compo-
nent in time-series data, Autoformer uses a decomposition
block. The separated components are then further processes by
a conventional transformer and seasonal attention mechanism,
respectively. This decomposition allows Autoformer to better
capture both short-term (seasonal) and long-term (trend) de-
pendencies separately, improving prediction accuracy for com-
plex time-series forecasting tasks. Prior experimental studies
show that both Informer and Autoformer significantly improve
forecasting accuracy, scalability, and efficiency over RNN-
based methods.

TSMixer is a recent methodology that applies ViTs (Vision
Transformers) developed in the computer vision area to time-
series forecasting tasks. Like the ViT schemes, they use the
concept of ”patches” to capture spatial-temporal patterns in
time-series data. While a patch in the computer vision context
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(a) Overall Architecture

(b) Details of backbone architecture

Fig. 2: Architecture of TSMixer

is a sub-region in an image, a patch in time-series applica-
tions is a small temporal interval. Patching has a potential
to reduce computational overheads significantly. Unlike the
traditional transformer architecture that deals with long time-
series, PatchTST partitions the original time-series into patches
and applies mixing technique. This approach can reduce the

computational overheads and enhance the scalability of the
model significantly. In addition to the concept of patching,
TSMixer (Patch Time-Series Mixer) adopts feature across both
temporal and spatial dimensions. The architecture of TSMixer
is illustrated in Fig. 2.

IV. EXPERIMENTAL RESULTS

We perform extensive experiments with four time-series
forecasting schemes on real-world network traffic dataset. The
dataset is the Abilene dataset obtained from the real Abilene
network. The Abilene network consists of 12 backbone nodes.
The raw Abilene data are a traffic matrix (TM) of 12 by 12
size. Each component of the TM is the traffic load from source
(row) to destination (column) measured at every five minute.
We need to introduce the concept of channel to fully enjoy
the features of transformer. We compute ingress traffic at each
destination node by adding the source-destination components
from 12 source nodes. After the pre-processing, we obtain 12
ingress traffic loads and use them as channels.

Throughout the paper, we use the following variable names:
• Xsl×c: A multivariate time-series of length sl and c

channels.
• sl: Length of the input sequence.
• fl: Length of the forecast sequence.
• b: Batch size.
• n: Number of patches.
• pl: Patch length.
• hf : Dimension of hidden features.
• nl: Number of MLP-Mixer layers.
• M: Learned DNN model.
• Ŷrec: Actual base prediction.
• Yrec: Base ground truth.
The multivariate forecasting task involves predicting future

time-series values based on a given historical data sequence :

Ŷfl×c = M(Xsl×c). (1)

The ground truth future values will be denoted by Yfl×c.
We use MSE (Mean Square Error) and MAE (Mean Absolute
Error) as the performance metrics.

The performance of four time-series forecasting schemes is
summarized in Table 1. We analyzed the performances varying
the forecasting horizons; 1, 2, 4, 8 and 16. For example, a
forecasting horizon of 4 means that we predicts traffic loads
at 20 minutes (4 times 5 minutes) in the future. Note that the
raw traffic and in our experiment, we use five minutes as a
unit. As the horizon increases, the accuracy deteriorates.

In Table 1, we can observe that TSMixer performs best in
all experimental environments. Surprisingly, LSTM performs
better than Informer and Autoformer. This result may indi-
cates that the transformer architecture may fail to perform
adequately in some network traffic prediction tasks. We also
can observe that accuracy of prediction deteriorates as the
horizon length increases.

Figure 3 compares the actual traffic loads and predicted
traffic loads at node 7. At both horizons of 1 and 8, TSMixer
predicts traffic loads most precisely.
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TABLE I: Performance comparison of different models on the Abilene network. The top results are highlighted in bold, and
the second-best results are indicated with underlining.

Models TSMixer(CI) TSMixer(IC) Autoformer Informer LSTM
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ho
ri

zo
n

1 0.1237 0.2159 0.1238 0.2158 0.6880 0.5345 1.0274 0.5873 0.2388 0.2922
2 0.1548 0.2410 0.1548 0.2405 0.8176 0.5842 1.0420 0.5838 0.2961 0.3264
4 0.2021 0.2722 0.2009 0.2701 0.8275 0.5871 1.1750 0.6348 0.3614 0.3538
8 0.2749 0.3138 0.2703 0.3091 0.8488 0.5883 1.2426 0.6598 0.4411 0.3896

16 0.3942 0.3733 0.3791 0.3612 0.8328 0.5713 1.4324 0.7162 0.5606 0.4255

(a) Horizon 1

(b) Horizon 8

Fig. 3: Actual and forecasted network traffic.

V. CONCLUSION

In this paper, we address the network traffic prediction prob-
lem. The time-series analysis has achieved significant improve-
ments in recent years. Many clever algorithms utilizing the
recent self-attention architecture, patching and mixing schemes
have been proposed. We selected four representative time-
series forecasting methods, LSTM, Informer, Autoformer, and
TSMixer, and conducted extensive performance experiments
on real-world data obtained from the Abilene network. Our
performance study shows that TSMixer performs best among
four schemes. Transformer-based models, Informer and Auto-
former, fail to provide adequate performances. They perform
worse than a traditional LSTM model indicating the necessity
of further investigation to discover and solve the problem.
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